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This thesis reports the design, couducting, and results of an experi
ment intended to measure the paging rate of a virtual -.mary computer 
system as a function of pqiug memory size. 'l'his experiment, conducted on 
the Multics computer system at M.I.T., a large interactive computer utility 
serving an acad&llic c~nity, sought to predict Pa&iaa rates for paging 
memory sizes larger than the existent ••H'Y at the time. A trace of all 
secondary memory references for two days was accuailated, and siaaslation 
techniques applicable to "stack" type Paai.Ds algor itt.& (of which the 
least-recently-used discipline used by ltaltics is one) were applied to it. 
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puter utility in such a way that adequate data can be gathered reliably 
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Introdtictloil 

1. BriE!f Statement of the Problem 

In this thesis, we describe and report the results of an experiment 

designed to predict the performance of automaticaily managed multilevel 

memory systems for a previ.ously unexplored rauge of p~~ memory sizes. 

2. Stmary of Result 
. . : 

We have developed techniques for predicting memorj system perfor-
• I •. .• . .. _ "' ' '.: f ~ ~:-. - r •• _·) .• :.. 

mance on an operative computer utility, utili~ ._.al.l.tOIII&tically man-

aged multilevel virtual memory. Based ~c,&~.~~r~ ,th~ical tech

niques, we have c:lev4tloped ."tteclmiquea -~P -~1'~-~ -,:aeces~:J~ta from 

a computer utility funct:L~D& l,Diler a :t.J,~ load, ~~ d~ &:o~ we c_on

sidered problems of dynamic creati~ ~ ·~~~ o~ p._.. wbJ,eb appa.

rently have not been de~l;-~tl:a .-,~ly,o! ... t~ ~1tl.1'9'-AA ,t,bese .~ch

niques was demons~.•te4 ,by -~fo~,~~l ~~t;&· , 
~ ' ' ' ~~ ' ' 

Using these techniques, we have found that;' on 'the 'measured system, 

the rate of accesses to data outside of primary memory decreased drasti

cally as primary memory size is increased above 2 x 108 bits (6 million 

36-bit words, or 24 megabytes). We have found that the mean time be-

tween these accesses, as a function of prt.ary memo~ size was best ap-

proximated by a function of at least the second order, and possibly ex-

ponential. Previous research on the system under consideration showed 

a linear function to hold for primary memory size up to 1.3 x 108 bits 

(4 million 36-bit words, or 16 megabytes) (Sl). Although these results 

do not attempt to characterize Multics, we believe that they are rea-
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sonably representative of the observed class of user behavior. 

3. Summary of the Work of this Thesis 

By means of an experiment on the Multics computer system (B2), 

running on the Honeywell 645 at M. I. T., we have arri:Ved at metsurep!ents 

of the predicted reference rates toc.,secondary maaory ,for hypothetical 

extensions of primary meutory. 'l'hese measul'eaents were made on an actual 

user load, the M.I.T. community, and not any sort of benchmark or test 

load. From these measurements, models of program behavior in LRU*-man-

aged storage hierarchies can be derived. We suggest here one such model. 

The essential technique for deriving these predictions frOQl such 

measurements is knowD itt 'the literature (Cl,C2) as the "extension•,prob-

lem". It is based upon the properties of a class of memory management 

algorithms known as "stack algorithms" (Ml), which, include LRU. Using 

these properties, we were able to sbutat:ecthe operation of the LRU al-

gorithm for larger primary memory siZe.& than the actual one present for 

the identical user load. The input to this simulation was a history of 

all references to data outside of primary memory, specifically, on disk, 

during the period of measurement. It is a property of the stack al-

goritbms that: one measurement and simulation can be used. to predict se-

condary memory ~eference rates for !!! Pfl!ary memory si~es. 

The work reported in this thesis is significant because it is both 

the first measurement of this type on a paged, segaented, multiprograumed 

computer system which has been reported., auc1 an extension of. our range of 

*LRU, for beast _!!ecently !!,sed - a memory management policy whereby the 
least recently used data is moved to slower memory when space is needed 
in faster memory. 



10 

knowledge of the so-called "headway' function wieb ve have described 

above. Previous measurements of this function (Sl) involved other tech-

niques, and only investigated it for pJ;~ ...,.,. aises of up to 1 .. 3 x 

10
8 

bits. Our measure.ents explored regions approaching 4·x 108 bits. 

Although there is no bherent lild.t Oil the -range· vllich- could :In principle 

be explored by our techniques, the Uaitati01l of our explorati~ is due 

only to the noteworthy fact that over a; tlat's runaiag·of th~ aperfaent, 

8 no more than 4 x 10 bits of infonaation ~e referenced more than once 

by the M.I.T. c~nity. 

· 'lhe .significance of the actual resultiua measur~ is twofold: 

First, it provides an exaple of typical behavior for . the .. meanred sys-

tem. SecODd, it suggests mora geueral·Jiaiela of·>p~:Ogr~ behavior. 

4. Structure of this Thesis 

Chapter 1 discusses the concepts. .of paging. aDii- virtual lllelllOl'Y. We 

provide justification for the types o£: a~tiad.c• aa4 models we seek and 

describe how to use t:hem in per£~e: ~edicttone·... We discuss previous 

research in this area, and provide a Dn"e de-tailed. statement of the 

novelty of this thesis. 

Chapter 2 describes the experiment. We cleacribe· -the relevant fea-

trues of the so-called "stac~' algod.tbms (Ml), ani the)exteaM.on prob-

lem. We discuss the problems of ada.ptiDg this type of a:perilleat to the 

uarltilevel memory systea of Mllltics.. We QsaDe the·aiffi.Al-ties. in 

performing this experiment: on aa operariug cOIIIIJUter utility, ad the 

solutions we adopt. 

Chapter 3 gives the results of the experiment. The results are pre-
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sented graphically, and we suggest their interpretation. We analyze 

these results, and provide a detailed error analysis. 

Chapter 4 is a summary of the work done. We suggest future direc-

tions for research, and pose some of the questions left unanswered bt 

this thesis. 

There are three appendices. 

Appendix A is an extremely detailed description of the Multics paging 

control algorithm, as it was at the time of the experiment. We desctibe 

it on several levels, allowing comprehension by the reader on whicheter 

one he chooses. ! This background is useful for full comprehension of•cer-

tain design decisions in the planning of the experiment. It is alsoithe 

first publication of this algorithm at this level of detail (Corbat6f (C4) 

provides a less detailed discussiori). 

Appendix B describes how the actual events of Multics memory mabage

ment were mapped into the idealized events of theoretical interest th the 

experiment. We describe the modifications and the interface to the Mul-

tics supervisor necessary for this experiment. We assume that the reader 

has some comprehension of the previous appendix. 

Appendix Cis a graphical presentation of user load, idle time,land 

paging overhead on the Multics system on the days of the experiment.: 

These figures were derived from routine metering performed by the a~in-

istration of the M.I.T. Information Processing Center. 
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Cb&Pt!r 1 

1.1 Memory le!fo~ P£.ctiction e t goal . 

.As digital computer systems have 1ncreued in size aDd complexity 

since their inception almost twenty years ago, so have the memory archi-

tectures required to support -increasinaly 84~~--·..,P.U·C::~ions a.ud,,..ays

tems .. What is more, __ pro~~ss ~~'l-~~~lpq.:~ •. cF~ated,,- ~»:let:hora 

of memory media, ransina over a wide a.uJ: o#. c~~t~. s,eeas, @d pro

perties. 'l'be desire for increased_ tbr~put. -~ ~n real-time systeas,

the desire for,quic,k respcose,_creat~_a aeed,.f0r,~)l~ ~•.-test"'~ry tech

nology available. 'l'be fastest -.dia, h~'17e~, are. •U.08t alwtys the most 

expensive o,n,a cost-per-bit bas~s. 'l'bus, fl?~ 1 a,:giy~ ~~ter system_. to 

achieve or approach desired goals of 1111!11!'!0J'f:o~c~s &J'i!ecl lfithia a given 

economic constraint, it becomes use~! for metii,Qry~. sys.tems c~nsisting of 

varyina 811¥)Unts of mixed JDSIPOry teclu;1,o~s. tq be.-1:1sed. in qp.e installa-

tion. 

Most computers o£ the pas.t. twen~y y~s have ~ed ~tic core as 

their main, or primary memory. . T.tlat is t.9 sq1 . ~ prpce.s.sor . was capable 

demands were met by the us.e of tapA!&, -~, ~: ~er bulk Jlledia, wbos.e 

contents cO\lld be traus~erred in or out. o.f s,l~ed: .areas of prilllary 

memory by explicit proaraJa request. Mo.st of.tbe prosrams ud. operating 

systems designed for this type of architecture allocated these areas for 

input/output transfers in fixed, specific regions of primary memory. 

When programs could not fit in their entirety in primary memory, they 

were divided into independent pieces, or overlays, which were transferred 
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in and out of primary memory essentially at their own discretion. 

In the last few years, a strategy known as virtu~! memory has achieved 

popularity. With this scheme, programs are allowed, effectively, to re

ference data or instru~tions in primary memory or on any secondary storage 

device in an identical manner, creating the impression of a very large, 

or in some cases, conceptually infinite primary memory. References to 

secondary memory cause software intervention, signalled by specialized 

hardware, which results in selected code or data fr~gments being read into 

primary memory. Clearly, this implies replacement of some other code or 

data currently in primary memory, and in order to facilitate this task, 

such systems divide all primary and secondary storage into equal-sized 

areas, called blocks, or page frames. Information in the system is di

vided into pages, which may reside in various page frames at various times. 

This implementation of virtual memory is thus known as demand paging, as 

pages are read in on demand, i.e., when referenced. The selection of 

appropriate pages in primary memory for replacement is a critical issue, 

and is still a basis for much further study. 

A page fault, as the software-assisted fetch of a page not in pri

mary memory is called, represents lost time. The time required to ac

cess and transfer the copy of the page on secondary storage is time during 

which the requesting program may not run. The time that a processor must 

spend in page fault software, deciding on an appropriate page to replace, 

is a system overhead, which does not contribute to the progress ~f users' 

programs. MUltiprogramming, a scheme almost universally used on medium 

and large scale systems, allows processors to serve one user's program 

while another's is suspended, say for a page fault. But even here, most 
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systems limit the degree (number of simUltaneously runnable users) of 

multiprogr8DIIling, and page faults can lead to a situation where a pro

cessor spends an undesirably large fractiOn of its time sitting idle, 

accomplishing no function at all. Furthermore, fhe pl-imary memory spaee 

occupied by all of the faulting program is umtsable bY. uy program for the 

duration of the trusfer. 'l'hus, the minimizatiOn of page faults in a 
,. 

virtual memory system is extremely desirable. It iS an importut function 

I ' 

of the page-replacement algorithm, as the procedure, which selects pages 

for replacement at page-fault time is kDown, to attempt to minimize the 

number of page faults in the. forseeable future. 'l"hese decisions are usu-
; . ' ' 

ally made with information gleaned from ob.ervad.on of page usage in the 

iumediate past, occasional knowledge of p~e4ie·ted page usage patterns, 

and some general models of program beh&vior. 

Many page-replacement algorithms have thus· been des'igned for virtual 

memory systems with the explicit objective of mf.riimizing page faults. 

These algorithms are subject to matheaatical analysis, which is not true 

of arbitrary user programs. Hence, by 'careful observation of the storage 

references made by a program or multiprogr8amed collection of programs 

(although the latter clearly requires some fUrther remarks) we cu ana-

lyze its interaction with any given page-replacement algorithm running 

in any given size of primary memory, and ascertain which page faults 

would or would not have occured had prilnary memOry been some other size. 

These techniques are not in general applicable to non~virtual memory sys-

tems, for muy programs have no idea of how large a memory they are 

running in, or how to take advantage oi it, and thus explicitly-requested 

data transfers are not affected by changing memary size in any inter-
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esting or easily analyzable way. 

The ability to determine page fault rates (page faults per unit time) 

for different memory sizes is a powerful tool in both performance analysis 

and memory system engineering. Sekino (S2) has shown the explicit depen

dence of response time and throughput in multiprogrammed systems on the 

mean headway between page faults ~PF}. This quantity describes the 

mean amount of useful work done by user programs between each two page 

faults. It is most conveniently measured in total references to the vir

tual memory. If the mean amount of system overhead associated with a 

page fault is known, as well as a proper characterization of system idle 

time, we may compute MHBPF from the mean real time between page faults_ 

(MTBPF) and the processor reference rate. Hence, predictive techniques 

to obtain page fault rates for contemplated memory sizes can be used to 

deduce the system throughput and response time figurea which would result. 

Hence, if one can indeed predict these figures, the economic tradeoffs 

involved in acquiring improved memory system performance by increasing 

primary memory size may be evaluated more methodically. 

The use of more than one type of secondary memory in a single system 

results in a situation where the average time to access a data item in 

any part of the storage system is a function of both the average access 

time to a data item in each unit and the probability of accessing that 

unit. In a demand paging system, the probability of accessing each unit 

is the sum of the probabilities of accessing each page stored on it. If 

one can associate these probabilities with given pages of such a system, 

one can create a composite memory system with an optimal average access 

time within any given cost constraint. Ramamoorthy and Chandy (Rl) have 

--~--------------------------------------------------------
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given an algorithm, whereby such a system may be conatrueted out of aJ.lY 

collection of memory types, whose speed aDd COft~per~bit characteristics 

are known. In aD¥ case. it is clear that one should keep the pages with 

the highest reference pobability on the fastest ator"ie~-devi<:es. Al

though. the identitiea of these pages uy hfl '"te~~ by ~erimeutation, 

observationt aud prop;aa 8ll&lysis, one eaa vi.ew theae"prob-.bilities 11D4/or 

identities as ~tiou of. time... l'hus, one ·~4'D. 4evi•! -alao¥lthlaa which 

attempt to maintain pages wi..th given ·~"GB" -o(;.,.~~Eej•E~e probabili,ties 

on appropriate storqe devices. It shCN14 be fairl¥ appqent that this 

problem is identical to that of maintunina, pqee. ill Pt:~ey JMaOry with 

the intent of miuiaizina page faults. .',l.'his 141~- ~~di .. cua,aed more later 

on.. lbus, the deaip pf an optimal multilevel.storaa._.,.ystt!IR, as such 

configurations are lawwn, can also be -anal.Y~ Q¥. tile ~Jmi,«pl!IS .of pri

mary JDelllOry pagiq aaalysis. Agaia, the a.a~ti.~ ()f an .aP,propDiate 

model of. prog~em behavior, both in general ad~- ft>l' ~ ~ paJ"tic;ular . syatem. 

at haad, is of crucial ialpoJ;t~e .. 
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1.2 Program Reference Patterns and Models 

Computer programs being among the most deterministic of all things, 

any characterization of the data reference patterns of any particular pro

gram may be obtained by the simulated running of that program and the 

observation of whatever characterizations are desired. However, system 

engineering requires characterizations of programs which are to be run, 

which, for the most part, have not yet been written. In a given computer 

system, running under a given operation system, most running programs 

have many features of their memory usage patterns in common. For instance, 

in an operating system where an Algol-60 or PL/I-like run-time stack is 

native to the environment, the pages containing the top of the stack will 

always have a higher next-reference probability then page representing 

lower regions. If the supervisor itself is paged, i.e., running in a 

virtual memory, the same as users' programs, the supervisor has its own 

reference patterns which will be present in any run of the system. The 

same is true of compilers, assemblers, system utilities, library routines, 

and other service programs. Code generated by the same compiler is likely 

to produce certain common features in its reference patters, particularly 

on a local level. Thus, there is great value in observing typical be

havior of programs in a large computer system, and trying to formulate 

some model which is in some sense average or typical. 

In a multiprogrammed system, this averaging is done for us in real 

time. An experimental observation of program behavior in a multipro~ 

grammed computer system, made over some reasonable period of time, say a 

day, will produce a characterization of typical system behavior, if one 

indeed believes that such exists. This characterization takes into con-
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sideration all of the programs run in that day, ~ reUes on the CODJDOtl 

features of programs discussed above to have any validity at all. The 

interval of a day is chosen as reasonable;. fOl';that ia tbe:cycle.~ of 

many forms of human interaction with a cOBll*ter. People •a.l with an 

interactive computer syst~ for several days, doing the s~ type of work 

at similar hours in the day. 

The particular model of reference .behavior that we seek describes 

next-reference probability of pages in a vir;tual ae,mory syst~ •s a func

tion of position in a certain dynamic order!J:w• ~ as a. &~k, :1Jnpose4 

by the page-replacement 'algorithm. The class of algorithms amenable to 

this analysis are precisely those which would keep the tQp n p~es of this 

ordering in an n-page pdaary meRlOJrY, wered.t vae4 ,JiQ, m•naae ;such. This 

will be discussed more fully in section 2.1. What is ~rtant ~ere is 

that we can arrive at a function p(x), where p. is the.pro~ability of re

ference to. position x in this ordering. It.is til.• obj~t.of that su~-class 

of these page-replacement algorithma wllich "e e.c~ually .~eful for DleQlOry 

management to make this' function lllOUOtOP;ically d•ec••~lJNJ. ~~-, t~e a~ .. 

gorithm actually succeeds at this, it is cleetr tllat tken pqes which are 

most likely tq be refereaced rill probably lte in the n"'Page pr~ .memory, 

and thus, the page-replace.ent algoritha has ~cceeded in miuimiziag re

ferences outside of thet n-page pri.Btery ~' or. page faults• In the 

case of multilevel memories, ve eau piek out whatever poaitions in the 

ordering are appropriate, by ~thy aDd Clwuuly' s aJaorithJa, and as

sign them to whatever storage unit is required. C. X.. Cbow (C3) has also 

given an algorithm where an optimal BUltilevel memory f!Jy&tem within a cost 

constraint may be conat~cted directly from the, fuQie~ion p·(x). 
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1.3 The Experimental Determination of Predicted Headways 

If we accept the function p(x) as a valid characterization of average 

and typical behavior in a multiprogrammed system, we may predict page 

fault headways for hypothetical memory extensions from it. Furthermore, 

the function p(x) may be measured experimentally. In this section, we show 

how to approximate and use p(x) in this way. 

x is the position of a page in the algorithm-imposed ordering we have 

been discussing. Assume we have constructed the necessary tools to mea-

sure r(x), where r(x) is the number of t~es a page in position x of the 

ordering was referenced. Assuming pages which were never touched to be in 

position "infinity" of the ordering, then the relative frequency of 

touching a page in position x is 

f(x) :::: r(x) 
CIJ 

~ r(t) (1) 

t :::; 1 

Here, the numerator is the count of references to position x, and the 

denominator is the total number of references to all positions. If p(x) 

is indeed a valid characterization, f(x) should approximate p(x). 

We have stated, that for the class of algorithms under consideration, 

the first k positions of this ordering at any time contain precisely those 

pages which would be in a primary memory of size k. Hence, references to 

pages in the first k positions of the ordering never cause a page fault 

in a k-page pr±mary memory. and references to pages in any position beyond 

k always cause page faults. Hence, if a program makes H references to 

the virtual memory, the number of page faults it will take in the course 

of those references is identically the total number of references made 
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to positions in the ordering beyond the primary memory size. Thus, the 

program, running in a lt-page primary memory, will produce a mean headway 

MHBPF(k) = H 
ao 
L r(t) (2) 

t"" k + 1 

This relation holds true for any primary memory size k. If we have an 

actual system, running in a primary memory of size n, we can predict the 

MHBPF which would result on this system were memory extended to size E, 

E being greater than n. We assume that we can measure MHBPF (n) on the 

existing system, and that a tool for measuring r(t), for t>n, is available. 

Then the same program which takes H virtual memory references will have a 

MHBPF in the E page memory of 

MHBPF(E) = H 

~ r(t) 

We now divide equation (3) by equation (2), obtaining 

MRBPF(E) = 
MDft(n) 

~ 
t = n+l r(t) 

!! 
t = E+l r(t) 

(3) 

(4) 

Observe that this equation allows us. to vred~ct,~PF,fram a mea-
- - ~--· I t "' ~ - ' 

sured MHBPF and measured reference counts, a fact which will be used 
[ ',_ . -~ . . . .. . . ' 

later. We now rewrite equation (1) to read 

r(t) = f(t) ~ r(u) 

u *= 1 

(5) 

letting t be what was x and u be what .was t. Substitut~g (5) in (4), 
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replacing r(t), we obtain 

co 

~ f (t) 
co co 

r(u) 
co 

f (t) L: r(u) L: L: 
u 1 

MHBPF {E2 t = n+l u 1 t = n+l 
MHBPF(n) co 

[_ 
co co co 

f (t) L: r (u) L: r (u) L: f (t) 
u 1 u 1 t +1 

t = E+l 

co 
L: f (t) 

t = n+l 
co 
L: f(t) 

t E+l (6) 

Multiplying both sides by MHBPF(n), we obtain 

~ f(t) 

MHBPF(E) MHBPF(n) t = n+l 

~ f (t) 

t E+l (7) 

This equation states that mean headway between page faults which would 

result from a memory extension to E pages may be computed from the mea-

sured mean headway between page faults on the unextended memory, and a 

factor which is a function only of the program or programs being run and 

the memory sizes concerned. The work of our thesis is to compute this 

factor. 
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1.4 Previous Work in this Area 

Since the advent of virtual memory computer sys·tems~ the function 

MHBPF(x) has been of great interest~ being an easily identifiable charac-

terization of memory system performance. Investig~tors have run many pro-

grams in simulation~ obtaining this mean headway as • function of memory 

size experimentally. Almost all of these experiments have been done on 

machines which attempt to 'compress' a program into • smaller space than 

that in which it was intended to run. Such sy$tems may typically attempt 

to fit five or ten programs~ each running in a 32 k virtual memory into a 

core memory of 96 to 150 k. In such instances~ the set of pages referenced 

by each program is small~ as is the potential set which it can reference. 

These sets of pages are usually disjoint~ as they represent disjoint 

virtual memories. Virtual memory in this case is simply a technique to 

force several programs into a primary memory too small to contain all of 

them. 

Such work has been reported by Belady {"Bl), Belady and'Kuehner {83)~ 

and Fine et al. (Fl), among others. A larg_e amount of this work was done 

on an IBM M44/44X, a 7040 type machine at IBM Research Labs adapted to 

demand paging. Belady and Kuehner report. an expected HBPF for single 

2 programs running on this system of the general form e = a n , n being 

primary memory size. 

Brawn and Gustavson (B4) performed some measurements of typical com-

putational programs running on the same M44/44X. These measurements were 

significant as they are apparently the first reported measurements of 

programs specifically written for a virtual memory. They observed the 
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running ttme of programs, including page fault overhead, as a function 

of real memory size. No analytic models were suggested. 

Some performance analysis done by Schwartz {S3) on a Burroughs model 

6700 is also of interest here. In this system, all data available to a 

program is referenced as variable-size segments, brought into core on a 

demand basis. Program code and certain data segments are shared~ and the 

amount of information potentially accessible to a program is extremely 

large. He reported headway functions of the forme = exp (a.n), variables 

the same as above, for missing-segment exceptions as memory size was 

varied. {These were actual measurements performed on various memory con-

figurations.) 

The research which directly led to this thesis was done by Saltzer, 

and later by Saltzer, Webber, and Snyder(Sl). Salt~er measured the MHBPF 

on the Multics system (B2) at M.I.T., with two different sizes of configured 

memory. He obtained the result e = a•n, which has since been called the 

'linear paging model'. Saltzer later reported the results of an expertment 

designed and conducted by Webber and Snyder, in which the reorderings of the 

list by which the Multics paging drum is maintained were observed. Using 

the techniques described in l. 2 above, MHBPF{n) was extrapolated to a memory 

size of 4000 pages (each Multics page is 1024 words by 36 bits), and was 

found to be still within experimental error of the linear paging model. 
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1.5 Novelty of the Work in this Thesis 

The work performed in this tflesis was ortginia.l!y conceived as an 

extension to Saltzer and Webber"s experiment, e-Iuci'cf.atillg the nature of 

MHBPF(n) for n greater than 4000 pages. The. Ifudtatlons of t.&e linear 

model were &ought, as was the nature of wha·t:.ever model h'~ld beyonc:l that 

range. 

This series of experiments oti the Mlllticti' systelli is unique for several 

reasons. The data accessible to any progr* , .. ill MUtdes is potentially 

the entfr'e storage system,. and all dat'a•'keo.j ar. *de ;;{a' th4i virtual' 

memory mechanism. This is sillii.tar to the Burroug!Y sCh~, but dissimilar 

to the paged 'compressing' type systems described above. Furthe~re, 

sharing is an extremely important consideration 'n(lt.lttics, ·as all pro

gram code, inclUdiri'g th. supervisor, iar shared. 'Tilis thesis fs also 

apparently the first reported attempt to 'deal with ciyntlmfcally variable 

virtual memories, i.e., those whose size grows and sflri.Dka on a second-to

second basis. The issues of dytulmic paae ·cre'at::roa and destruct. ion which 

result from this policy are ,.Ystematically crutt: wfdl ·6y ·Ottt- ~1:. 

The use of virtual -.,ry aeema to 'be pil'li.Da il1 pOpular! ty as large 

general-purpose information syateiU 'hec:mle ·~ e...... InCreased interest 

in systematic protection schemes has resulted in ...ry new 4es-~s for 

systems havfD& segraented. uare.sms feUUras s:f:iid:tar to thtJse folltld in 

Multics. Demand Pa&iD& bas achieved c:aaaiAierably ..re popularity and 

widespread use than the Burroughs technique-a aa 8R blple.entation for 

segmentation, and has. recently beeR: added. by Dlf m their ext:reaely popu

lar System/370. 
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For these reasonsJ we feel that experiments made on a Multics-like 

system are relevant to data systems in the near futureJ and the reference 

patterns observed may have some features which are in some sense 

characteristic of programs running in segmentedJ pagedJ environments. 
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Chapter 2 

2.1 Stack Algorithms and the Extension Problem 

The substance of the experiment performed was to reconstruct the en

tire history of a day's UlU-mainteDaBCe of the !tlltics storage hierarchy, 

and attempt to predict page-fault headways for hypothetical memory con

figurations from this history. 

The basic strategy of memory simulation used was that proposed by 

Mattson et al. (Ml). This technique, known as stack si.Jmlation, relies 

on the fact that a large number of useful pagiua algorithms, including 

UlU, have the property that after any fixed DIJIIIber of addresses in an ad

dress trace have been processed by-the algorithm, the pages which are left 

in primary memory are always a subs~t of what they would have been at the 

saaie point in the trace had primary maory been larger. This feature, 

known as the "inclusion property'', thu-s defines the class of "stack 

algorithms". From this property, at any given point in the processing of 

an address trace an orderi.Dg can be constructed. The first page in this 

ordering would be that page which would then be in primary memory were it 

of single-page capacity, the second would be that page which would .!1!2 

be in primary memory were it of two-page siEe, the third that which would 

be added were memory of three-page siz~, and so forth. The history of 

the processing of an address trace can be viewed as a series of these 

orderings, which are known as "stacks", the single page corresponding to 

unit-size memory normally being considered the "top". As each new re

ference is processed, the algorithm causes the stack to be reordered, 

possibly corresponding to page motion for some size ~ry. The top n 

----~ ~- -------
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pages on the stack being the pages which would be in a memory of n-page 

capacity, any motion of a page into the top n-pages implies a physical 

reading of a page into primary memory. For· a demattd stack algorithm, this 

movement can occur only as the result of a page fault. .Thus, we may infer 

the behavior of an n-page primary memory by observing the number of times 

that reference is made to position n:H or. beyomt in sudl a stack. As we 

have defined this stack and the class of algorithms processing it as main

taining the first n pages in this stack in an n~page memory, no reference 

to position n or below can ever cause a page fault. Mattson's technique 

consists of taking a recorded or pl:'oposed address trace, running it 

through a program which constructs the sequence of stacks'1ust described, 

and act:umulates· the total tiU:IIIher of refereneeS', t~· each posi-tion therein·• 

When' the: processing of the trace begins, the s-tack is void, e,orresponding 

to'an empty primary memory. At least until: a given page_ is fetched,. into 

primary memory the first time, it will not have been in· the stack at all, 

and its first fetch may be considered to have been -.de from position 

"infinity". "·As the trace progresses, and repeated references to pages 

are made, we accumulate counts for each position in the stack of how many 

times a page in that position was moved upward by the algorithm. It can 

be shown that for a demand stack algoritba, the only condition on which 

a page may move upward in the stack is that it is that page which has 

just been referenced. Simply, were this not tile case, a page in position 

n would move into an n-1 page primary memory without having been refer

enced, and the algorithm would not be a demand pagi.ng algorithm. As the 

completion of the address trace, we can, for any n, sum the reference 

counts for positions n+l to the total final length of the stack, plus the 
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count for position "infini.ty'', and this will be the 11UIBber of page faults 

which would have tr~pired had tbat address trace been lUIUlged by the 

algorithm used in an u.,.pqe pr~ry. 111e111C)ry. .. ~te t;'94t a single processing 

of the trace can be wsecl to produce. a r~lt .which c,an ~en b~ used to 

analyze any hypq~heti~l .-.o~ size. 

· This. tec:hllique a1~ow~ .. ~e to, .. Q£(;!r~ain:_~e pag~, fault cou.nt fQr the. 

interval under co:Q.Sideration for any conteJaPlated ~ry aiz~. By· sim.ply 

dividing ~e total system he,adway dul"iDS· the actu~~ trace .bY this page

faul~ coun~, we maY thus ascertain the ~re4icte4 .~ tiJae between. page 

faults (MHBPF). for ~t _StOJ;"age syetesa., :~~~X'Q!Ore1 ~tt clln plot tbe t"e

fertmce counts at. ~h. posit~on, no~l~zed 1 ~th ~·~ct: to tqe. t9tal 

~,·of .. ;reference counts, ver$us. the pos~tion ~er,,- ~ip~tain. ll ~r-4ph 
~ . 

w\dch. describ~ what_ 'H. shall .call;,acc;es ... freqqeocies. With this~- .we_ can 

aaaly~ the- be~avior of IDllltilevel memory I\IYStems processing thi.s trace, 
. . ·- . " . . 

and obtain an. optilllal such systept withbl: cos,t. cOJ;l§.tr•i1lt~ .u descJ:ibed ~n 
• ~ ~ : ' •• - • •• - •• ' ._,. • ,,, ' -~ : _!_ ·' ' ... ~. - --~ • ~ -~ 

Chap,ter 1. The slulpe of thU graph .also_ tells,. u.s, 111:1ch a})out the refa~ive 

success of the particular algor4bm ~ .... "'81Jl3. that p~t,i_cular. ad~re"IJ 

. trace, without reprd to any single ~· cou,figp.;atiQn. We .will co~

sider·the~particular·graph in-the case .of QU.J:' results in ~eater detail 

in the next chapter, aDd in so doing . wrtller con.si4er ~ch s:raph.s in 

general. 

OIJr experiment sought to learn the sh~ aJMI nawre of this graph at 

positions correspol)ding , to memory sizes .of ~ ~..,, •. of pages. In 

order to record a reference. t() positio~Jl 4-n.a st~!t-as 6es'"ribed,_ there 

must clearly be n-1 items above it. This implies .. ~t at least. n dis-

th tinct items have been referenced by the time a reference to the n posi-
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tion occurs. It can be seen that the extent of the address trace required 

to produce meaningful statistics at the ten-thousandth page position would 

require a prodigious address trace. At this point advantage may be taken 

of another remarkable property of stack algorithms. It is possible to con

struct the portion of the stack from position n+l to the end without a full 

address trace -- we use information extracted from a running algorithm 

managing an n-page primary memory at times when page faults occur. This 

is known as the "extension problem" (Cl,C2). The technique is as follows: 

we maintain the stack (the "extension stack") for positions n+l and be

yond. When a page fault occurs, we know that the page faulted on cannot 

be in the first n positions of the stack -- if so, it would not have been 

faulted on. We locate the page in the extension stack; if not there, we 

may consider it as having been at position 11 infinity". The counter cor

responding to the position from which the page was fetched is incremented. 

We remove the page in question from the extension stack: it is now in the 

top position of the real stack, which we are not maintaining. We now use 

whatever information is necessary, from that normally obtainable to the 

running algorithm, plus that we are maintaining, to reorder the extension 

stack according to the policy of the running algorithm. This reordering 

will usually include placing some page removed from primary memory by 

the running algorithm at some point in the extension stack. In the case 

where the replacement algorithm is LRU, the page removed from primary 

memory is placed on top of the extension stack, and all pages previously 

in the extension stack move down one location. Note that pages which 

were below the fetched page in the extension stack stay in place during 

the entire transaction. 
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I 

The advantages of using a trace of ·a runniag algorithm in a large sys-

tem measured over an extended ·peribd of time, 'B Ofpbaed tO< a trace ob• 

taillewl by si.alatiol\ of a given program over- • DII!ICRiari:ly -..ch- shorter 

period of time are straiaht£0l'Ward. We are intereeted in 'system. perfor-

surements of a live systea correspond to ;bo'tb ,t~ae.:.cu.a :scale and load IDi.x 

of interest. As long as the accur-acy of' th& •••se r nm: can be ma1.nt:ai1led, 

. l' 

consider the Multica system·: 400,000 refereac" ·to -the virtual memory: oc-

cording 2 data items £or eacH page fault' we laa'le recltiCe4 the 'amount 

It should be clear. that: the 'l."&liUlts rofth:la Wllper:baent, although simu-

lating hypothetical 1Dall0ry system perfortUIIce1- fib: '110111, repreaellt ai.mlllated 

results. The measureme:ata Diade etorrespc:md -~aD lMCGGtro-lle4 user popu-

lation during normal world.Dg ·.4q&, .\18-illg .,.,ita"8Y ·tn!oBri81U·1l!lider 6,-way 

multiprogr.-iag. The re«slta tbua·•sbow bow a ~ed.caJ. ...a:y .ays"" 

tem would have behaved UDder dri.s ·real . uae~doad .• 
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2.2 The Extension Problem and MUltics 

The MUltics system has a physical memory consis\:ing of 256K (1 K :::;; 

1024 36-bit words = 3.7 x 104 bits) to 384 K words (1.2 x 107 bits) of 

8 core, a 2000 to 4000 K word (1.5 x 10 bits) drum, and approximately 

90,000 K words (3.3 x 109 bits) of disk, both movtag and fixed-head. The 

variabilities stated above are depelldent, upon. tke t:f • .e Qj: clay and the ¥Sel:' 

load, governed by administrative policy. The entire· storage system is 

divided into 1024-word pages, and is managed by the demaad paging mechanism 

(with the exception of several thousand words of n~m-pageable code and 

data, such as the code for the paging meehani8Dl itself, which must be 

non-pageable in any case, and are thus n&t Tea~Jy of i~erest in memory 

performance prediction). The algorithm used to manage replacement of 

pages in the core memory is essentially :u.m. the v.-iation from LRU is 

explained in detail in Appendix A. Essentially, within the constraints 

of operating system overhead and the precision of measurement of recency 

of use provided by the hardware, it tries to tmplement LRU as closely as 

possible. Also, a non-demand prepage/postpurge policy was in effect 

during these measurements, which caused s~ pages' tQ:. move in and out of 

core outside of the control of the LR.U algoritl:un. 

The 4000-page paging drum was at this tilDe ·~iJJ.g used in a mode 

which attempted to overcome rotational latency by making multiple copies 

(S4), in this case two, and hence was of 2000 page capacity during these 

experim.eRts. Since January, 1972, the drtmJ. has been used as part of a 

hierarchically managed storage system, as a buff~r. between core and .the 

disk storage subsystem. In such systems, one att;~s, to keep pages 

with the highest access frequencies on the u~test @v;ice.s, in order to 
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minimize the system's mean access time. In an autGD&tically managed sys

tem, the identity of those pages is cotiStautly clumgi1J8. Aa the stack 

access frequency graph discussed above can be used to aasociate.access 

frequency with stack position, page replaee.em: algortt:blas identical to 

those used to maDaSe primary 118110ry. are frecaueatly used to m.aaqe other 

devtces in ·a hierarchical -.emory systea Uo;.ach:ieve 'tllis aDd. In .the Mall

tics sys·tem, another uear•UW algorttlua. is used to ...aae the drua, which 

is described as well in the Appe11Altx. l'he·-drula''~t algorithm at

tempts to maintain copies of the top 2000;'pa&es of the theoreti-cal stack 

corresponding to the UUJ algorithm on. tU·•drua. l'lle -110del of program. 'be

havior implied by the UUJ algoriti'D, aBel YRifted by·. the· ~:enlts of this 

experiment, implies t:lt.lK-these pagea- are the 110st likely. to be referenced., 

and at the time they are on the dru84 thaa heve the bilhest access fre

quencies. 

As currently implemented, a page whicll haa M:ea ;faulted on, and is 

not on the drum, is read into core from. the disk. It wi.ll not be written 

to the drum until the core 111&118&8188nt algarttlla. clee-iclu to oust it from 

core. This impli-es that the pqes corH:BpcmdiDg. ;to· that pprtton_ of the 

IRU stack representing core are· not cCJIIqUetely a subaet of those on·. the 

drum. Hence the ckula· will contaiu pagerr reprea.eaiua a 2()()(kpage con

tiguous portion of the stack, whose tO)IIDit estrfllae 18 anywhere \)et;ween 

the top of the stack and the size of core laelotr it. Of tbe 256 to 384K, 

about lOOK is not uae4 for paging, leaving 150 to 280K for pagilJc., thus 

this variability represents about 7 to 15'1 ef t8e -size of the drum. 

'l'he stack-reordering proeedure of 'the I.aU algorida is oue of the 

simplest possible: the referet~ead page moves to the-·top posid.oa of ~e 
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stack, as is necessary in any demand stack algorithm. The pages between 

the top page and the old position of the referenced page all move down one 

position. Thus, to use the extension technique described above for the 

LRU algorithm, the only reordering information one need record is the 

identity of the page thrown out of position p (p being the size of the non

extended memory, in pages), which will then occupy position p+l, at each 

page fault, in addition to the identity of the page faulted on. The 

''pushed" page becomes the top of the extension stack, the page previously 

there becomes #2, etcetera, all the way down to the former position of the 

faulted-on page. This is what we have done with the Multics core-drum 

combination, considering it as a 2000+X page buffer, where X is some frac

tion of the size of core, itself at most fifteen percent of the drum, to 

account for the top-of-drum variability described. As positions p+l and 

on, in our case, correspond to the disk subsystems, we need only record 

disk reads instead of page faults. (It is instructive to note that within 

the entire operation of a Multics system, not a single direct-access I/0 

transfer is done outside the paging mechanism, pre-paging being included 

in this consideration.) As disk reads are two to five per second, we 

have thus reduced our data-gathering chore by at least 95%. The experi

ment of Saltzer, Webber, and Snyder, which was similar in intent to this 

experiment, but more limited in scope, has already produced results (Sl) 

for primary memory sizes up to the maximum size of the drum. For this 

reason, we did not consider it worthwhile to attempt to gather data for 

that portion of the stack corresponding to regions in the drum. Hence, 

the application of the extension technique to this core-drum combination 

was adequate. All else that was needed was the recording of information 
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provided by the drum management algoritha as to the identity of pages 

thrown off the drum. It can be seen that these are the pages thrown out 

of the core~drum combination, given that ~ page is ever thrown oqt of 

core without having been written to the drulll. 

In order to determine the validity of this tecbeique, the necessary 

programs were written and tested on a staud~aloog Multies taaebi:n~. This 

machine had 131,072 words of core and a 256 .. paatt.·cJ.nm. ~H•nc:e, most of the 

range of the regular Multics drum vas in the ex.tnsioa region of this ex

periment. 1'he mean headway curve resulting was very ~ell approxi.Juated by 

a straight line, suggestiag t:b.e linear Paaie& JIQdel. This provided a 

good deal of confidence in both tb,e techtdqwa -.Dd the software. 

Hence, we see two types of motion •eween core-~ and disk. Th.e 

reading of a page constitutes motion from disk into core-clrum. The 

writing of a page, however, does not conetitute outward motion. In gene

ral, writing is performed only when a copy of a page on disk is different 

from a drum or core copy. The outwaJid ~:1,-oQ correspoodina to a read is 

really the claiming of the core or drum fr.-ae previously occ_upied by the 

page of interest. We call this phenomen.oa 411 11 ousti~11 • 

Unfortunately, a problem arises with even this •~le uwdel. Certain 

pages of the storage system, 3 in all, correspc>llding to the system's top

level directory, are special-cased by the paging. a_Qd drum-manaaement al

gorithms such that they may never go on the druPl. '!'his is due to cert.ain 

integrity issues involving the reliability ~£ the ~ and the ~treme 

difficulty in reconstructiDg the contents of this directory. Hence, 

these pages are never written to the drum, al1d leave the 11core11 portion 

of the increasingly less theoretical LRU stack directly for the disk por-
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tion. (In this case, writing never takes place unless the concerned page 

has actually been modified (see Appendix A)). More unfortunately, these 

are among the most popular pages on the disk, as by the dictates of the 

LRU algorithm, they should have by all means been on the drum. Thus, we 

must check for pages being ousted directly from core to disk, and we thus 

have two varieties (core and drum) of ousting to be recorded. The inter

pretation of the data resulting from movement of these pages will be de

ferred until Chapter 3. 

Thus, we need record upward stack movement into the core-drum com

bination, meaning disk reads, and downward movement, meaning oustings. 

Another event of interest is the creation and deletion of pages. In the 

current implementation of Multics, logical pages are created out of the 

void when a never before referenced page is referenced. By definition, 

all such pages contain zeros, and hence never involve disk reading. Fur

thermore, these page faults will occur regardless of what size primary 

memory is, and are thus not of interest in memory performance prediction. 

This last statement is somewhat subject to current design and user beha

vior. Were there a tremendous amount of fast, cheap primary memory, it 

is altogether possible that users would rarely delete programs or data, 

but simply rewrite or modify them, thus making page creation a much rarer 

event. We choose to ignore this possibility. 

In the following discussion, "n" represents the size of "primary 

memory", in pages, in terms of the extension problem. In terms of the 

specific experiment on Multics, n is the size of the core-drum subsystem 

in pages. As was explained earlier, this is the size of the drum (2000 

pages) plus a fraction of the size of core. 
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Page faults which cause creation of pages involve neither disk traffic, 

idle time, nor multiprogramning, and are tll11s not of interest in MTBPF cal

culations. Since all new pages are created in .this way, we find them natu

rally falling past position n of the complete ,LIU stack, into the extension 

stack after sufficiently long disuse. Page deletion, on the .other haDd, 

can occur at any t:f.me ·in the life of a page. If a pqe is destroyed. so 

soon after its creatiov that it has never pas~H!(l posit.ion n i,n the stack, 

we are oblivious to its entire existence. If, howeve~, it .is d,estroyecl 

at such time that it is beyond. position n• its 4eat~ti.on ~RL&&t .be ~

panied by its excision from. the extension stack. ,-:when a .paa,e is destroyed 

in core or on the drum, the next page to be faulted ·on replaces it without 

any page being pushed down the LR.U stack. lJQWeYeJ', ·thtt· RQ&itioa in the 

stack of the destroyed page is assumed by the Jaae .di.-ect~y under. it. The 

page fault following a page destruction creates cmly _upward stac~ lllOtion .... 

nothing is pushed down. 

Consider, in our theoretical n•page prt.ary me-ory system, a page in 

position n of the LRU stack. This page is now -.t~oyoci .. : A page in posi

tion n+m is now faulted on. In an actual memory sy•~• this page will 

now be read into primary aeaory without any pqe beiBg replaced,. the des

troyed page having created an empty page frae, D\tt. the newly faulted-on 

page will be at the top of the IRU stack. 'l'he~ fcmaerly ,first to n-lst 

pages now become the second to nth pages in the st4ck~ 'l'he n+lst (first 

page not in core) to ~1st pages retain their or~giaal stack position. 

(See figure 2.1). The n+.B'th position in the new stack is in a situa

tion akin to that of the nth position after the deletion of the page 

there: the page in the n+m+lst position cannot come up to fill the void 
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that would not be demand paging. Until some reference is made to a further 

position, say n+m+k, this will be the case. At the time the nf1ll+k refer

ence is made, position n+m+k now becomes anomalous. Hence, we _create an 

anomaly when a page is deleted, which propagate& down the stack as any re

ference is made beyond it. 

The strategy that we have chosen to deal with this, in the si.Dulation, 

is simply to excise a page fran the stack when it is deleted. Thus, any 

reference to a position beyond the excision will be tallied as a reference 

to position x instead of :x:+l. Note, however, that the position of the 

excision has then moved to x. All references in front of excisions are 

tallied correctly. The analysis of the inaccuracies resulting from this 

treatment is quite involved, and is covered in detail in section3.4.3. 

Thus, the data items which must be recorded in a trace are those re

presenting 1) reading of pages into memory, by demand or prepaging, from 

disk, 2) claiming of pages bY ousting pages frc:JQl drum to disk or fran 

core to disk, and 3) the deletion of pages fran the storage system. Of 

these events, types 1 and 3 represent excision of a page from the exten

sion stack, while type 2 represents the pushing of a page on to the top 

of the extension stack. Events (1) also c~e the noting of the stack 

position of the page read, and the incr~ting_ of a counter corresponding 

to that position. There are actually some other events which must be re

corded in the case of the MUltics system, but these are due to the parti

cular implementation of the core and drum management algorithms, and are 

discussed in Appendix B. 

The handling of page reads of pages which cannot be found in the 

stack, i.e., their first reference, requires some thought as to inter-
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pretation. Were this experiment run for a suffic1ently long time, the 

appearance of such pages would cease. Pages which are created come down 

on the top of the stack, and any existent page whi.ch has not been refer

enced since the experiment began enters the core-drum extension-stack com

bination once and never leaves, until it is destroyed. These first refer

ence's, as discussed, are counted in the "infinity" position of the stack. 

These fetches of pages not in the stack accouated for roughly a tenth 

(7881/74530) of all disk page fetches. These references do not affect the 

relative number of fetches to any two extensioa staek positions, as they 

would not be in a core-drum memory of any size until the first time they 

were referenced. Thus, when one considers disk accesses, one should con

sid~r these reads to be disk references in a core~ system of any size. 

However, the longer the experiment runs, the fewer will these references 

become. ntus, since we are interested in steady-state behavior, we have 

chosen to consider these r.eads a start-up transient, and not count them 

in any calculation. They tell only of the length of the expertment, not 

of what is being measured. 
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2.3 Performing an Expe~·on Moltics 

Having developed the theoretical haaes of the extension problem. and. 

adapted it to Multios. the next step was to, proceed.. t.o' ~outruet tlle 

necessary eofblare to develop the extension acWrees trace, collect it., 

and perform the utU stack simulation with it. , 

A privileged-access facility was set up iD the Mnltic.s hardcore super

visor specifically for this experiment. Wilen. enalecl,.,a trace of all of 

the events ment:i.onecl above wu: aecumulatecl in a ~ireular l008-1110rd bufUr. 

Each trace item ineluded the physical device aaclr..Ss of .some.- page beiD& 

read, ousted from core-drum, or deleted. iD:fGrutdion as to which of these 

events is represented. ud a flag iadicat:i~ for statistical purposes, 

whether or 11ot it was one of the previously· ..a.ttoned pagea •. wllich are ll()t 

allowed to go oa the d.rua. Also rKordecl was iafonM.tion allowing .. the 

program which inspects this buffer to s~onize itself with it cor

rectly. A program was cleveloped which. iaspKt:ed thi.s buffer regularly 

from the !mltics standpoint, a privileged operation •. This program .as

sembled the buffer images into a continuous trace·. whieh coulcl be as. long 

as necessary, suitable for further, repeated processing. 

This strategy was decided upon because of the extensive time required 

to search an LRU stack for a given page, and the large amount of space re

quired to store this stack. This ruled out the possibility of having a 

special-purpose module of the Multics supervisor perform the expertment 

in real ttme. The performance degradation necessitated by the time re

quired to search and the space, which would have had to been non-pageable, 

to store the LRU stack would have been wholly unacceptable. Furthermore, 

the accumulating of the trace data for further processing allows many pro-

---·~---- .~~~-~---------------
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grams and versions of programs to be run on this data, increasing both its 

usefulness and the accuracy of the results obtained from it. 

One disadvantage of the data collection strategy described is the pos

sibility of the data collecting program losing synchronism with the circu

lar trace buffer, i.e., data being overwritten by new data be-

fore it has been duly noted. This situation can come about when the data 

collecting program has made a decision about how often the buffer should 

be sampled, and an intense unexpected burst of activity causes the buffer 

to be written into significantly faster than before. The data-gathering 

program samples the buffer again, and notices that data has been lost, 

but anticipating further loss reschedules itself. Another way that data 

can be lost from buffer mis-synchronization is the data-gathering pro-

cess falling behind in the multiprogramming queue due to Multics sched

uling policies and heavy user load. The implementation of the data

gathering program tried to compensate for this by being written as a multi

process program, i.e., a program running in a coordinated way in many pro

cesses at once. Not only did this give it a scheduling advantage, but in

creased the reliability of the data-gathering operation as a whole. 

Unfortunately, data losses of the types described were common, espe

cially in initial, developmental runs of this software. The greatest 

losses would typically occur at midnight, when a large number of user pro

grams scheduled to run then would, creating heavy paging activity refer

encing pages neither in drum nor core, and only one or two processes would 

be supporting the data-gathering operation. The extents and analysis of 

these losses are considered in the next chapter. 

A danger of running a large complex data-gathering system in many pro-
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cesses is that of creating a great deal of activity which would Mas the 

result of the measurements by measuri1;1g itself. '1'he sharing. features of 

the Mill tics syat- helpecl count:erbalauce this ;effect: all of the data · 

bases and procedures of the. data-gathering syac- 1M'.t"e fully. ·Shared, having 

only one copy. Only the· per-process work ,.-ea. ·'ftt:e not .shared. ' 'l'he 

actual data-gathering system, in order to handle the ·coatrol of 111Ultiple 

processes, possibly aalt:iph terminal!a, ·aM 41y4Mf.c achedoling was, in 

fact, quite complex, requiring six sefarat!e -pr.oce4uT4s. · '!'be sharecl data 

bases and procedures totalled ten pages. Approslaat~Uy two pa&4!s of work 

area per process were needed. 

The data gathered was stored in data sepents m the •ltica virtual 

memory. 'J.'he stack stallatiOD was au'buquelltly perfcmaed, using this data 

as the extension address trace, exactly as deecrtbed above. !be proc~res 

which performed this reduction ran in an uurestrined Mal:tics enviroaaent, 

and hence had practically -no restrictiOil on Cillle or apace.. .The um stack 

was repreaentecl as a list, in whieh each ao4e represented a stack posi• 

tion. A push of a page onto the top of·.the stack!requt:ted the allocation 

of a new' nOde, and the redeftnitiOil of ~is ·node 'at the top of the stack. 

'Dlis node was then Made to point to the foraer ataak top. The . esd:sion of 

a page from the stack requirei locatidg the node correspoadiag to this page 

(each node contained a physical page adiresa), the reallocatioa .. of this 

node, and the reconaeeti-ag·of the list arou.l it%-;;i' l'or trace data repre .. 

senting disk reads, however, it was necessary to ascertain the position in 

the list of the relevant page. · Tbis required a seareh of the· entire list. 

In order to reduce the work of discovering that a page was-not in the list 

at all, a bit table was constructed, describing, for each possible physical 
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disk address, whether or not it was in the list at all. This saved the 

necessity of walking the entire list. 

The above list-maintenance algorithm spends a great deal of time 

searching the list to determine the position of pages in it. Several al

gorithms were considered to avoid the seemingly crude strategy of linear 

search, but most of these algorithms caused the list to grow increasingly 

disorganized, requiring periodic time consuming re-organizations, or re

quired large amounts of data movement, a poor approach in a paged system. 

Because of the availability of a stand-alone machine which could easily 

provide the computer time necessary to perform this processing, the develop

ment of a better list-maintenance algorithm was not pursued further. 

The result of the stack simulation was a table, describing for each 

position in the extension stack, how many times a page in that position 

had been referenced. The sum of all of these counts, plus those at posi

tion "infinity", represented the total number of all page fetches from 

disk during the period of the measurement. Although a graphical display 

of this information is of some interest, the calculation of MHBPF was the 

immediate objective. Thus, a table was created displaying, versus exten

sion stack position, the total number of fetches observed divided by the 

sum of the counts for all of the positions further down the stack. For 

a given position N, the interpretation of this number, x, is as follows: 

had memory ~ore/drum) been extended N pages above its actual size, we 

would make one disk reference under that circumstance for every x refer

ences we make now. We thus refer to x as 'references per exception'. 

Note that we have not included the "infinity" fetches in the 'total re

ference' count in the actual results shown here, for the reasons dis-
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cussed in section 2.2. 

One may choose to interpret x as the "ralaU.ve. .i,ncreasa in mean head-

way", which is to aay, the factor by which...,_ b~ will inc~ase over 

its current val-qe if the exc;..nsW!l of N ~es is . ....te . to ~~e~drua. For 

in~&J;lee, if. "refer,encq 1l8X'· aceptiou''· ~· ~ .t. Ii .?c 40QO. ~&AS. the in~ . . -· .. . . ·-~ . . - . -· '· •' ' 

terpretation woul4 be: If • adc1e4 ano~ 4~ ~s to the. drum, we 

woul,d £ault to the disk OPe-fifth as. often .aa. we .,Jo ·la'JW~ this consti-

RB¥wmcea .ob!HJed .· . , I Mean ~ .~ -~ ~repce.s .. 
References beyoad position R 

= Jlefer!IICM obseeyec! X. 'U• .~;:ef StJ!.!IM!nt 
References beyond position R References observed 

= Tiu!e dura&\Cm sf.eped.p!ent ·. 
References byond position R 

I • . . 

= Mean time between references beyond position H 

= Expected mean time between references were memory extended by H 

Multiplying this DUIIlber by the measured system headway in virtual 

memory references during the experiment, and dividfng h1' the time dura

tion of the experiment, we obtain the expected mean headway between page 

faults were memory extended by H. 

We have displayed both references per exception, versus memory exten

sion size, and. predicted inter-reference headway, 'as a funetion of memory 

size. 

Rote that in all of this discussion, mean time computed from an ex-
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periment taking many hours must be taken ~te literally. The averaging 

effect over a day of usage varying between a heavy user load and solely 

the data-gathering program* produces a result which is really applicable 

to neither, but only a theoretical load somewhere in between. For this 

reason, we feel that 'references per exception' is a more useful inter-

pretation of the results of this experiment ~ ·~~n t~ beyween ex-

ceptions'. Attempting to tune a system to the theoretical point described 
H J 

by such measurements will not help the system when it needs ~e most help. 

The reference counts and references per exception were subsequently 

displayed in printed tabular form, and the references per exception ver-
~ ~ _,;,- ~ ~. - ' 

sus stack position plotted on a Stromberg-Carlson 4020 Microfilm Recorder. 

Some of these results are reproduced and discussed in detail in the next 

chapter. 

*Some more precise descriptions of the exact user load during the experi
ment are provided in Appendix C. 
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3.2 The Results of the Experiment 

The form that we have chosen to display is that of an "exception 

ratio11
, or MHBPF(l!:)/MHBPF(n), where n is the adjusted 'primary' memory 

size (core-drum) as explained in sectiort 2.2, and E.is a hypothetical 

memory, both in pages. This exception ratio is the quantity expressed by 

equation 1.6. We plot this ratio versus primary memory extension in 

figure 3 .1. We express the abscissa of'-bur graph as· 'memory extension' , 

which is the hypothetical·· increase of cor•-drum instead of absolute memory 

size because of the variability of the size of core-drum as discussed in 

Chapter 2. The size of core-drum is not the sum of sizes of core and 

drum, because of duplications, created pages in core which have n~t been 

copied out to drum, and possibly even different configured sizes of core. 

The extension size to core-drum is meaningful however, because th& data 

and results derived from the measured data represent the behavior of a 

hypothetical extension of the given size, oblivious to all of the above 

considerations. If a figure for the size of core-drum is needed, 2100 

pages is reasonable. The .shape of this graph suggests an exponential be-

havior. Thus, we next plot this ratio on a logarithmic vertical axis, to 

better view this behavior. This is figure 3.2. The plot aLmost traverses 

the graph diagonally, suggesting the straight line which would correspond 

to an exponential. We have drawn a straight-line approximation, which 

corresponds to 

(E-n)/(7.00 x 107 bits) 
MHBPF (E) /MHBPF (n) = 3 .42 e (l) 

The surprising closeness ~f the dtm 21 and dtm 23 plots gives some con-

fidence in this result. A similarity to the unpublished Burroughs re-
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load on these days. The difference, however, is not very significant. 
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the polynomial headway function MHBPF(x) 

knk 
pk (x) = k+l 

X 

k 
ax giving in general 

(12) 

which subsumes (8), (10), and (11). The exponential model (9) is the only 

one of these probability distributions which is characterized by an inde-

pendent parameter, y. Letting A = 1/y, we r~N.rite (9) as 

p(x) 1 - (x-n)/A 
5: e (13) 

A has the dimensions of pages. It in some sense characterizes a 'radius 

of locality of reference' of the programs running. It is the mean fetch 

depth into the extension stack. 
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3.4 Accuracy of the Reported Results 

The question of accuracy of the results of a supposedly deterministic 

simulation seems at first to be unnecessary. However, this simulation was 

based upon a measurement. Thus, the techniques used to interface this ex

periment to the Multics system (see Appendix B) became a source of inac

curacy. Furthermore, the behavior of anomalous pages (the so-called "glo

bal transparent paging device" pages) caused significant deviation from 

the assumed LRU model. The deletion of pages in LRU list created prob

lems, as an inordinate amount of effort would have been required to handle 

these correctly (see Chapter 2). 

Thus, we will consider three sources of inaccuracy: lost data, glo

bal transparent paging device pages, and list deletions. 
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3.4.1 The Effect of Lost Data 

The loss of data was due to failure to retrieve it from the Multics 

supervisor before it was overwritten. This was a consequence of the cir

cular buffer strategy chosen to solve the problem of real-time storage of 

this data. These strategies were discussed in detail in section 2.3. 

The effect of these losses are twofold: some counters for stack posi

tions were not incremented for lost data, and the ordering of the stack 

was affected by this lost data. We consider these problems separately. 
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3.4.1.1 Lost Counter Accuracy 

In order to deal with either of these problems, we assume that lost 

data has no correlation to page reference patterns. We thus deduce that 

it shares the same distribution over stack position as the successfully 

accumulated data, and the shape of the resulting histogram is not se

verely affected by this loss. For the measurement "dtm 2311
, the most suc

cessful and accurate of thos made, 435 trace items were lost out of a 

total of about 200,000 successfully recorded items. This represents a 

total inaccuracy in counting of less than one quarter of a percent. For 

the slightly less accurate "dtm 2111
, 1200 items were lost at various times. 

Measured against the 150,000 items successfully collected here, this is 

still less than one percent. 
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3.4.1.2 Stack Shifting Inaccuracies 

This type of inaccuracy, resulting from inaccurate reconstruction of 

the LRU extension stack, is considerably more subtle, and damaging in its 

effect. Failure to notice certain movement into and out of the extension 

stack causes the stack to stray progressively farther from a realistic re-

construction. Items remain in the simulated extension stack which were 

in fact removed by lost data, and items which should have been pushed on 

its top are not so pushed. The result of items not being removed cor-

rectly is twofold: first, the item will appear twice in the stack when it 

is pushed out legitimately onto the top of the extension stack in the fu-

ture, and items further down the stack than the false appearance will have 

their stack position incorrectly recorded. The double appearance is only 

a problem because of the latter effect. The stack-managing algorithm of 

the simulation program used a bit table to record the known presence of 

every storage system page in the extension stack. Thus, the legitimate 
f ~:: 

pushing (the second t~e) of such a page has no effect, and the later 

fetchin~ of that page from the extension stack fetches the correct in

stance, and the bit table indicates the page as no longer being in the 

stack. 

The result of items not being pushed because of failure to record 

their pushing is similar. Their absence at the top of the extension stack 

causes all items below them, which is the entire stack, to have their posi-
.:· ., ; 

tions incorrectly recorded. These items appear one position higher than 
- ' . ,:: ' ,p. ·~ . -

they should be, for each ~ssing item. Thus, until the missing item is 

later requested from the stack, by virtue_of a ~;cor~ed fetch, all items 

which were on the stack before the failure to place the missing item will 



62 

have· their pos~tions incorrectly tallied: Also, a later reference to the 
' 1 '-'"·· 

unpushed page will be recorded as a transient, not-in-stack page fetch, as 

discussed in section 2.2. The"effect' of DOt accountiQg this .fetch to any 
,. 

stack position was already discussed. 
. . . :.; . ,_;, ,_. 

Note that the effect of pushi~ and then fetchtng any single paae has 

no effect on the extension stack orderings before ~-pushing and after the 
! : ~ 

fetching. '11lat is to say, if the }lushiua aad fetchtDa were not recorded 

at all, only the stack order.iqs between the t11o ..:OU1a be incorrect. 'l'h.us, 

· if at any one time a data retrieval ft.~·· the hardeor~ s~~rv:i.sor notices 

that X data items were lost, all such puah•f~ti~ ·~lr:~~ rii:hf.D the X lost 

data items have no st.:Ck-reordering inaccuraCy ~:i.~t~ with thaa, and 
•'' .- ..• • 

only the lost-counter inaccuracy occurs. A ~·fernce:.~. pair, on the 
. . ·. :· •. ·_ ·;r ::: ;-· . 

other hand, causes both types of inaccuracy. Although it seems evident, by 

; locality of reference, that any strf.Da df contlauoa~· I~~~;~~~ ·items JDUst 
·' 

contain a large llUIDber of push-fetch pairs, i~·e., a· paae· i·~~htly pushed 

out of cor~-drum is one of the most lik~ly 'to be f~tched back 'in soon, 'a 

more car.eful math~tical analysts show~ th:i.s t·~ be '-'false. ·k&ea· upon 

parameters derived .from' the data accurately record~' iii "cfta 23", '100 page 

fetches within a string of contiguous lost data items will statistically 
. ·i ·: .- 1{. - .. '• . ::: . •. . ·" .· 

include only 4 fetches of pages pushed within the lost data items. 

We DlSt thus assume the verst case, that every iost data ltea was in 
- .:. r ':·· - :_: ~·+' Ill; . • • • ·- .,.--;:; . .. .' 

fact a push or a fetch not properly matched within the lost data. Bence, 

for the 435 lost trace. items in. 11dta 23ri', the !£'t~t "~£ '1~.i:LD8.''this data 

could not have been worse than ;he pushina .;f "43i ~~~refere~ced-.Pin 
' -' : " . . ... ~ ; ,•F. '• ,'' -"''!(!·". ·~ :. ,. -. . 

pages on the top of the extension stack, or the exc:iaic:iu of '435 random 

points frOIB the stack. In the first cas~. "t!W :r...;t~·~.i.j t~t later 
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fetches are accounted to l.Qwer""!'~ed; ~~OU$, tluu:l ~.~y s]wuld hav~ , 
,_ - "- _,\1,._, , __ ~- ' - - --- --·- • • -

been, a~ in the second case, sOJne later fetches axe.,aceou~ted, to, :positions 

of higher munber th4J1 ~ey shoul4 ba,ve be.~. In ei.t¥r cas~., th;e .total .ef

fect is rthat of an uncertainty of e\tQs i435,.pr "14~, ;QD. ,the,S~t.Jl.ek ppsi

tion axis of any dt!J:ived graph. In reali~. the ).oat d,at~ must ,contain an 

almost equal number of pushes ~ fetches~ (Jly conservation of~~ the 

difference mus.t be exac.tJ_y the di.,ff~r~e b~f!J! R.~ .cr~ .and des

troyed in core-drum. ) As a result, a t7p~ ~~ p• ~n the ex- . 

tension stack will s,_.ffer an averas.e ~l~&lt ,~t 435/2,~ due, to the 

lost fetches. Hence~ the .. total UJlCertainty. ¥1. the .•~k po~ition 111tis of 

any derived ~aph ;i.s DQ.f:; gx:eat~ than pluf .Qr ai~us_co_..half ~ nupJ.ber .of 
- . - ';-- ··-· . ' ·' ~ -. _- , .. ~., , . .....,.."';_,. -·-'· ·-

lost data ittlUlS •. For "4tm 2,3"~. th:l,s is 2.}.8, ~i~~i.on•~, · .~t of our gr.aphs 

are plotted to a resolutio'Q. of 500 stac;k pqs~p&~;. .,p,QP~Pared to. the 

8000 or so positions of interest, . this ~~IJ!~Y:~ is .Jle)~ ~ ~ignifica.at. 

Suumarizina, the effect of lost tr~ .~t.$ "- .·~ both as lost ~pi

racy in countiug. and uuc~tainty in the ·~~ti.Qu. ~i:s of deriv·eci 

graphs. Both uncertainties are proportional to the amount of ).pet ~4,-
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3.4.2 Global Transparent PMfD8 DiiVicW'J~t!et 

' 'lhis eype' of inaeeuracy' r«!su11:'8' fnlt::tbe ~~ haDdti.ng of the -sys

tem's top level dirM:'tory pages-·, t&i-ee .. tit "ltll. ~·~-iiages are ousted from 

the core ... c:trum ·i~tton ·-presaat11dl~~ .. clkt~· by a· ·aysteil- refiabtllty 

pOli-cy which att.,ted 'to i'naUre· :the: tt*tegtt~· ;of ttine pqe• 'by keeping 

them (J'ff of the drum. As ·a result,· '1:hey'~ itt f~ Ulttld"1DOte 'often than 

the •pages t-8sit1Jaately ~·-the top··'lt!Wf.tt&l''t:h.Ei'i8Z~itih 1ttaek;: ana·ltbUa, · 

had no right to be 1n diU s~aek 11t 'ell'. '·'!bat ~-~ td- say·.·•· they- woUld ·11m 

been Oli the c:lrUDI' at:· ahloar· all ttiaea Wit· ttiej''bc:it ~~ ·ao •peetatl..icaaect~ 
'fhe· anOitllloua· effeet c)£ theft -~ tt.f ~;~.nr early- 'til the wr-k' 

o.f this thesis.· :Atl~··•c:t~to'ft~Viif1 ~d~fteance"o~· 

of 

all lillrics disk trdfic 1ra 'a -rou'l1:: eft 'tbeee -~~cased .pqes. 

'l'bus, our·~ waadiiDCltfllKf ta-uOtti<tit'UW ~dUe· when such 

pages were be11:ag fetChed or 'OUBtttii ~'~eire~/ ·1JH iillaChat• :by which 

iti Appendh A. 

the predominant inaccuracy caused by these pages is a distortion of 

the very low end of the f(x) aud r(x) curves (eee aection 1.3). the stack-

reorderillg inaccuracy created by these pas" caDaOt be .,re than plus or 

minus three pOsitions (as there are only three of these pages) at any 

point in t:lae or stack, and is thus totally iDaipificant. .U these 

pages rightfully belOD& on the drua, tlaey are ueually fetched very soon 

after they are ousted, and thus, never mf.arate ·very far down the stack. 

'l'bus, many reference counts at lov-~recl stack positions are at-
.. 

tributable to these pages. If the core-draa combtaation were exteDded by 
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any finite amount, and managed as currently do~ (i.e., at the time of the 

experiment), the anomalous references would still app~ar outside of core-

drum. One should thus consider these references to be ~9 t.l;aek P98ition. 

"infinity", meaning that they would be disk references no matter how far 

core-drum were extended, or simply nhighly anomalous11
, and not considering 

them at all. The latter course, which we have chosen here, is equivalent 

to ignoring the effect of these pages on the extension stack orderi-s, and 

considering them to be outside the domain of the extension stack, that is, 

in core-drum. The effect of removing references to such pages on MIBPF(n) 

is easily calculated. Starting from equation 3.4, we multiply both sides 

by MHBPF(n), and obtain 

~ r(t) 
t = n+l MHBPF (E) = MHBPF (n)~..:..-__.;;.;..;;,... __ 

lXI 

E 
t = E+lr(t) 

If E is greater than the deepest position in the extension stack to which 

any of the anomalous pages ever migrates, the only place in this equation 

where anomalous pages are counted is MHBPF (n). The effect of removing the 

anomalous fetches from this quantity is simply to scale it proportionately 

to the number of page fetches to be not considered. That is, if T page 

fetches (other than the 11 startup transient" fetches of section 2.2) were 

observed, A of them to the anomalous pages, 

MHBPF(n)adjusted = MHBPF(E)adiusted = 
MHBPF(n)old MHBPF(E)old 

T- A 
T 

This ratio was observed to be between .92 and .96 for the measure-

ments "dtm 23" and "dtm 21" displayed here. 
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Summarizing, the anomalous drum-abhorring pages create an inaccuracy 

of about 4 to 8 percent in the headways and headway ratios calculated from 

the measured data. 



67 

3.4.3 Inaccuracies Resulting from List Deletions 

These inac-curacies result from a design decision ·to implement a simple, 

fast list-maintenance algorithm, as correct treatment of these deletions 
·• ·, } . 

would require a fairly time-consuming technique. Hence, we proceed to ana-

lyze the extent of the inaccuracies resulting from this inaccurate treat-

ment of deletions. 

Recall from Chapter 2.2 that the deletion of pages in core-drum does 

not affect the ordering of the extension ·;tack. suc:h ·a deletion implie~ 
. --"~ . r.; -~-~:··_:.' :: g..c .i~t' ·'-· . 

that a fetch into core-drum will occur with no corresponding ousting. As 

this is in fact what happens, there is no inaccuracy imi~lved with core-
. ' 

drum (or "out of list") deletions. 

•' The deletion of a page from. the extension stack creates a "moving 

anomaly", as discussed in section 2.2. All references to pages in posi

tions in front of the anomaly (whi~h occupies the pc)&'u:ton of the deleted 

page in the extension stack) are. ~allied correctly •. 'i'he 'fir,st- ~'eference 
'f 1 ~C- :~ •. ·>··--""'~' ••v•,.~, :, -t 

to a page behind the anomaly is t•llied ~c~~eetly;·'beeause we chose not 
. -;\ --- - : .. > .. ;;_;.t .J.i.\'':;..· .!.(; ·:-;~i> '';, 

to record the anomaly. It is recorded as being one page closer to the top 

of the extension stack than it sh~ld h&ve been.: - H.~~;r, the anomalY. now 
moves down to the position of thaJ fetch~' The situ~ii~ is now the '~ame 
as had the page just referenced b~n deleted:. ae'fer~nces :i.n front of that 

position are tallied cor~ectly, a~ ex~tly 0~ rei;rence ;~hind' it is 
... ·. -- .·. I , , .f." 

tallied incorrectly, and the anomaly moves down • 
. "'< f . ; ·r- . --~ '-~ ··' .. - .' 

We proceed to analyze the motion of such an anomaly doWn the extension 

stack. In the worst case, the page deletec(~~''at ~th~-::\re#Y'top of the ~x-
. . . t -.. . . ' '~ :- -... ~ F.f ~- \) ·_; .; • . 

tension stack, and thus, the next reference is ·gtiar&iit'eed to be tallied 

incorrectly. Probabilistically J this -~efere~e c~ttf't~ ;t::o ~that c.'extensi~n 
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stack position which is the mean of the distrib~tion f(x), the measured 
f i . . L! \- '',. ' "·~: 

reference frequency distribution. There is a probability of q that this 

reference will be as far down the LRU stack that a fraction q of the 

weight of the distribution f(x) is below it. Now for the measurement "dtm . . . 

23", there were about 2000 in-list deletions per 50,000 in-list reads. 
·~ :t~:r~_,; l ,·;j { -; ..... ··~ 

This means that there was one deletion per 25 reads. In order to calcu-
.;: 

late the probability that a deletion anomaly is put a certain depth in 
•<:"" • • • ~ 

the extension stack by 25 reads, we consider -the eaqteri;ment, tried 25 times, 
,;··-::·.:-·.· ·.·-~~i -~.~-} -~~-~-;·-'"'"'~;···:·~ ·"~ 

of en~~ntering .a read ~~ leas~ ~t ;~~ ~-~ ::~'7 ~~ack. 1'be probability 

of succ~ss of one read being in that pol'tiOD of the stack where a fraction 
~ ' ' ;. .' - ·,. ---=~-~:- ~--··:,·- -;~~--- ...;· ~ '. ~, __ . ';. ?': -~ ·, ~- ; 

q of the weight of f(x) is left is epetly··q. 1'be. Foba'b_ility _of a 
. :--~ t"; ): 't ~l-; ~ ~; ' '-. - f- : -·· "'.-' . ~ 

failure :(.s (1-q). 'lbe probability of 2S failures is (1-q)25 • 'l'he pro-
-·- · .' · ---. :;rtL: -::;-1~. ,~ -~n\~ J -~ ~ · 

bability of at least one success in 25 tries b oae 18imls the probability ·• ··: ·. · .. 2:5· ·:;.·L;:::;-;: ;,\ b~::.t.:·.'}:":c:i: ''· _,·.i::·· 

of exactly 25 failures, or (1-(l•q) ). Por q = .1, ~.e., the ninety per-
:_ j ~':t..:J!:.r_ -·H$ ~.:..:~ .. 

centile point of f(x), it is .93. Por q = .05, it is .72. Bence, by the 
- - -£•-: f ••. -::: - ~ r -~.-t :::.~ --,~~-~ = !] -_ ::.-· .,~:-.._ 

time the next deletion is recorded, it is quite likely that the anomaly 
~'.: :"'-::-~-'f:~_j 2.1 \:;;::~·j$,:·~": $;;,: ~ ,.;;':-"~"::cc -._>, 

generated by the previous deletion is quite f" d<NQ the extension stack. 
~ -·.r:.-.: .J--·- --- · ·· _;_- •. _; __ . ...-;.o-~_'"1...,. .. t-::.1 .1.I _,::.~~-~(r.C~~i: :w :· :· 

Bence, for the upper portion of the extension stack• the effect of dele-
:...' ,•' ,- ' ~ ~ J' o< • f , ~ , , 

tiona do not cumulate. Bence, each deletion aeuerated an inaccuracy of 
·J:J· -~ ; ~~ ·:~")J -~ ~;-:;:':(: <~.(.j ~ </• •. 

one stack position for each read behtod it, but the corresponding anomaly 
. • - • ~ )_,· _)_::;"'""'~'' ~- 1 ·~--: 'J ·.;, "~ .. ' 

moves sufficiently rapidly down the ezteaaion stack that the effect of 
, - ~· · : .. · ·, - · ·o:_- .- -.·' ;_•:fF:, ,"'{l_-;_:,vr:;·:;.-~:) b~_; :.~: .. "' -~ . ~ 

later deletions are independent. 'Dlus, for the upper portio1i of the 
~-~ ,.-;1¥~/>fLL .:. .f:; b..o~ !!: ·-~.I') .~~;< ·;-~_o: · ~._;- .• ~ 

stack, th.e result of these delet~oas is a total uocertaiDty of one stack 
• · _ _., ·-.- ·- ·• !' ----"1- -_:._: __ ~ ":4:::-{I;.:;;~i-~ ~-~-J r_,..-j~)-.·-

position, a nesliaib_le 81110Unt. 
. . " . i .- '; . ·.: ~ . - . -- ·. . l . ' .. t :-)-...'; 

The a~ve J!e~o_nillg correctly implie~,, t~~ ~ ,a,uo-l~~s,r,e~~~ing 

from deletions ace~late at th~ lover reaches of tlae extension stack, 
. · · -r :- ~ r .r:, _J [ ~y , 1· ~- : -~ i -· "-.. - · · 
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and that fetches from these regions have a large'cUIIallative error. In 

order to analyze this effect, we construct a queueiug theoretical model of 

list deletions. A deletion anomaly causetJc the fi:rat fetch to a position 

behind it to be off by one position. Several delet~ anomalies in the 

extension stack cause the fiY'st fetch behind them tb be off by that maay 

positions (the number of deletiOn anomalies) • ·Howe'\rer, once this first 

fetch has occured, ·the next fetch from this ·posil:ion Will be off by one 

less position, and so on, until all of the deletion anomalies have moved 

behind the position in question, and fetehe$ from this position are tallied 

correctly. 'l'hus, we may construct the following inHtopreta'fion: '!be dele-

tion anomalies in ftoot of pos'ition p form a; queue. ·~b- -htcb behind 

position p "serVices" one request. i.e., remcJiV'e8- ·oM' ita frODt the queue. 

The rate of arrivals to this queue, in the worst case (all deleti~ from 

the very top of the extension stac~) is the rat:S: of deletions. The rate 

of service is the rate of references to stack ~sitions behind position p. 

The length of the queue is the number of outstanding anomalies in front of 

position p, which is the total error in stack posit~::~ which fetches 

from position p will be tallied. Assuming exponentially distributed arri-

vals and services, with respective means A and ~' the average 

queue length at position p is known to be L = 1/(1-~/~) from queueing 

theory. X/~, the ratio of arrival rate to. service rate, is the total 

number of deletions (assuming the worst case) divided.by the number of re

fereftces past position p, both immediately obi"ain~ble :~r:om the ~easured 
. . . 

data. As there were 2000 total deletions\ queue length approaches infin-

ity at the point in the extension stack where 2000 references were counted 

below that point. This point is at 3650 pages depth. At 500 positions 

*In measurement "dtm 23". 
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befqre this~, q\leue leaath is ,down to 4. At only -100 positions before it, 

queue length is 20. Bence, up to ~QOO ~ •. ~ :effe:ct ~S: ~ligible.,. 

At positious below .that point whel:e tlter.e -~ 2QOO; .. p,qe _ -fet~s -recorded. 

below, the queue grows £aster _than it is s~iceci. At t:rua time, th£ ~~-

meat is .stoppecl, the 'QUIDher of ~iflJl\ ... J<W)"iea.:, ~.eaaa1-1Wls · ~ ~~. in . 

front -Q-f po&ition p', wher-e p' .is -~ ~- .2000 ··"fer~~~ point in the 

ex tellS ion stack is .the total .~ qf_ de~ ,(in, ttte .worst case) Jllimls 

the DUJDber of references ~yond position p' • .As -~ of these quantities 

pre~ly ~ ~- a :coJUJ~t -rate, t~ &V4t1;_.,:;._.~~Q!; ~- ai:aek poaiti.OJl of 

a reecn-ded reWeace t.o posit~on p' is o~-~f ~-q~~ ~th. 'J.'his 

allows us to ree~ruet an appr~i.ml¢1on ~ -~• c~~t X'(~) ad. f(x). 

and then.all of the -ra.u~t,laa ~a, :by ~~~18. a')."'t~._,, more. aec:u-, 

rate rC.). r' (x) as 

r' C.) r:: r (x) for x < 2000. .. ~s :,- . .: ... 

vh.-e t (x) = f r (y) 
y=x 

'nlis implies that at the very tail of the distribution, there is a stack 
. . . ;. . ~ ,, :~~j ~.,-~· 

position inaccuracy o-f 2000/2 • 1000 positions.. At a stack depth of 5000 

positions, there is an iJ14Ccuracy of 500 positiona. 'J.'his does not seri

ously affect the shape of the exception ratio and MBBPF curves in the 

region of interest as one can see froa f13Ure 3.6. We have re-plotted 
1::_,: 

here figure 3.1 and corrected as above. 
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3.4.4 Other Inaccuracies 

Another possible source of inaccu~y yas the forced oustiass of 

pages to disk directly from core, no1; ctoe -~ global transparency to the 

paging device. A close inspection o:f "try_'to_vrite_page!J in Appendix A 

reveals that pages which should be ousted -~- core to the paging device 
- /-- : 

~the drum) are occasionally.· ou.sted .. to diskr because there is. no r()OIIl on 
!·-·· 

the·pagi.ng device. 'l'his actiOn avoids rec~8.toal·lu the process of. finding 

,. a free core frame, as de la~e.r pr~ess would otlervi.se possibq iuvolve - . ~ 

ous~ing pages frM dr18, which could require fi.udiDI a free core ~ame • 
.. 

Altlaough we do. uo~·have data on the frequeacy of this occurrence ~ the 

: : 4a.Y• of the .~riment, we have observed 161lt1cs at other times, and the 
: . : '/ / 

pen:entage bf disk writes caused by such outU&s is less than a tenth of 

,.. a iercent/~f all disk writes. It is true of ltilt:ies that the rat;!P of 

reads t~ writes r.-ains fairly constant. lach read corresponds t-o one 
.. 

page fetch, and each fetch DUSt be ·acco.tpanied by an ouatiDg at ~~ 

time./ Bence, 'forced' ouatiuas IIU8t be ·a sDdlarly .. 11 perc~e ~f 

all oustings, aud not a aiplificant effeCt. 
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3.5 Correlation between dtm 21 and dtm 23 

Observing figure 3.2, the correlation between the two plots is fairly 

remarkable. Within any reasonable accuracy for what is meant to be used 

in engineering approximations, these curves represent a measurement of 

the same quantity. 
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3.6 

Our meaa, 1~acbtay. ~~., .. .(;~.-J.,-::l .. _<) .. ~i.~ll ~t.~t 41.fi~ences 

from .the curves give~ in Sl-ff¥" ,tM,.._ .• ._~~~~·,the *l~~4J . 

system. We can :~t~~ ·J:~ODAA~ .·~· ~~cJt}!' ~~ina: x 

the nature of the user load during the two different expe~~t:.J., 

'lbe measured mean headway between disk paae faults, in terms of vir

tual memory references per disk fault, was between two and three times the 

figure measured in Sl. What: is more, tru. slope of the two curves differs, 

ours starting out at almost .six times the slope of the curve Sl. We attri .. 

bute this to differi.D& values of A in equation 3-.13, in terms of. the model 

proposed in this experiment. ·MOre specifically, the 'tightness' of 

working sets was greater for our experilleat, &Did the 11UIIIher of distinct 

users was fewer, causing even greater ttgbtnesa of the system's "cOIDbined 

working set" at any time. 'Jhe ~~easurnrnta given in Sl were made during 

a day of very heavy system usage, in Au&ust 1972. User load at this time 

consisted primarily of systems progr.-..era euaaaed in progr811l development, 

an activity which refereDCea vast extents of likaries, tools, aDd spe .. 

cialized procedure aDd data. These users were also operating without 

ecouomic restriction, aud thus bad little iDeentive to ainiaize the re .. 

sources used by their activities. Our expert.eats were conducted at a 

time when. some of the !mlties user load bad . shifted to the Honeywell 6180 

Hultics system, in a state of devel~t at tkat time. All of the sys

tems progr811111lers had moved to the new -.chiDe at tbe tiae of our expert .. 

men.ts, aud the reaainillg user load was quf.te lJ.aht, cODB1st1Dg of the 

M.I.T. academic c~nity. 'l'be lightness of user load also implies a 

smaller mmaber of distiDCt users. 
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The mean headway curves which can be extrapolated from our measure-

ments may be viewed as a function of user load I system working set 

tightness, giving rise to the family of graphs of figure 3. 7. From this, 

it can be seen that a linear region on a curve corresponding to a large 

system working set can correspond to a non-linear region on a graph cor-

responding to a smaller system working set, and the latter will rise 

faster than the former. If one draws the line C C' corresponding to the 

core-drum to disk boundary, both the differences on measured headway and 

slope differences can be more readily understood. 

Another factor which gives rise to the family of graphs in figure 3.7 

is the transient response of the experiment • As the length of the LRU ex-

tension stack grows, so does the observed va~ue of ~. Especially when 
I 

user load is light (smaller number of dtSk teferences per hour), it takes 

longer to develop curves of low ~ than high~' aDd this was the case in 

our measurements. HetK:e, it is possible t:ba~ a more extensive measurement 

could have allowed a curve of higher a~ A to re~lt. 
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Chaptel' 4 

Conclusions and Suggestions fol' Futul'e Reseal'ch 

4.1 Conclusion 

The most general and useful conslusion that can be drawn from this 
.. -.: 

thesis is that increased pr~ memory size decreases page fault overhead 

in virtual memory systems very sharply as it grow, -itJ.ctaecrease being 

-
We hypothesize that the- reference pat:tenas olRRii:!Yed., aad: the headlrey 

functions duived al'e chuacteristic of a :!aqe•scala :cQmPU;t:er utility 

being used by an acad•ic c~y through mter*ctd.ovci eoaselea·~ ·'JJle data 

were it accessed via explicit d'i'Sk requeats :oa. some other type of computer 

utility, we expect ta see ~lie same "patteru<a:a4 l\EJadWay functions. 

The 1n0st specific:: and couel'ete reeult 'tlbich ·w·1bave arrived at is a 

measuremettt of the mean lleadvay funetiOR ·for :Mlllties, sbowf.ng how page 

fault overhead decreases as prtaary me.ory sf.ze. apltrvaches 4 x 10
8 

h:Lts. 
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4. 2 'l'be P•i.• Model Suges1:ed 

'l'he JDeaD headway funct-ion MBBPF(z), where x is primary J1181110rY size ill 
~,;• 

pases, may be expressed as a pol,Dc.ia1 hi"i, 

(1) 

-. !', 

Saltzer •a 1De&8Ure~~~ents susgest that 

(2) 

is an adequate ohazMt:ertut:toa··of the-,..._:~' Pf Jta;l~ ill the 

rasa~.:!& 10,~-~.,. -0.·.-..r~_.-.lj> ... ~-~ •a-
·' . . .. --

sureJiellts ·we acle, that t:he quadrat.ic t«M- ,t.,q · (:0 ~· ~ficant at 

x = .aiJprnxH•ee:t¥ 1.0x1a
8 

bits. ·.· 1.'be tXW. McU.~a ~s, 3 .• 1 .4Ail __ _ 

3.4 -ueat dlat ·ataber, t._ <becOM ~~¥~ ""':_~ ~ ~eaa~ -iur_~ 

dler. 'l'his would tie cODaist.ent 1Q.tJa ••~~...,.t~ 1M4e,.mt IU'bi-

trary increase.in pr:iaary ~ ~ .~,-.,,,~~7IJIJDI!;y,:AJ:P.~ ~ 

-_ . . k 
above. <Belady an4:11febuer (B3) :aM~ ..... ~>=--~ 8JIM•~te 0.'!~- for 

1 real life proara~~a 1 
• - _In ·~tar"'ltde.s~ ,JJIM 1/Wt}~ and Systea 

360/.61 machines. ·tbe7.fCNDCI It to tM« V4!_..., ·~ ~',~*1,~U:;y.c;e)~ 2'.• 

'l'bis model also can be described by the geaeral repreMntation of equa

tion (1) above. 'l'bese observations also suaeat, as cloes figure 3. 2, 

that 

(3) 

is in some cases a valuable approximation. Tbe coastant tera becomes in-

significant for sufficiently large x, aDd we BB7 write 

~)x 
MBBPI' (x) = ~ " (4) 
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a very simple model which is very appealing. As was shOWn in Chapter 3, 
"', >_ f- • c' .- --~ '' _. 

this model corresponds to a reference probability distribution 

p(x) = e-x/). (5) 

where x is LRU stack depth and p(x) is the probability of reference to 

~hat position. This simple model of program behavior i~ particularly ap-
••. "<,• .'·-;:'' •• ' 

pealing, as it characterizes "program size" as a distribution. Denning 

(Dl) has given the concept of 'workina set' .as a measure of program size, 

within a given time interval. Equation (5) is or a more specific class 
_; :: ; " .~" . -' 

of program charactet:izations, expressiD,IJ the 'size' of the program as a 

distribution. '!'be parameter ).. may be viewed as a 'radius of locality' of 

the programs running, expressing i~ some sente their • tightness' or 'to-
• ::;. l ~ ' . ·-i ;· ,., 

getherness' • In this sense, ).. is akin to the cqncept of wot:king set. 

' ' t 
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4. 3 UnansweJ'ed Questions and Future Directions 
. •, ,-, .;: ·.,· . ;! I - . _:::, .. 

The 1110st obvious extension of the work presented here is to extend 
- , " . . .-:-~ -; ~-,1 ::S ::· ~:. ...: ' 

upward the range of primary IHIIIOrY sizes . for libich the nature of MBBPP (:x) . 

is known. Although the techniques used in this thtlsis. are cc:.pletely ex

tensible "tn this regard, it is not ciear .edi~ m. oot. 'there is any value 

in sueh research beyond some po~t. tf a ~ce'itd.sl ~t of ~· ,~ry 

reduces secondary ~ accesses ; to ":ciace - ~ ~' "'£o~ instance J . th~ issu'e 

of seconclary memory access time verau;j c~st ~ic~ly ·takes precedence over 

priJDarY ~ry cost versus seeOnaaey. · ·~ releieoc~ ~ih~~. For in-. 

stllDCe, 'our meas~eaents ;Jiredic't t'b;~t c'~ ~~a~ti!on ~rd; "of' core~ 

drum woold reduce disk refere~~s to ~~ · mry -~ -jd~f~~. At ·t;~{& ~rate, 
: -·. ~ .. · :···· -- --.r~:y-· .. ·".; .,..-.... ·~--; .. •·_A·:···-~·- -

the economic viabilitY .of ·a £&,;i: d:i.sk i~ a 'grut~r'' ia&ue than the p8r-

formauc~ improv~nt resultina from '~fe·'~o~e~: 'i~r iust~e. a large 

12 
(10 bit) slow (1 sec access time) store ai&ht be quite acceptable as a 

bacltiug store. 

Another area of research is to fully UDderstaud the program behavior 

patterns Which are responsible for models of procr .. behavior such as 

Saltzer's linear model a'Dd the model proposed above. We uoderatand the 

working set model because we know that prop:• loops, subroutines, etc. , 

cause repeated reference to certain data it-.., aDil this behavior is some-

What extensible to larger views of progr-. We do DOt know what "causes" 

the linear model, or other such models in this senee. We can understand 

"distribution" type models by the s_. considerations of 'spatial lo-

~ality' and 'temporal locality' ('M2) on which the world.D& set 'BMlel and 

the LRlJ replacement algorithm are· based. but we have no insight into the 

basis fo~ any particular distribution in proar .. behavior. 



81 



82 

models. 

Sekino (S2) shows the significance of MHBPF(x) in system performance 

calculations, particularly throughput and response time. Although our re

sults may be used in these calculations, we have not pursued this course 

here. 
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APPendix A 

A Structured Pros~a Desc~iptidn of '~ltics~ Page Control 

This appendix describes the functioning of the fault and interrupt 

driven mechanisms within the Multics virtual memory management algorithm as 

it existed in May~ 1973, at the time of the experiment. Only the paths 

within the so-called 'Page Control' subsystem relevant to this thesis have 

been shoWn. This excludes some fairly complex mechanisms relating to error 

handling and the allocation of page tables. Within the paths shown here, 

however, this results in only a few small oaissions. 

The aim of this appendix is to familiarize the reader with the inter-

nal operation of page control to whatever depth is necessary for compre-

hension of the rest of this thesis, particularly Olapter 2 and Appendix B. 

To this end, we have provided a description on several levels. 

The most detailed description of page control given here is an approxi-

m ately "structured" program, in which we have functionally modularized 

page control into 14 small routines. We have taken the liberty of creating 

a new language in which to write this program, which we explain within. 

We feel that this language conveys the general class of manipulation des-

cribed herein with a max~ of clarity and succinctness. 

We have liberally renamed objects, substituting names which we feel 

are more mnemonic than the actual names used in lilltics. We have also 

made minor modifications to control flow, and subroutinized routines which 

were not originally subroutines where we felt that clarity would be 

aided. In any case, the algorithm as given is essentially identical to 

the actual assembler-code algorithm at the time of the experiment, with 

/ 
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respect to state, sequencing, and side effects. 

The plus sign (+) in the left-hand margin denotes references to routines 

explained in detail within. 
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A Brief Overview · 

Multics manages both core and drum (the latter known as the 11 paging 

device", or "pd") by approximations to the least-recently-used algorithm. 

Two lists, the core used list and the P!&toa device used list are mai~ 

tained for this purpose, the top of each list desigpating the least recently 

used page (which is the best choice for replacement), and the bottom of 

each list designating the most recently used page (which is the worst 

choice for replacement) on the respective devices. How these lists are 

maintained can best be learned by reading the program that we have pro-

vided. The core used list contains logical descriptions of core frames, i~ 

eluding pointers to descriptions of logical pages and/or paging device re-

cords when such entities may be associated with the core frame. Similarly, 

the paging device used list contains logical descriptions of paging device 

records, including pointers to descriptions of logical pages and core 

frames, when such entities may be associated with the paging device record. 

Multics tries to maintain copies of the most recently used P pages 

(where P is the size of the paging device, in records) of the storage 

system on the paging device. The most recently used C pages (where C is 

the size of core memory in page frames) are to be in core, as well. (It-

is assumed that C i.s less than P. ) 

Thus, pages being ousted from core may be written to the paging de-

vice, even if a good copy exists on disk. This fact should be kept 

strongly in mind when reading "try_to_write_page". Except for the case 

where the paging device has no copy, pages which we.re identical to pages 

in secondary storage are never written out. Pages of zeros are never 
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written out, but their logical dascr-~~011 is·.· s~ modified that they are 

created in core when faulted on. 

"nle processor hardware maintains uaage in-formation about a logical 

page in a hardware descriptor. Specifically, the ~cur~nce of usage and/ or 

modification is noted in the descriptor. 

A page fault is resolved by finding a page of core into which to bring 

the page, and bringing it in. Finding a page of core. consists of reor

ganizing the core used list to reflect the latest usage .informad.on, and.·· 

finding the least recently used page frame, ~ usag."it. ; P~es Which 

have been marked as modified canno't be c lailaed in .. this way' but are writ-
' : ... -:·(}:.-'.~··:..:__; :. ·.:>~'- ·, . :·.· 

ten out. When the writing is complete, at some future time, the page will 
.·. ' . t t.. 7 • ~- ~, f J • . • ,· -

be in the same state as a page which has not been recently used or modi-

fied, and will be claimed in the handlina" of some futur~ page fault. Note 

that this 'writing' consists of inttiatin8 the physic81' operation, but not 

waiting for it to complete. It is at th-i~ vritt~ time thai:' secondarY sto-
. . ·. ; -_ -r:. . . - . ___ . __ . l ·. 

age is allocated, and pages containing zeros· are noted. It is at the ti.Die 

that zero pages are noted and that ~e~ondUy' .ator'qe i~ dea·llocated •. 

At the beginning of page fault' handiin&, h~isekeeplng is performed 

on the paging device, which consists of tryillg to insure· that at least 
·. ,_.;,., i ~- :".. -; :... ':·.~--.)ff.:·: __ ' .··. 

ten records are either free or in the proces-s of being freed. This· is 

done by removing as many of the least recentiy ueed,;p*les o~'the paging 

device as necessary. When a pag~" is so moved, it is checked,· (via soft-
.· ,. )" ~---~·~1:.:. , __ ' >_ ·~ .·-. 

ware-maintained switches) to see if it is identical to a copy on disk. 
' -. . . .. 

If so, it may simply be deallocated--from the paging device. ·If not, a 
:,-; ' 

sequence known as a read-write sequence (rws) Dlst be performed. 'Ibis se-

quence consists of allocating a page of ~~e to be' \ised ~s a buffer, 
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reading the page into it from the paging device, writing it to disk, and 

deallocating the paging device copy. The core buffer is then freed. 

A page fault which occurs on a page for which a read-write sequence 

is in progress causes an event known as an rws abort to occur. The freeing 

of the buffer page and the paging device page are inhibited, and the buf

fer page is used as the core copy of the page, and the fault is resolved. 
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lin bpl.aDatf.on Df tile ,JMS!'It 

used f,~ J!lt••s 1\bla ~t.&ef!-?D 

The language whi.ch we have usecf to d~acrtbe ''!aje1 COn.tr'o1 is a bas

tardization of PL/I, with new pri.mitives for' 'some baste· 6J»erai:tons (!A

queue, maskea proo8dures, ·'etc.) ana·· an .uaoi>6'&;.t'tke~'torat:l1.sm for repre.o: 

seuting relationsnips auiOi'ls atriietui-ed ent!titi•;~~- -. ' 

Underlined words are language keywords. Lower-case identifiers re-

present Dallies o.f subroutines, functions, .or labels. Identifiers beginning 

with an upper-case character represent refereaces to cells, which will be 

described below. Statement syntax is essentially the same as P.L/I, but 

":=" is used for assiguaent, and "=" is used to teat equality. There is 

no lexical nesting of procedure or bepn blocks. 

A progr• consists of byin blocks, entered from the outside world 

in some unspecified way, procedures and fuacti91:ls-, and declarations. 

declare (del) declarations may appear auywhere, including outside of blocks, 

and are global in scope. 'l'hey define the eles and !!.2!, of variables, 

and the types of ObJects used by the progr8Bl. local declarations appear 

within blocks, and define a local scope of variables 11 identical to that 

produced when a variable is used as a foraal parameter in a procedure or 

function. 

The point of this language is to associate cells with values. 'l'he 

domain of values is the space of Ob:lectt. Objects are unique. Two cells 

have equal values if and only if their values are the same Object. 

There are three classes of Objects: prtaitive Objects, structurea 

Objects, and !!! Objects. Within each class, there are different types 
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of Objects. Objects have no namea. :0Ql.7 pr:JJd,ttiVtt·Qbje,ct;.:ft can be- Jeferred 

to explicitLy~ i.e., other than by ~-efe~ence to • cell having tbe:,cle&i.red 

Object as a value, or a· function r~nbg ~eJ:die~Ji~· Qbj~t. 

Primitive Object;a can. be of three: ,typett. .Qae- :ftrat t. p99l!@· 

There are exaetly two boolean Obj,ec:ts .: 0. cu 1)!8, rld.-a:.,cl ~ explicitly 

as !.!2!· the other ·falae. The .. second ta • ., 'Mtk: •. aere. 1•.. first~ 
order infinity of tbeee:abjects, which ~ ~~U7. -:the;_ :l;ateser•"' 'l'bey 

can be referrred to ~U.citl.y. aa 7S~ 16:1711216·~ -rae. .ece.,.. '.1\le d)it:-4 is 

literal. They are siulply £bitl.'af:y pt".Uit.t:n. ~tar' Jlbea•, 2ll% u.eful 

property is their UDiqueneaa. · '1'bey c&a be: ~ t!O •Pl~l.y: as n foo11
, 

"bar", "111o stuff', etc.. They are··~ eh~~-· ~ ill. err aenae, but 

simply .unique prf.lllit:ive,;Objec:te of !IJ!8: Lt1?'trr1"'"' 

Structured Objects consist of a fiut.fle ~:-~· ~~lJ.> •a·e:ell 

can have as a value :~L7 . .oae· type·of Ob~,~l:JM. t. Ol'le cltass, u 

well). These cells are called cfMI!MPta Rf' tdte ~ ..... l'~Je.tle,.~ella. do 

have naDiJ&, .and they 'fire apee*fiied ·ib\ •4ec.llmatd.on"~ 4\eM:ri~.-the 

concerned ~ .o£ a:truc.au:!l.lll .Object. ·· .,, .. ~···. ... 

Set. Objects conaiat;,epf .an ordel!eds set o£ ~~-., of· t.he 8811111e type 

and class. All- refe-un,c;e8' GJ.lepf:i":t!WW!f-t• .. dsrrzm•:,...,.~i. ~f.der. .. , 

the ill, Object as unordered. One c-.,.. .. ~.,SC!W!·,~ a. :tJe.t Object, 

remove~ or-·4egu.eue ~ '1t, a* J.f ,a ,P'WtA1~ ,ta _ _. J!Witer• Qf it, 

or cause a cell to be aas:i;ped ·~~~lY~If!!At .-:h.,,y~utl--being, a dif- . 

ferent Objec.J: in tlte ~ .d>~t;. ·1.-n IM"' ~-~~;.. ::<> 

Variab-les ah tbe ·Clt:h~;~yp~rof ~ .. , .• ~ ~~&.;~ bqJ.d; Qn:l,y ·-Q~. 

class and type of Object, just like the: o~,J:~ li'/. ~l~ il:~_Jjlt~

tured Object component. 
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Assignment (performed by ":=" operatiOn i.a ~~ st:ate.n.ts ilhd as:aign"'. 

ment statements) consists of replacing .;eke ¥Slue of ai~ll with another. 

value, i.e., chan•tng . the valuE! of th~ ceU. Tfle .. 1*jecr 1lh..tch was the pre-' 

vious val.ue is neither changed nor destroyed in- any way.:. 

Bindiy consists. of saving the value of ·•· vari..a,te ltlhen a procedure, 

function,· or besin block iff eat;~p, and- re•torU.C i.t,._ it is eXited•_ 

The latter operatioa ts· called Ullbi!dtne·• .AU" an,.....ca• 8Dd bindings , 

made betweeil the time a vari-able is ·beund•and" ~ ~ii!& l.UibindinS 

have a· tranSl>U'ent effect• when the bloc::1c. ~ ~>.binding ia exited.-

A local declar-ation .of ·a var:f.able tn· a block;·4:au,sea.tc.uch '8 bindi.ng to take 

place for that variable when the block· is ent:aect; .an4 the c'Ort!e~tponding 

/ 

to procedurE;§ and functions. l.n thia case,' aflter 'ttre 'Gld· :value t.s· saved, 

Hence, all calla .. Y be seea u ••cau ~y·:¥Uue", 

or, if it is primitive, one .£!!! refer to ,it ~ltci:tl~: JIG ·!Dlfer to a 

variable, sillple state its name. To .refer.'to a :e0111pO'ilabt. of ;a· atncttmed 

structured Object, and • close· par:ettthesia. . · 

Object of the same type and class declared .for that e-ell. 

Variables need not be deela~ed'. • Th.e defaUlt: cl...., of any call is 

Object type declaration is as follows: 



91 

(declare} 
del structured Foo (compdcl-1, compdcl-2, ••• compdcl-n); 

[ ] = optional ( } = select one 

The compdcls, or component declarations, are of the same syntax as variable 

declarations, except that the name is the name of the component, and the 

optional keyword variable is illegal. 

The syntax for a variable or structured Object component declaration 

is as follows: 

(declare} [variable] 
del Foo (~){objt:yp] 

where objtyp is either boolean, literal, arftlmaettc, '&11Y structured Object 

type named in a structured Object "type declaration, 6r §.!!t objtyp, where 

objtyp is, rec::ursively enough, any possibility named ~n:··thi.s sentence. 

local declarations only name their variable,· although they can declare 

its type as well. 

do statements differ from PL/I in that any cell can be used to the 

left of the ":=", nOt necessarily variables. ~·particular form "do 

Foo: = ra.nge Bar" means that the value of Bar is a '~t object, and the 

do is to iterate over each Object therein, in no special order. 

The special constructor function construct is u~ed to create new 

structured objects. The syntax of a reference to it is 

construct Foo (compname-l:object-l,compname-2:object-2 ••• ), 

whose value is the new Object. 

The unique Object "null" can be used as a value of any cell. It has 

all types and classes. 

The predicate ~ takes as an argument a reference to a set Object, 

and returns ~or false (boolean Objects), depending on whether or not 
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it is empty. 'lbe operators "=" and ·~· may be used to test if two refer-
:.J·" 

ences are equal, i.e., refer to the same .Object. An appropriate boolean 

Object is returned as a value. 'lbe operators "or" "and" and "not" _, -· -. ~- z ; . it ; ·y.~ t ·t 

operate on boolean Objects in the obvious way. 'l'he conventional arithmetic 
_;r __ • · .,: ~ --~ J ; ·,. 

operators operate upon arithmetic Objects, returning an arithaetic Object 

with the expected value. 

,!! statements have as their predicate a reference to boolean Object. 

A call stataaent conaists of the word Sl1! followed by either a pro

cedure name and an optioul cr.-eht :tiJt w". a c~z fu.nction'-i-eference 
. . :.!' 

and .an u~t list.. An.F~nt list_ La a.~#'~~~,_!J_i~ecl U.s.~ _of (po_s-
. '. _,:_ . :. -· ......- ~ ~- y:. ·-. ;,:_.;_·:. ..., .r ,, • .-. '--< •• ·- ·"-

sibly zer.o) refer~cea to. Obj~cts separ•t~ ~ c~u. A complex function 
- . r ~- . 

referepee ~-a ~t;iou. ~~fereac~. to-~~- ~~1~-,p£;:-,th~-1~~- ,~~ction 

which will return aa .• value a eroc;""",...,~ic~_~,_, ~Dds, on the argu

ments to the function, which will be called by the call st:,atement, with 

the ..,:gu.en~s to the call. 

lbe ev:aluati~ ~pf:, aqJatents in, ~"~ Mfl c+~- !T~~,tional. as in 

Lisp . 1.5 ~) ,mel pr~a froaa left. tQ .. rip.t. ,_ 
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A Program to: Find the Man Who_:i)P!y'!'!,Bl.!!l@k.::House, 

and Have Hfm and His Father Switch Houses 

declare structured Person 

(Father ~ Person, 

House); 

declare structured House 

(Color literal, 

Owner ~ Person); 

declare Son Person, House2 Bouse; 

declare Brooklyn ~ House; /*assumed to be initialized*/~ 

switch_houses :begin;-

do House := rang! Brooklyn; 

ll Color (Bouse). = 11b~k'' .!ibg ~; 

II search the set "Brook-
1/·l::f!t." 
ll~him 

House2 != House (Father (Owner (House))); //find the other house 

Son := Owner (House); 

House (Son) := House2; 

Owner (House2)- := Son; 

House(Father(Son)) := House; 
•' ~-- :·-_ ' ' __ ; ,' .. - ,.;. ' 

Owner (House := Father (Son); 

return; 

end· __ , 

--- -- :~H~eif.e;,:.er 'whti is the 
II tift'~ 
1/SaR qgw owns,Bouse2 

~s ~--~-. . . . ,- ' , 

//Father owns house 

< •• _:_. 
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A page fault causes the followiug: 

'lhe pagi.Dg device ts housekept. 

(page_fault) 

Transient conditions such as i/o in progress or an rws on 

the faulted page are uoticed and haDdled. 

A free page is claimed, and the f&Qlted page is read or created· 

into it. 

If i/o was started, the page is waiJ:ed for. 

Finding a free page· consists of the followi.Dg: · .(€1Jid: ~otre) 

'1he core used list is searched for a ~,pllfl_~-~·, .. • ~• I . ' 

llecently used ·pages are .not sood candidates. '!hey are skipped, and 
. · __ _ . · : :~i ~ ( ;o;f . ~ : . . · ... [ . ·)· · · 

re-judged as DOt-so-recently used for·~ tfae;-· ··- --- ~-·-·-

Pages which have been ~ified (stored int.o) caDDOt be c laiaed DOW. 

They are written out, and re-judged. as uot to~-~ ~ied. 
II'-::_.:.,.~_;.·;-~" .. .·. 

A page which has not been modified, and has been ~ed approxt.ately 
--- .• - 't·~- ~-- • -,. ,.;:~::!".;2_-i7. :1<:-_,•,f.L'i : 

less recen~~ tban any other page, 18 p~e-e.ptea·rr-.,. its core 

frame, and this -core frame ia1~-ittee'paa6:~.ftwn. 

Wri~iD&. a eve .~~ .,f~~~te of the follnJ.gc: . _ ... , ,,, (vr~~te_page) 
'1'he page's. ~on~t,are checked, and ·if aii ~~~~~:··,t~ pqe. is 

flagged ··as tlCif Deeding to be read. .or WE'ttt'Mi - :.O·wrf.t!llil:,takes 

place, and disk and pagi.Dg device SPII4'·~"-l~t· ,~9-. the. ~e 

are freed • 
• ~ .. 'i ' ':·~ -_.;·. ·{:.: : 1: . ·J'-. 

'1'he page is given a resicleuce on disk, if it 'does not alre.-ly have 

one. 

The page is given a residence on the paging 4ev1-ce, if it dQ«!S not 

already have one, and one is available. 

'1he page is written out t() its resi.cleDce on the pagi.Dg device, t£ it 
has one, otherwise to disk. 'l'he COIIIPletion of 1/o is not wai'*' 

for. 
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Housekeeping the paging deyice consists cOf tlle • 5gllowing: (get_free_pd_record) 

An attempt is made to insure that there are ten paging device re-

co.rds free or being freed, which is :dO,• as follows: 

The pd· used list is s.earched for a gQOd cal141-date to pre-empt. 

'lbe search is made starting at the least•receutly used pd record. 

Records which contain pages in core are recently used. They are re-

judged as such apd . s$ippe,d •. 

Records containiQa pages identical to pas~ o~ disk are acceptable. 

The pages in tl1em are pre-e.pted, .... the .~ecord is now free. 

Other records have to be writ;ten b~k to cli,s~. which is done by 

performing a read-write sequence (rws) on them. 

Performing ad:r:etd-wr;ite seCJ!!eDC@ on a pgs;c9Hi1tj of the following: 

(start_rws,rws_done) 

A free page of core is obtained. 

The pqe is reacl into it. from the pqiq·deviee. 

When the read is completed, the page ~~ ..,ritten out to· the disk. 

When the write is completed, the page of core and the paging device 

record are freed. 

A page fault on the page involved in the sequence at any point 

during it ca)Mes the seqqence to " a.bQJ!ted at the nex~ complete 

operation in the sequence, and t~e cpre page is used as the 

page's home in co~e. 



A~ Object 

A Descriptor Object, 

A Coreadd Object 

A PDrec Object 

A DevaM'Object 

An Io-status Object 

An Io-proaram Object 
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is tbf!'·logieal deacriptia of ltOIJei page 'of the 

stdrqe systeat, . u oppeeed to a paje fr&llie. ott 

some device. 

in actuality a "paae table 'lllio!'d''i; ia ·the physical 

ctes~iPt<Jr~·•fttia lhfotela* ..-..es • Pli&e· 

It eOiltatns a core ·aclclft .. ~-'UW.P bite, and. a bit 

whiCh cau•es ~a· Nilt.,... · offt '' 

describes a Physical core block. It describes 

the . statua.:4f . .thf:a'. lllOe.kr· ~-~· .C'iiaPJJ.eitl);'; · 

its position in the core used list. 

·describes a'\pqmg'davfee -'l'tieod~· ror -fl"ilae• It 

deaertbea die status bef :ik&''ftaeJ' ~'lnelUclbl«i im

plicitly, f.ts ~ltfft."'itt'&~~jq:b'S·dritc4!-veed 

list. 

repr«!aents a phyate&l2dtttlt. Ol"·di'Um '&cibesa,- and 

its e01tt:eattt. :lucbiaMJ·li\ IJltar.ebjut. 1• an iden

tification of the clevice·.)lfi:'wlllclltiitili8 HI• frame 

resides. 

, 
is a hardware-generated object, which describes an 

input-output operation which has completed. 

is a sequence of commands for the systea i/o c~ 

troller to give to an i/o device. It specifies 

the type of operation Tequirecl, the record within 

the device concerned, aDd a core address con

cerned. 
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is a recorded datum of information about traffic 

between disk and core-drum, for the purpose of 

the thesis experiment. 



,. Description of the structured ObJect cypes used by PaRe Control. 

Recall that the default type of a structured Ohject component Is 
the same as Its name. •I 

~ atrystyrtd PaAe 

(Descriptor, 
oevadd, 

Coreadd, 

POre~, 
Event literal. 

lo_ln_pror.ress bppltan, 

On_pd bgg J "". 

II Represents a paKe of sone se~tment of Multlcs, as opposed to 
II a pa~e of core or some device. 
II The hardware descriptor by which processors access the contents of Paae. 
II The phvslcal dhk or pd address from which Pa~te should be 
II read or written to. tf On.Jld Is true, Is a pd address. Otherwise, 
II It Is a disk acitfress. A nevadd of "null", however, represents a 
II pa,.e full o; zeros. 
II The core frame associated with thls pa,.e. Vall~ only when 
II Addressable (nescrlptor (Pa~te)) Is true. 

by Pa~e. 
Used to Identify the 
In lnterprocess SllftalJna. 
not known to have 

II If on
1

pd Is true, this Is the pd record used 
II Some lteral quantity unique for each oa~e. 
II occurence of events associated with this pace 
II Truth Indicates I/o In pro~rPss, or at leut 
II completed, on Pa~e. , 
II Specifies thn PaAe has an allocated PO record, namely PDrec (PII'Ce). 

~~~dd:!!l!9; II Indicates that Pafte must always remain addressable. . .:, 
II I nd I c.C•s that Pa11e Is forbIdden to '!O on the pd, for re 1 lab,l 11 t• reasons. 

~ ltrysturtd nescrlptor 

(Phys_coreadd arlthlette, 

Addressable w•s•· 
Usue boo'••• 
Modified hpple'")J 

~ atryetyrcd Coreadd 
(Patte, 

Phys_Coreadd ar~hrnetls. 
Next 1X2! Corea , 
Previous 1le! Coreadd, 
lo_read_or_wrlte literal, 

Rws_l~frame bpptcan. 

II Rf'presents a pa'-e table word (ptw), the Phvslcal descriptor t:ty 
II wh I ch proces son. access a pa~te. 
II The phystcal core ac!dress occupied by the Pa~e to which this 
II helon~ts. Valfd If and only If Adrlressable Is true. 
II Truth allows Phys_coreadd to he used by the processor. '•hl~y 
II causes the proc:edure "pace_fauH" to h executed. · .•. 
II Set by the hardware whtfte~er this DescriPtor h used, 
II or more accurately, fetched Into the associative memory. 
II Set by the hardware whe~tever a store•tYH OMratlon is 
II performed uslnA this descriptor, or an associative ..-ry 
II copy thereof. · 

II Represents a core Da(e frame. 

DMcrlptor 
..... l 

II "null" repr•senu '" unal1ocattd Plfe fr~~Re Otherwise, thtt II Pa~te contalnett In thIs frame. his s only for norma pa•e•h01dlnl 

H 
II 
II 
II 
II 
II 

use, not rws's. 
T~o physical core adrlress represented by this frame. 
The next MOre recently used core frame. 
The next least recently used core frame. 
If lo_ln pro«ressCPa,e(Coroadd)) Is truet or Rws_ln_frame, 

tells which direction of I/o 'Is beln~ oerrormed. 
Sl1nlfles an rws In proaressln this f'rame. 
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PDrec); 

~ atrysrurcd Devadd 
(Oevlce 1~51=~~~ Phys_Devaitmccts)l 

~ atrystfr~d Pnrec 
Par.e, 

Dlskaddr llJI Devactd, 
Devadd, 
Coreadli, 

Ne~t_pd t5Ptr~rec, 
Prevlous_p Pnrec, 
Event Jlrcral• 

ln_use bQOlcaa. 
~-ln_pror.ress bpgJqan, 
lncore bpplua, 

Modlfled_fr~dlsk b9olcaa, 

Abort_f!a~ bpplcto, 

Abort_comolete bgglcan); 

~ '''YF'Yfifd lo pror.ram 
rectTon IIJ.cuJ, 

~hys_Devadd arlthmtt!s, 
PhJs_coreadd arlttmr~ls, 
Neat type 10-P'O«raa I 

~ '''MC'M'Cd lo_status 

c:=~::~::::~'!!f~e:!lts. 
1o_procra~~~, 

Coreadd)' 

~ 'CHF*Y{Bd Trace_datum 
evadd, 

Type Jltera I h 

II Used only If Rws_ln_fra~ Is true. Specifies Pnrec havln& an rws. 

II Represents a physical device address. 
II Identifies a secondary stora~e device. 
II ldcnt.lfles a physical record number on so111e ctevlce. 

II Represents a oar.lnc device (pet) record. 
II If ln_use Is true, ~escrlbes the Par.e on this record. 
II If ln_use Is true, describes the disk address occupied by our .-ae. 
II T~e Physical device address of this record. 
II \lhen Rws_ln_r~ro~tress Is true, describes t"- core fratlle 
II belnc used as an rws huffer. · 
II nescrlbes the ne~t more recently used pd record. 
II nesc:rlbes the neat l .. st recenth used od record. 
II A unique lltcraJ associated with this od record. Used to Identify the 
II latter In lnterorocess alr.na!ln•· 
II Tells If this Dd record Is In u1e or free. 

·II Sl,nlfles that an rws or rws abort Is In oro,ress In this od record. 
II Sh~nlfles that the pace In thh 1»d record Is In core rlallt now. 
II Used for malntalna the LRU ordetlna of the pd used list. 
II Truth Indicates that the od co•y of l»&ae Is different 
II than the disk cooy. 
II Turned on to start an ~ abort by ...e process faultlna on 1ft rvt 1 1n& 
II Paae. . 
II Slr.nlfles that oost1oa~e (q.v.) has aborted an rws, and a cleanup 
II by rws_at•ort (q.v.) 1 eapected. 

II A POrtion of a channel oroaram. 
II Indicates read or write. 
II Ph~tlcal device address Involved. 
II "•rslcal core •~~ress Involved. 
II Neat oroara~ In channel ..,.ue. 
II ftepresents a completed I/o oPeration to an 
II llo control routine. 
II ld•ntlfles th• ~~~steal device address Involved. 
II l~•ntlfles the ~hysical core address Involved. 
fl. T.\1~. te.,.qn;·t'tt··· ~:~ieft1'!\JII lnltla'4ld the. operation 
1 , ii'll n t , J 1 . .. • r. , .r . d . . . ·I~' fble-· ~\'e ~ n J t ~t'ocl3f:l 3fth~,ys_toreadd. Althouah 
11 not actuall, present here, the ona•to•one NPPina between 
11 Coreadd 1 s and valid Phn_torealflf 1 s leu us usa thll here for 
II clarity. 

II 
II 
II 

An Item of trace data for the e~INirltnent. 
The disk address concerned. 

II "read" •• 
II Hwrl te" • 
II "virtual" 

The direction and descrlotlon of lo1lcal ~tlon. 
a oar.e fault to disk or an rws abort 
an rws Initiation 
• an oustln& from core to disk 

ID 
ID 

I 
11 
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The Global Variables Used by Page Control 

del 

Page_table_lock literal, 

CoreTop !!2! Coreadd, 

A qu&Ptity uaed to insure that only one pro

cessor at a _.ca.a. is in page control. A pro

cess desiring_ to "hold" this lock loops con

tinuously Qllu.l it- is ualoeked, -a,nd. then 
locks i.t. 

Writes_outstanding aritbittic, 
'lhe. number of_ uite. operations started which 

" £_' ~ "' '- ·-! '~' -" 

have DQt ye.t ~ lmolnl t.o coaplete. Used 
: ,..,: -. ~-

as a heuristic to call post_aay_io. 

Rws_active_count arithmetic, 'lhe ntlllber q.f ..-~write sequences which have 

been initiated and not yet known to be com

pleted. 

Number_of_free_pd_records aritlaetic,' 
The number of paaing device records free or 

in the )lll:lOeeM·<'-.s) of beiQ&. fr.-d. 

Top_ of_pd _used _liat !!J!!_ Nrec, 
The least rec~tly used PDrec Object. 

<- -

Channel_Queue m.! Io_program, 
nte executable ~e of i/o programs for a 

disk or drum. 

Experiment_active boolean, ·Tells if meterftl«;experiment is in progress. 

Trace_queue !!! Traee_datum, The total of all trace data accumulated by the 

experiment. 
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Undocumented Routines Referenced in this Program 

page_wait (literal) 

notify {literal) 

clear_associative_memory 

allocate_disk_record() 

Suspends the calling process until a call to 

notify is made with the identical literal. 

page_walt a~'tllllOcks -: .... l..taale lock onee 
·the ti'kffib ~1 data bases are locked. 

CauS'eS any pr.oeess which called page_wait 

with the idebtltia"li literal to be resumed. 

CauSe& all pr,GceHbrs to c!S*:.d~air •~aocd.a

tive memories. 'l'his routine does not return 

until all processoe!A< ~.J;JPtcaQicl: t:hatr: J:hey. 
··-~;-l:2!(U)f1 :..:..!~1 . . 

have done so. Used to force access turnoffs 

''~d ~tf1e~fb!t: 2~ffs to take effect. 

Returns an unallocated Devadd Object. Marks 

it' u :all~.:· , ·'.r.L :_." :: 

relinquish~disk_space(Phys_Devadd) 

start_io(Io_prcgraa) 

thread_to_top(Coreadd) 

thread_to_bottoa(Coreadd) 

Marks a Devadd. Object as unallocated to allo-

cate _disk_re.c;o~.. . .. 
"' . ..: . _,· -· ... · .. :, L ~ · .. - . 

:; ., 

ftart-8' a ~lr«xecutiog .an i/o program. 

ChaDges core usecl l'Utl 4119.t.Ya1Ue ei~~'J;op ~.'1' 

sUCh 'that ··cf;:eaal'is IIOVed to the top of the 

Core used list (least recently used). 
"ore ...... n nnu ,._ ... ~j.fi•::.··q,~· ....... , . 

... }'~c-p ~"!'If' ~"":,,"'f,c,;~~· 

Changes core used list and value of CoreTop 

au~·.~ ~r~_,"is ~!f..s"S~. ~! ~.~t~9,Dl of 
the core used list (•at receutly used). 

Next (Coreadd) DOW=. ~J,Tgp •. .. . ~:--:-. ,;; . " ..... _,• ... . .. : 
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Core Map 
(Coreadd Objects) 

to read or write 
Rws_in_'frme 

PD Map 
(PDrec Objec;ta) 

!Jd9! 
In uae -Rn_in_progreas 
Ineore 
Mo~Ufted froa d 
Abort_flia · -
Abort_Caaaplete 

Ih! Pase Control Obiects !2£ ~ ~·M•·~ 

Page Tables 
"' (Page ob j.""c-t-• )r-----P-a_g_e-ta~b~l-e-wo_r_d_s __ , 

(Descriptor Objects) 

e a 
d b 

1 
e 

... 

lo_ia._progreu 
On~ 
Wir8i 
Gt~: 

..... 
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r~ 

l 
., 
,l 
J 

I ., 

~ ... ~ 

',~, 
! 

Ja:; 

·,;, 

fl 

iJ-' 

} 
·4 



+. 

+ 

page_faul t 

~ Scu_data Vlrtua1_reference; 
~ strystyld Vlrtual_reference (Pa&e, Seament); 
paae_faultr besln mtsked; 

·~ Paae; 

set_lock Page_tab1e_lock; 

Pa&e :• Ptse (Scu_data ); 

~while Number_of_free_pd_records < 10; 

. $!ll set_free_pd_record; 
...., ! .. 

.Lf. Aai•uab le < Oesc r lAltr ( Paae)) 
~ unlock Pale_t,bte_lock; 

.&lU lf lo_ln_proareu (Pit~~ 

Shen call pase_wa~· ci~f'.&.~ ..... e) ); 
' '· ,, ~ ·, ' 

' ~·' 

: .. , 

II This procedure Is transferred to when the 
II hardware determines that a reference has been 
II made throu~h a Oescrlptor whose Arldr~ssable bit 
If Is 1A!J4. Rr.turn from this proc~dure causes 
II a second attempt to make that reference. 
II This procedure Is entered In such a way 
II that all external (I.e., I/o, etc) Interruptions 
II are dlsahlerl when It Is entered. They are reenabled 
II when It Is exited. This is because such 
II Interruptions mlr.ht try to lock the Pa&e-table lock. 

II Prohibit access to par,e control by other 
II faultln~ processors. 
II Deter~lne from processor state at fault time which 
II pase was faulted on. ~ 
II Housekeep the Par.lns device - try to have some free S 
II pd records for the flnd_core calls which wl11 
II surely follow • 

\. '· . , .. ~ '. . , \ ~~; ~: ~ . ··:· ,. r r. •• :._ ! .. ~ i ~ 1 ~ , ·"' 
II ft 1k PC)SSihle tl'lat we took a oaP.e fault while the 
II pa~e tabl~\wts. l.,_nct. and the process holdlft& the 

.)J. ·\~,,brou.~tft~,ttie '.•tre ·~· ;ldt U tblf'/ts tf'U4h 
JJ. ;· f:t. t.•,:toitc~le-'that we took a oa~te. fault !!~.a _paxe 

'.· ·1.1.·- ·~'''"'"~:other ,,~··· haS snttef""'"'~'n~ t·ll. 

'~~L,~;~::;:~1!t:~~~,,~ •.. ~~&L~~l.'tc~-.~~;~r:h~ ·: ·~ · 
: 1/>.~us"""lQrt .. •f;:t~e c•ltt•• p.-qc.,.t:uun :\ 

II s,~,,-.~{cacoeea.s. c.•Usn.t.,e-r.-nne tlotlfy 
II with the tdentlcal Event with which pa~e_walt 

II wes calla~• P~alt also unlocks the 
It ~·~- ttl:t\ •. :\o.qk •Once. he Jtas \o&lce4i1•.b.b: .Uta .. bases. 

~ .!! On_pd ( Pa1e) and 
l.tu:A a; 

\ .,_,.~-.{: • .. ,. ,. .' ,,tt' ~ ,: (~··. ;:.; ;· -~ .• ·.·.:' ~. ~ 

Rws_ln_proJress(PJ'\1\'eq(~Jl " cJI··U. lhlfl•.oac•· t:s;on the Pa&lna 
. J:Jr •it~~:iJc.;e, It) s !-P0••1 b'l'• th•t .Jl·•· read.....,. ke 

~ rws_abort (Pa&e); 

II sequence may be In pro~ress for lt. 
II It must be aborted. 
II Abort the rws, or po .. lb1y clean up an 
II already complete abort. Unless we are 
II cleanlna up. we will wtit for lt. 

,,j 

•, 

il ,, 

I 

·' 

" .,\! 

~~ ,. 

~f; 
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return; 

end par;e_fault; 

J:rul; 

.ti.K ~· 

J:rul; 

lf Rws_ln_progress(PDrec(Pa~e)) // If we have cleaned up, we are 
II finished. If we started an abort or 
II noticed one In pror,ress, we ~ust walt. 

then SA!.! par.e_walt CEvent(Pr.recCPa~e))}; II Halt for the abort to 
II Conplete. 

II ~ormal case - we must brln~ Pa~e ln. 
call read_par;e (Par;e); II Start read-In of PA~e. If par.e is empty 

II (all zeros), or was on a fast device, we ~ay be done. 
If lo In pror.rcss(Page) II If real I/o was started, and not finished, 
-then ~all par,e_\'lalt(Event (Par,e)); //we ~ust walt for post pa~e 

-- -- II to post Par,e. -
else unlock Par.e_table_lock; II Pa~e was all zeros or on fast ~evlce. 

II All done. 

II Restore machine state at time of fault. Retry 
II faulting reference. 

t-' 
g 
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read_paae 

read_pace: erocedure(Page); 

( 

.lasiAl Coread~i-, 

tf On_pd CPa••> ' 
-- !biD If nws_ln&l.~~·rets 

iim-1'111 ~. 
' 'i••' 

•"' I~ l . ~ 
~ '• ·~ 

(PDrec. (Pue)) 
n 

Co~•99,~~'~ t{tr'~~~t•Ct) 
PasJ.,.{<:~f:,.,.4d \ ; • '11•1 u• .,.,," t,.a~er '·. · nai," 

. ::: .. k·J;~f~C~d~f'~~;C102' ..orda) 
1 

· • 
1gi"DcatfJ•I•U •• f'et.tdJ 

!tl"~"'fT '>:Ji'll taake_accetslble cPa«•h 
l·~;;:''IJ"f.d:4J. ~hJ'b< f' ;)1\1 ( "::H .;;'l!.;,"J; 

&U&JiU ' 
to_ln_pro«ress (Pa,;e) :• ~ 
lo_reacLor_wrlte(Coteadd) :• read".; 

II This procedure Js re1oonslble for 

II eaw•tn~ a faulted Pa«e to 'ppear In core. 
ll.ff'l/q a, "ece1sar~~ tt Js Initiated. If not, 
II a pace of zeros Is created • 

' '\'b' ·,;' : '"" 

II ~ht!.owt~ILtbh cheek Is CNde Jn •a~te.:..,fault, 
II· ft ;h .c,iu~eP&N•lh· lf?POrtant that ·it be c:tade here. 
II for rfad.....,.lle .,.., ltet•ca1 ted by ottler tYitet'l 
II funct ons. If an rws Is In oro•ress on Pa~~;e, 
II . .- . 1t~aon9t r~l4 .. 't. ''".t our cal let' tfiUst el ther 
II •• It-'""• or ,fnl Hate a!Mtt proceetHnu. 
II AU•at•· a'. paae,.of · eore for the oue. 
11 ln4l'4ate }'hat th~s Hte bel'cMttt· here~ 
II A null devadd Indicates that a Daae Is defined 
II to contatn zeros • 

r• oooeo •••• ;II Hake It all zeros. 
II Indicate that this fr ... be1oncs to Paae. 
II Reset fault bft In the l')escrlptor, a11owlnc 
II processors to ref~rence Pace. 

\\ r~~a.p11~;; · 
lit\ .... ~ ~\.btlde~p .... t:t .. 1!ft4nfn. : 
II\,\ ~~~--~tltft 'NM't..S f!lo :;fftr-pHt'~IS.~· If Is 
II •. \~t4'l' t_,,thk-J• :-... .ta.tf•e ~·->tlo s . 
1/·, (.!_'n.t~ .,,\kftM• 1.f6., C;tta.tt ~he •tiP -·roe~Jne~:oafl ~eset these 
II \«tw ·:f.~ ;,._ fut; ctP.Jw;•:!f In I•W4s .ot'fy ~ 

gll devlce_read CDevaddCPa~~;e). Phys_Coreacf~C~. Met.));,; ... ···.' //$.ta-rt·ctte•.rNd•' •. · 
If'On_pd (Pace) II,'~·~·· •Q4!1tef(!ent .·~ tiMt· thl' .oqe.· 

Wn ~; '.\ '. ,:,,, ,. · .. 
. ,, .... I• 

4' 
~ ,);: 

~ read_Pa«e; 
.&DJ1; 

. ·· .,JncoreCPDrec(Pa,;e)) :• .. Uu.tu II .~as .• ,,..,,. tn cor• C·ftcetulr·vHd-J. · 
,, ! call Pcl.thread_to_bottoilt{P1)rec(Pa~·))..; '' .. This line .. ,.., • .• the Mtnl :code • 

&ad; 

II -~»•· absence 'CJOftltlt&I'QH''a ·buc whfch was fcund 
II l.ater •. I c 1\e\l)s maln~aln tlfe tRU Mderl'nc 
II ol th'e PO used list. •I 

.... 
0 ....., 

~ 

~. 
.~ 
~. 

l 
J 
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flnct_core 

flnct_corea functlon()J 

AGl CoreTop Coreadd; 

= ::~ tYN.~~r .. dd~i' 
J.suJ. I~.:,J~io.J:t~o.~er -ldjtf:"'' 

• • •. ) 1.\MJ,:.co'Uft'tti' art J 
'. ·- ~~ '1 ' 

:.,.,,..:.,.r,p ... ~~t~r ,. 01 

-8·'[ri;~m=r·~t.t•r • 1 
Loo._iOunter < 1S1072 ; 

p :~~~~tth=PP;~~!f'~'."• > SOJ 
; \) ·• lo_aklp_counter a• 0; 

. ., 
!f Paae CCoreTop) • "null" 

.c.UA., 

·. ~ 

ll This function lcnplements the ~~ulttc• core 
JJ;: 9ap replacet~~tmt. ,.,...,, f ttwn. t t Is ea u~-lf to 
II housekeep core .. Md· .ret·wrn OM free :Corefadf Obje.c:t. 
lh, lta·beslc de'~· b ... ls tfte core used list, which 
II 11 t_he or_ dt_rtnn of Coreadd Objects t4ef1ntd by the 
II ·~Cft, 9-f .Qext ~neats of. £....ad ObJects. 
I!( 'tH ~ff~-'>le Cor•TPf) hu .. ·as· ·a nlue the least 
U· ~·ty well -c»rNWW. t,._t(Corttop), 
/f; U,..•ue.reT•PU'#'·an.t·SO"On, .... t~edd 
lit.''•. r •• "-"'n& ~ea lrteftU.JACtl~ tHent use. The core 
II e·•4•_ t :Ia olf'Cu1e!t_.O ,_., ..• faie~t:'i-ecently used 
II •-*• • Ceretop.- •ne ••aer tHII ••'•ue to 
II orMt6. 

II l~ltla11ze cheet for· exe•ssfve 1b6p1n~. 

II .. ; ¥e . sea•cb. tile "*"; Jist es lOitJC IS neces .. ry. 
ltJ'a.enlfefauJt; ft;s e"'" ~trlttn~:.··· 

. /1. Nt,.wu J .. ,._,, t retu~n ,., free oue~, orr 41hn 
\ ,i··'~';;~~·r~•Q~,.,:'" I· "i~'} ()f,,';'t f)t- 1• '"'; '•,, It ·,,·, 

,/l..:,,, •li•A'hit~•Otltlft4t~>t!tl•·:t•utUI M6ft7·wi'ttei, see If 
\, N ,. iJE·· clmt:-.J•_' ••t·tfno• • uarte~~; l•ptnao~ · ; ' 
·'.II ' ,,._..,,,,"etcpt,rc-vPe>t •rtu~fh<fH ·· 

II ytnhllllze flo c~k. Wtt heve Just done what 
II th s ctMrck eou a as~~~. us to ~o; · · 

'1 If~ h•;.1',ji) p " .. ~~.<'-~. •' (. ~ ~ 1' ~0 ~; !>Jt:;· 

..... 
0 
00 

ll~,. tr· . JifJIJ~r·~·-_dJitP9t•lh~Jtttt~·•~•ntflf·'ustd Pa•• to 
'1(.'1!~ .. l ·. ~-·'•r . .-tHt.JY ;\¥'te.t"tt•~ lMII Cf happen by n·ui 'or n , or a pa~e deletion>. tf so, w take lt. 

Fr- a• CoreToPf .. ll .. Thlt•HlAtt ttte·leM,.·frt~M •. v. 
CoreTop :• lfext CoreTopJ:ll · 'P.ir t:Mt IS.tce as Uie most recenth used, and the 

II next least recently uaed the least. NotIce that 
1
1
1 th

1
1s ~I n oDerttlon 1i trdlvlf1 on1r because of the 

1 c rcu1arlt' of the core use st. 
return Fra111e' II Return this core fr.- as useable. 

~-
!! to~ln~~areas (Paae CCoreTop)) II If. In the next line, we are aolna to skip this 

-~ 

~ 
.. ~.( 
... 
,; 

I 
" -t 
!· 

·-J 

J 
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'~ 

I 
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I .:., 
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II frame because of 1/o, other than an rws.~olng on, 
II meter the times that we have done so. 

~ ro_sklp_counter :• lo_sklp_counter • 1; 

!! lo_ln_proKress (Page (CoreTop)) 
at Rws_tn_frame (CoreTop) 

lbiD l! lo_sklp_counter <100 

II See If we must skip this frame due to 1/o 
II In progress there. 
II If we have skipped a tarae number of paaes due to 
II to I/o In them, see If any I/o has since completed • .thin .dsu 

~ post_any_lo; 
to_sklp_counter :• 

ust; 
0; II Reset this hl~h-water-mark. 
II nepeat the loop, tryln& chis last I/o-skipped 
II pa1e a1aln. 

~ CoreToP :• Next (CoreTop); II Skip over this core frame, consider Next to 
II be LRU. 

I!!! l! Wired (Pa"e(CoreTop)) II Skip over Pa~es never claimable. 

im CoreTop :• tlext (Corefop); 
. If Usage cnescrlptor (Pa«e(CoreTop))) // See If pa~e has been recently 

- liW1 ~; 
used. 

: .,. ' . ; <'.,..~ •. 

IA.ft; 
.Ill& Jla; 

Usage(Descrlptor(Page(CoreTap))) :• !Ill&; 
II If so, relnltlallze check for 
1/Jitf.~ tl,.. ape~ stlp this 
1/Phe, making 
II It the MOSt recently used. This 
ll fi!!•FII I?Jt I~,,Mt true by the 
ll h-.r~fre., ~en the des~;r h) tor I" used. 

CoreTop :• Nex.t (CorefoPh .: 1/.; ~tdo o!et.lt. · . ..., 
' 0 

II At this ~~a&e11 , ..• t .. c ... e al &be top of the \0 

II cote tfH!Il~,J. lf&·liNS ..... !1 ..... ••·•et;:eec4y~ 'ued. 
II It Is a trt'"- tarct'-:~l'f,eetl8Gftltftt. We wl11 
II see If 1~\M~ct~.~~ '-'·'lifd~~eovout+. U nt 
II I~'._.,,,._. rW.,..fP!l ~,.._~t taJ...;..-.-wthe.,..~ttt&t· · 
II return·,. we c.- etal• the oage. 

Ita&• :• Pa~te(CoreTop); .· . :·l~~;-.tff!r~f~fliJIIlt::curr,wt::resl~~~t. 
~=o~·~~o~:!~P~CoreT1)p~~ :.•}, 1 '·1~ 1;;;,~..:~=~-:~~~~ .. ;.ttlo~ 

I , t"'.: ~t;~_.,....tb•.MMd~ lff...W ultimate• 
I 1 1Jb~CJ1tl•.;la,.,Uih 1was /th~· rlcht. MOve. 
I .,-,€~.w·'1f9~'!ob lt wt11 H ,_ to- recent 

r. .. tl use or'tlo~ an~ It Is stilt ~tood. 
£!!1 try_to_wrlte_pale(Page); II See If pa~e needs wrltln~ out. 

II· 1.-htate MCh; Uo If so. 
!.! 11!! lo_Jn_pro~tress (Patte) II lf.:..!n.:tel;'1r~lte~N&e sqcce•ded In 

II t•taHywrla&-n~t o-.&PaJlt.Cfasc ,d), 
II· t-ts.hold... tt~•nd5e, .. ve .on. 

l.bm Jig,; , . II Tt:,., to datm oa~~te for rea 1. 
ca 11 make_nonaccess II~ 1 e.' the' h 
- II Turn o f access to P1u~e. lie do not 

II exit this call untlt a11 processors 
II have verified t~at •they have flushed 
II Oescrlptor (Pa~e) from 
II their associative 

·~ 

';! 
'; 
J 
.~' 
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try~to_wrlte_p••• 

try_to_wrlte~a•:proce4ure CPaxe)J II ThIs Procedure determInes If a Pa~e has been 
II jltOdlfhd~ •nd thus n•~.df ,to be w,.rlttel'! out. Jt also. 
II t:.hecb for the cas._, ~h .•. n a Pa*• shOu 1 d 'be wrIt ten .to 
II the Pall hit dev Ice ~· t~ .. recenc~ of use~ 

~. 

~ Top_of_pd_used_llst PDrec; 

lL Oft_pdd Pattel . , 
lb.la, lf ,uoctUttd <Descrlptof' 

II If the ~·~• already has a eopy on the ~~~tn1 devlce-
CPa~ee)) II the dectston to wr,t~· tJ tt.e 's.-. as whuher ot not 

!.l!.! 

, .. ,. 
'" 

1hln. ..51!.! wr I t~t-P•a• 
!!.!!~ . . (Paae, 1111Ddlfled","Pd_o~"); . 11: Pat.e ha;f, t;;e~ '~lfelell. . ::: 

II ·Paille not mottl fh~Cf, lh-udy oft ~- nMd not write. .... 
II pjj;ite" Is nf>t' on t~e ..etti;a ~evlce •. If It caft 10 there, 
II ri wJ U puf fJ,·a· tri~ . , . .. . . 

Gtpd ( Par.e) . , . II ' If tJ•~t•·.! 1 · . t&'it" Jo &O ·on pd, :\l, • d •, 'tf.litl;.utl 'nol'_e#.,;.l)i.;,.used_11st) · /It" f.r~:~ l!e 'f'!i ltb" sl;ace for it, 
. . .. .. ·r·· :t..· II we cat'inO~ trt U SM' the pd. • , .·db; 1-f··MfttfttcWDesct'tt:itor(Pallle)) II Wrhe n b8i!;K f6' lht ..•. , lnOdlfted, 

- ti!Atl WJ wrl.t...,.ae(Pace,''fnodlfled"t""f~~",. i ... lj . '-'·' . . .. .- • 

ilii; II f · . . ' f•d- •• t~-. . , .. 
.IJ.U - II h~e :ff1 '' ,.o u. P4!':~ wltthet' lllllt4flfle4Lor· not. 

1.t Hodlfled(Des_crlptor(Pal_e)) II lf~_~lt~.•_•:.· ....... ~_··.•.·_'·· df. tndlcil_'•_l.t. ud trite h• 1!ltn 11 writ . CPa e "mOatlt .. 'i-!'""Ou ·· .. 1 n · · · 
'.. ' "'llii.'IH..'tittttbHft:cPa:e:"not..Jnodl; .,.,.1...! n . )} ' 11 ,.,.,t.'even ff not modified. 

ret~tn; 
end trv_to_wr te_paae; -

·.1 

~ 

~ 
.\ 
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wrrte_paae 

wrlte_paaea procedure CP•••• Modfla1, POf1aJ)J 

*'Jere Mocff 1a1 J1 ti rj~J , ltlf 1a1 II *"'-J J .. \ . ., . "" 

'' t ~-

.lf paae ... ls.:,Ut'o CP•Itl) 'l!!!!. tdfltUI 

Modi fl ·~t CDe14:r I Dtor · (ltaie)) · r• ., •. Jii; 
,. "· t"' •. ':· . . . 

aJ.! cle,~f!·~~·~·~~~~~.~r:r;. .. 

II Tl\h .. procedure, which Is called when It I i 
II de tar"'lned that a Pa~e ~st be wrl tten out, 
II does so. It Is defined In t'u1tlcs that 
II a Pa~e of zeros ts never wrlteen out, but specially 
II flaJJ.e~ •. ·''le~~k, .. that c"'c~ here. . 
11 -. t•~• 't• ... ~ .. f·~r· of .lnte.r•. st here., .Modi "•d 
11 '•·•Uhw "~ l ,r or '!"'-~# t?IHn1 "' 
II W.tntir Or rio ' tjrn 6ft'CQdffl•d. r~dlsk 
II ~~tc«rtnen r ·.:,.f~''' tf'"-ttJhat_onJd11 ~ tells 
II ut ~•'•fH~¢:tti a new pd record for Patte. 

' .. . ~.. . . 

II tl 
II a~ 
II 

~~ 
Jl. 

ittos, ~ wflte need be done, 

ltlc•tro~ i9 Pale. Any 
t~fs "'p\ol"t c·actual h the next 

l..ncLco!"~ one~ the llo that 
' I 'I 

·~firs pt~ti ''note 

..... ..... 
I\) 

tf.imJir..-.. t~taC•t ;;t·•:.ua; ,; " ··. · > 
· ,, bl..,_tWNrJflh'l t•( Core"dlJiie)) 1• "wr I te"1 

J! Devadf(Pile) • Mnutt• 

·H 
• 

1 If! '•AiHitUtfiMt 
II · ' 11':.1111" ~~ Jii.o~ .... •\.<tliii.A-;. 

II 

;t$ n4t.~\.,mab1e • 
· ·c0o1c P r.c:•. · · 

·~ JO~...,o.(''"''bt;"'""r,l·r.~ r('""',;~ i 1? ~: bD 'p • .. ~ home, •••• , was 

. .&ho Dev.cld (Pap) a• a11ocate_dhk_record()J " ... previously .. a1.1 zeros, .rive r t one. 
!! Jlnaa • "PU~" · ~ ·.~Is ~e,.Qn D~ fiye",!i.recency of use, 

.cJ!u .ulJ ai1MaUJdCPaaeh < '.. ·>. t: , ·~·:.~, ;J .... 1-1l'l~~ftU4;;MP-a~ fJf iec 
: • ' . ·:· , :.'!';: .J..~, . : , : ~,. l>: Q.~ e • .ll' Jill: , ' ()J' 

' ' ' if ~~~ ' '"' ,· ~~-~ .,,., 011' 'fttril'fiale', Ooi'We ''.fJ, '' 
-'bla .11a1 II then uJHtate the status of Its net reco;d. 

If Modf1q • "-odlfled" 11 If P•«• h .. heen modlfled while In core, 
· then r~dlfle(_fr~dlsk (Pbrec(Pe~te)) a• ~~ II we must lndlc~t• that the pd COPY that we 

II are about to start wrltln~t Is dlffere~t from the 
lJ dlfk COPf· . 

~. _pd_t,hre.•4-to....,bottom (PDrecCPan)h ll ndlcate that thh pd record has seen recent use. 

Start the actual write. H.f.lt dev,~!.:Wrr :~c~~.ddc~ale), Phy,_Coreadd(Coreedd(Paae))h 
ros 

eftd wrlee_pqe; -
II 
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.:.~· 

:1, 

~" 
·1 

i 
_;· 

~ 
j 

1,,;1 
~~ 

~· I 

• ~ 
~ 
~ 
t 
~ 

i 
~ 
i 
i I 

:·.·~~ 
,, 
\ ~ 

';~ 

-fi 

~ ;,· 
;~ 
;~ 

l 
·1 
<<~ 

·~ 
~ 



,, 
.:: .. 
o;.' 

:= 
~ 

"' 1i!1 
.:"' 
"' 
I 
.. l ,.. 

• II' - i ·-111 ... 
"" l 
3 '-'~ 

• I • I i ... . 

f;! 



--• I .. -

~ ... :: -,. 
I --· -• ·• l -
~ : .. • u -

.. -1 -• -• -• 
=· 

l 
I i • 
~ i 
! J 
~ 

114 
M • • 

• 

.. -:t • .. 
I 
• II: .. 
! .. 
1 --3 
: 
I 
I -



• 

+ 

II 
I 
i 
1f 

11.5 

. ) 



.. .. a • 
} .. .. 
J 
I 

. -
il~i~ .! :.;;ta: 

.t: .. • .. ; .... : .. ·-- ... .. :: :1:·~ ., c. -. 
~-.,"' 1£ ! r:: - ... . .:~• 1.1 .. •i• -.., .1,.: -~ ... , .. -
:~ttP ;.!: •a •J ... ".J •• ! ... 
.:'"•.:'"-::JI 
.ll .. ";f-i 
.. - 1-, .... _.., 
'VOC t•• 0 ... - c .... ., ... _t .., c 
0 0 ..... ..... - c oou wu •••c•'" ... _ c ·- .. u 
- O"D'" ..... C 

~ =-·-· .. .1:1 , ..... -
~t.:l~ 

................................. .................................. 

... 

I 
.., .. 
8 • .. 
~ 
j 

' 

. 
I --e 
·i 

.... .... 

: 1 
f ... ! 
·~· ·a:r 
~~ .. -• I .... , 

... 
u • 
f 

116 

,. 
-(• :-'-
l •. 

• 
. ,.. 
' 

{" 
,, 

_, 



"'li., ... · 4· -w· 

~ 

~ut· 

tl7.· 

+~.:~. 

··: .. :~;·/:. 

.. 
·~ 
• J 



4-

post_page 

post_pace:procedure(Coreadd); II This procedure Is responsible for chanr.lng the 
II state of pa~e control data bases when the completion 
II of an I/o operation Is observed. It is Invoked 
II from Individual rlevlce control routines • 

.l.sual Page; 

.!f. Rws_ln_frame (Coreadd) II If there was an rws here, r.o process t~e completion 
II or ll bo r t I n g • 

~ ~ rws_done (Coreadd); 

J:.ilJ:. ~; II This was a normal page read or write. 
Identify the page Involved In this operation. 
Turn of I/o flag. 

return; 
~ post_page; 

Pa~e :• Pa(e(Coreadd); II 
lo_ln_progress (Page) :• ~; II 
l! lo_reacf_or _wrIte (Coreadd) • "read" II See If read or write completed • 

..t.h!m .sl.g_; 
Coreadd(Par,e) :• Corel!dd; II 
call muke accessible (Page); // 

.ens!-;- -
Page will be made accessible In t~ls frame. 
Insert physical core address. turn on access. 

1-' 
1-' 
00 

~ .s2fl; 
1/rltes_outstandln~ 
call thread_to_top 

w; 
£!ll notify (Event(Page)); 

11 Handle a write completion. 
:• Wrltes_outstandln~ - 1; // Maintain heuristic for flnd_core. 
(Coreadd); II r~ake this core fra:ne the most likely 

II candidate for claiming. The usual reason that a 
II write was started Is that it was a ~ood candidate for 
II clalmln~ In the first place. If Par.e has been used, 
11 (this Includes ~oclflerl) since the Usage bit was turned 
11 off, find core witt not claim this pa~e now. Otherwise, 
II It witt ue the very next page ctaimec. 

II Cause any process waiting for the co~pletion of this 
II llo operation to resu~e. 



+ + 

.f. 

start_rws 

star~rws:procedure CPDrec); 

.lQ.s;&l Coreadd; 

II This procedure In I t1 a tes the MOY In~: of a 
II mqdlfled pa~e fr,om the Pa~:ln& device to the dhk • 

dgsJarc Rws_actlve_count arl t,brpott,s; 

Coreadd :• flnd_core()J 
Rws_ln_frame (Coreadd) t• l£M&I 

ll Thh counter. Is a h•urtstlc f.or tlml.ttn~: rws activity. 

II Cet a paae o'f ~ore for tt1e '"'' buffer~ 
II ttatt: this paJ_. __ • fra~ne_ •_• .,. __ · cJa~~b.11.e,_. F1•1; 
II aho lets post_pase knOw litt\flt to ilo. , ... 

Rws_ln_proaress CPOrec) :• ~~ 
lo_read_or_wrlte CCoreadd) &• "read"; 

II Hark th fl ,d ,f'ttcorr;t. ~~ liavl~~ an r"'s. t ~ procress. 
II lndlcate the dt rectlon of t/o for POSLPa&e. .... 

Coreadd CPDrec) :• Coreadd; II \Set Uft-thl't rt1attot\, so th•t f"!l.•bon can .... 
\0 

, · II find toreadd. . . . . · . , , . . 
PDrecCCoreadd) :• PDret.t,;; .. . . . · ·II Set_u&it tMs relatfon,~--~ thtt'nis,;.done cln find PDrec. 
all pd_thread_out CP'O~h . ··~ .. , · ' II Tfif'litW• tnr.tc .·®,t ~f ,dse:ct list, so It can•t be claiMd. 
alJ devlce_read(Dev_ad~C"'Dr.ec) 1 Phftl.li.Coteadd(Coreadtl)); ./1" Jfarcf·a.,~.POill'bly fhalsh the re•d. 
.SID meteradl . dO~addr(PDrec), write"); II •.\.._,.,.,.t..W to the ·dtd. . . ... 
'RWi""_. .. • ,. rt·•e . ••~..---t • l; 1/:.Mafnta~·!~urt•:t,t,c.;'!': . ·· .. , · N~tttf: .~~~-~:' a• NUIIlber_of_free_pd_rer.or41i • :l,t, "'"· 'ln«HCI,.t~ ~at ·~,hh. r;»c1 · r.,~f~ 

, ''J.iio·t: · .. " . , .,r.:~ . 1' II b kW tltti ~--·Of ~fiVe freed. 
MocftlTied_lrom_dlsk(POrec) a• t&l.I&J II: J~lct!'te rtb.at thf1J,4 r~~ord wf llbe, same_.,, :4hk 

.dg while Rws_actlve_count > 30; 

c, -~ 1_ ·PCttl;Lany_to; 
,W;~ 

II OOIJY •. ,,. . , ' ·n .. ·. ',' • '· . '· ;, 

11 If thel"e l's • lfr(• amouri't of ,... actrvlty colnc on, 
II wl t for . sor.le of' I t 'to · $'ubs Ide. . 
11 see what ttn c:!Uml'feted. · 

.. . : :_Pi,>!ar.AtY'tQ!e 
.!!l.d start. 

~ 

i" 
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rwa_abort 

- rws_a~t -ewectyreCPa .. h II This IH'OCedure Is Invoked when a p~ure fault 
II Is taken on a par.e !!If\_ I ch has an rws In pro1re111. 

> 

.. 1-a;PO_._, 
II ~- '"'~- ;~""' ~r~," S'j.I~~ •. CJ~el-• U ''No abort has 
lt· betM· 1.rr-ttaiifltl4 : • ~lnltr•'• ~ ..,,._ ,.,.,;e .. 
It ·fof'll"WOtl'ft.-an "f1i'tilij 'rw;_tiOne. U AnOther 
II procest.has Initiate~ one. We walt for ft. 

- /1
1

l'l '_ W. -"av•_ Jt~'--_tn. !' __ ._ "~-_l'_ t• ___ . .- _ I»~ _rw,_~, . •¢ IIUI t 
-- - ' . ""!': \' /1;: ·~~~-- -~lttW- ~,. • -· ' ' - - -

Pb'Hte ' a• flO tee C Pa,;e) 1 ' II~ fte{ .-& '"W:t'f tit oif" '_,,,._ .. ' I nHrpst here. , &t.-t;;[rtJJE!'POf'MI)- -. .. . :JF-' .· .~ :_ .. ,_ ·; ""' ·~~~- .,., · tf~ c-..t.Pt-i' -..~~_FW_' ,. a·~t '_ · •_ bO••_~- · · H,, '.U..tnt . .(,.,..._,_ .. :· ·-' N'- 4f·Mf~~~-~ s..c:case S. We clean up, and the 
"' ---- - . ----- . ~-~- .. -· , .. · ., ··41•h., ';,;, . ,, '\' · ---· ·, · -1/!•tfltl.,.._,,_ n.s- ;,._ere ovtr ...... 

· ' . -· .,.tto.,_,.t•l,,..,iC<h':.,, ,_ .. n.-.. :··n No _ _..,,_ Hri i_ w._ t
1 

'Ot- ws __ '. __ ,- ·-' ·' 
. _ _, · .. ,_;;Mit"t..CO.tete(POrec~ aws ti\pr~,,~e.r:::,ii:pJ:l;!'): ._ ,,. . · ... 
. ,. .· , , .. rtadd(Pqe) :• Cor"eaddCPDrlt'l);->' ,-., ·ifi''U-lt twt' u f''as'• .._.for P•ae. 

· st!! •tce_accesslbte CPueh'-' f • ~·?' -~~·'"-"5f Ph.rslcel ttfdr_,• h't' · 
- ..,illqg~ I //.Dtsl·-rtH.f-,·*11 tv'h 6ft adtss. 
ca11 ~~~eter_dlstc(DisfcMdr(JIIDrec)t"r~t$h . , , ''Uj , . , . . """ ~1 '<.' -., .• . ~ : • . ,---"''-=".: \' ,,t .. ,. , .. ,..,-.ffi-t· re". c-!'ta !" e'.h··, _ 
. : .. --r':'l'!'ll"-: · '''"''' -'" ·ii~f.~ ,t . It _ .h.nce 'we 
' • e· '•\/lf~i .fl''tt~~ t "' I ' .,. fr· tee~~' ,, · ·-H...._...u .. cc.. ••• .,.,.mo,··~at~ · · · ·. ,],.J,..,, ..... 

thr ...... co..•n• CPDHcas;·;f'f · ¥ 11 -..t~~. r rMntlr used. 

·. ~ '} 

__ .. · , ln_ul! (lOree). ,:• -"'IIJ, .. ll ,_, UDday .,\~- (f/. ~. ,_,A., .. ; · . .- _. ; 
' · ,. ' ' ; .),_,. . t a• .._.cU~t •ifj"· • "'·-·rr 11 "lfifritafr. tllfl 'tle'urlstlc. 

·7-·-;·· ·-: ........ -,.. .llwS.:tn_fraMt. ·Core••d~IJI'rec)) i• '-.. '.:. J. 11 Jfau .. ••~'"".· ".-·.· .. -· aAA .. 
1, .. ,._ ., '" _ . Ntillier_of f~td ··· \\ ~q 'b!.n$-1"\.tli.T(v -..o~-.:rr~~' '_ • ·. . 

•• l..b.r_of_fr.....,.__:ecoM .Jl';l" 0 •"Jff'~'e'tef.fe! ttfe~l~l~~·J~ ;. · · ~-"· z~n4.f, •' ~,. 

11 by st•r~~·· 
~ II Return to P•~e_fau1t with Rws_ln_procress off. 

elseJ II C•s• 2. Abort •lr .. dy st•rted. pace_f•ult wl11 
- II waft for ft. 

else Abor~ftaa (PDrec) a• laiiJ 
retyrnJ II Case 1. Abort the rws. Plle_hu 1 t will waIt for 

II Return to P•ae_fault to either contlnye 
W rws_abortJ II •nd restert the hult, or walt. 
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rws_done 

rws_done:procedure(Coreadd); II This procedure handles the completion of 
II llo done on behalf of read-write sequences. 
II Aborts are noticed here, as well. 

declare nws_actlve_count arithmetic, Wrltes_outstandln~ arithmetic; 
~ POrec; 
PDrec :• PDrec(Coreadd); II Identify the concerned pd record from the 

II field specialty reserved for this purPOse • 
..U Abort_fla~t (PDrec) II If an abort was requested 

lban ~; II abort the rws. ----r! lo_read_or_wrlte (Coreadd) • 11 read11 II If a read was aborted, we will not write, 
Jb!D t1odlfled_from_dlsk (PDrec) :• l£U&; II and must re-lndlcate that record differs 

II from disk • 
..!lU Wrl tes_outstandln• :• Wrltes_outstandln~t - 1; 11· Otherwise, ofllalntaln write count. 

Abort_Complete (POrec) :• ~ II Indicate that we havP. aborted t~e rws. We 
II cannot make the Pa'-e addressable because 
II (paint of facti) we have no way to locate 
II Paf.e(PDrec) In the actual Implementation. 
II This Is due to not havln& enou~h space to 
II save the required POinters. 

$!JJ notify (Event (POrte)); II We now cause all Drocesses who faulted on 
II this Patte du.rfnc the rws to res..,.. They 

W; 
&1.u ,dA; 

. ' t~ ' ; 

II will all re·t•tce the pa~e faults which made them 

.II '.frst Sltlt~.·. tfri~ .. ·::.i'i~~•ett .. · .. '. be<'f·'it 9.1' ... e t.•·· Joe.· k' II the pa~te~ ~aN1 • & ,,.!'~ ll.; . p o.t«e 
II addressa'( ei•·• . .£,. tD! f w ·~ ~ pd 1,Jhf1' , 

,. w Jl thero ro}o.-rt 1fO••.,i•l.~soo ••••-foult) 
II and slmpr~ returf\. \, ;; ~.,,..,>, v:; ,, ,, , . 

u to_read_or ~~,.~ ie<cor'e~d~l) ... ,,.ct• ::,." 1f' ~~H:J~!/nnr:~:~,r·~!H'i~r~:n!~"· 
.th&D. ,dA; 

lo read_or_wrfte(Coreadd) :• "wrlte11
; II Indicate I/o direction for next time. 

caT1 devlce_wrlte(Diskaddr(POrec>,P~ys_Cnreadd(CorP.add)); II Start t~e write. 

..... 
N ..... 

ms1; 
.t:.Lu. ,dA; II The write, and hence the rws, has finished, successfully 

II (I.e., without an abort.) 
Rws_actlve_count :• Rws_actlve_count- 1; //l>talntaln the rws activitY heuristic. 
Wrltes_outstandlnr. :• lirltes_outstandlnc - 1; II t~alntaln flnd_core's heuristic. 
Rws_ln_frame (Coreadd) :• ~; II Turn ~ff rws Indicator. 
Rws_ln_Dro~ress (POrte) :• ~; 11 Turn off rws indicator for pd record. 
ln_use CPOrec) :• ~; II This record Is now free. 

" 

~ 

1: 

;. 

t.: 

r 

' J 
•I 'l; 



return; 
~ rws_done; 

.s:.w1; 

k§.]J pd thread to top (POrec); 
Devadd fPar.e(P~rec)) :• Dlskaddr(POrec); 

II This record Is now claimable. 
II The page that was on this pd record 
II Is now on disk. 

On_pd(Page(P!1rec)) :• Wa; 
Pa~e (CorPadn) :• ''null"; 

call thread_to_top (Coreadd); 
msi; 

II let all know. 
II The corP block us~d as an rws buffer Is now 
II l~edlately claimable. 
II Make It best candidate for claiming. 

I-' 
N 
N 
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auxlll aries 

I* Althou~h some of these short routines mlr.ht be.tter be expressed In 
line, they are conceptually modules In their own rl~ht, and 
may be called from other points In the system.•/ 

I• Small auxiliary routines •I 

devlce_read;procedure (Devadd, Phys_Coreadd); 

~eslarc Phys_Coreadd arithmetic;· 

II Called to Initiate a read -
II selects correct 1/o routine. 

!!. Device Cr'levadd) ... "drut~~" II meter disk reads 
lhla ~ ~ter_dlsk (Devadd, "read"); II meter It 
~ (select_lo_routlne_entry(Devlce(Devadd), "read")) 

end devlce_read; 
(Phys_nevadd (Devadd), Phys_Coreadd); II call rlaht routine. 

devlce_wrlte: procedure (Devadd, Phys_Coreadd); II Called to write a paae. 

Hrl tes_outstandlnc :• Wrl tes_outstandlnl +1; 
~ (select_lo_routlne_entrv (Oevlce(Oevadd), "write")) 

(Phys_Oevadd (Oevadd), Phys_Coreadd); 
~ devlce_wrlte; 

make_accesslble: procedure(Paae>; 

Phys_Coreadd (Descrlptor(Pa~e)) 
Addressable (Descriptor (Pa«e)) 

~ make_accesslble; 

make.J(6Aacces'tf•re~: procedure ( Pa~e); 
· Addrellible (Descriptor (P~Je)) 
~ clear ~J$Oclatlv-.~.O~r; ·w make_nonaccess I bTtl · ........ · 

,--.,·; .-. ~ ; ,v· ' '\ :,. ~ 

meter_dlsk:procedUte (P~vadd,Ty~e)i 

II Called to make a PIKe accessible. 

:• Phys_Coreadd(Coreadd(Paae)); 
, • ..ttu&; 

II Fl11 In physical address. 
II make oa.- addressable. 

I( Called to make a Pace non-accessible. 
.::.U •ltw.~··NI'I• ..-•adlressable. 

~. 41. . flush descriptor frCJM •noc:Jatlve ....,rles. 

" 
lh.,;; ;_ ·~ ' ' : ~ ·.,. '· .' ~~ 

'""" N 
w 

declare 'type literal, Ex6et1Merit_actlve bpplean; 
II Prlnc:t.~l pro~e~re of lfN meterlna exPeriment. 

If .ruu. Experlment_actlve .1b.m return; . U ~nnQt M:CUIII.Il•te dat~ •f ~~tfer pot .~1 red. 
f'race_d~t.Yill:=caa.,tryst Trace_datum(Devadd:neve.ctd, .T~.c)l'v:pe)>; · · ·· · ' · 

"-i-

' 

" 

~ 

·.I 

': i 

::. 

~( 

"' .\ 



enqueue (Trace datum,Trace queue); 
end meter_dlsk; - -

post_any_lo:procedure; 

declare lo_devlces set literal; 

~Device literal; 

II T~ls routine Is called In any situation where pa~e 
II control discovers some I/o bottleneck. 
II It polls I/o routInes for complete status. They will 
II call post_oa~e If Any status arrives. 

~Device :• range lo_devlces; // loop over all lo devices. 
~ (select_lo routlne_entry (Devlce,"post")) 

(); //make an appropriate call • 
.c.wt; 

!nS post_any_lo; 

~ 
N 
.p. 
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ftxed_heed_control 

I• A Typical Pag1n.: 1/0 Control Routine •/ 

!• This routine Is the I/o control routine for the fixed-head dl.sk. There exist routines 
almost Identical to It for the rnovln,•head disk and drum. The routine setec~lo_routln._entry 
(not ~lven here) Is used to select the app~prlate entry of the IPProprlate routine 
clven the device Identifier and the function to be performed. •/ 

II Reed entry. 

~tslart Phys_Devadd arltbmetlc, Phys_Coreadd arltbmttlc; 

flxed_head_read:,rocedur1 (Phys_Oevadd_ Phys_Coreedd); 
call f xed_hea _start (Phys_Devadd-Phys_Coreedd, 11 re•d"); II Ca 11 connon queue I n1 routIne. 

&DA; -

flxed_head_wrlte:procedure (Phys Devadd_ Phys_Coreadd); II Write entry. 
CAll. flxed_head_start (Phys_Devadd- Phys_Coreadd, "write"); II Call common queuelnc routine. 

&nsh 
flxed_head_start:procedure (Phys_Devadd,Phys_Coreadd,Directlon); 

dc;lar~ Olrectlon literal; 

II Common routine to queue flaed•head 
II disk requests. 

II See If any operations 
II have completed. 

.tDJl; 
·"'>t.', 

£!!j flxed_head_post; 

engytye (construct 

.!!. (fhed head disk 

lo...proaram 
(Phys_Devaddt~Ys.Pevedd, II Construct a channel proar .. 
Phys_Coreedd: Phys_Col"eadd, II and eftelueue It. 
Dlrectlen:Dtrectlon. 
Next: ••nu 11 "). Fl•ed_Held_Channe t_Queue); 

Is not busy) Shen call start_lo(Fiaed_Hud_Chnnel_flueueh 
- · II There Is '"*work for the 

II fixed head disk. Start It If 
II It Is Idle • 

1,.\.• ::.,.' " \ : ~~ { f . ~. ;,.: 

'Tt)~,~;' ~,J>_~~f~ ".; •)'• i--' .. ~. ' ~· r 

fhed_head_post:Rrocedur#) · . c·•;; ;·, ~ ~- ·1:. 1 -~ ~ 0. · ,.,_; ':- · ;:; • ··'f(.VIM· to PGit ~litH' oWet'ttlohs. 
c~g lo~u,~. : .• ::J:IIU.. <tP•· ... ·l•"ta,lJI•:· 11t1Mush //Let>k' et 611' Mtt •tatus·.. , . "".: 

·n:.U-< •~••\~$: ~-t.&e:ti.ef: CG~t~tlete status);\\ u·.rraa.- ft\"~•f':'"'*HM•r'e"' qu8Ge.· 
''..fJlll.;,....t,..f'e_.·.Ceireidd-no_st•tus)); \\ ,, 1/•:!fW.fei"M"*''~c:CNittrol. See the 

II ~ec:tiritlon of lo_st•tus. 
. ~ I o_pro«ram ~I o_s ta tus) !.!!!!! F I xed_Head_Chaftntf.~fluet*) '' " 9

: '· ·, • :· ', >' 
&DJI.j· .... ·'··, ~ ;:\"'···-·· r''f;..~j~~ .,.: .. \ , . ~-·. 

"·l""f" 

\\ tJ c"' msh < & ,. r 
' ~ 

) \ . l '' . ~. l f • 'j. "-_ ;I· ~- -.~ 

' ' t \~> 
c\ 1.:.-r· 
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N 
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Appendi,x B 

Implementation of the Hardcore Meters 

In -this appendix, we relate the exatt identitfe!r'·o'f the measured 

events of Murtics page control with which ehis experiMent was concerned. 

This is necessary both to provide validity· for what we have done, and to 

help others design similar techniques. 'for other systems. tt is assumed 

that the first appendix has been at lea·st partiall'y 'understood, perhaps 

with the overview sections fully understC:fod _.,,' c! 

We also discuss here the t~chnique·s used"'in- biplementtng the Multics 

Supervisor interface for 'this experiment'~ 
',;: .,' 

. 
As should be cl'ear from Chapter 2, we are iriteres'ted in metering 

movement of pages in and out of the composite 'entity of core-drum. This 

"movement" in fact consists of copy creation and copy d~struction. Move-

ment "into" core drum consists of the creat'ian of a page copy' in core-

drum where- there previously was none, and movement "out o"'f'' core driun con-
••'j 

sists of the destruction of core or drum copies of apage, such that there 

is no copy in core-drum. We speak of this-creation and deletion as move

ment because it is represented as movement of-pages l'n an LRU stack. 

We will now analyze the dlfferent types of' mb1t.ion in and out of 

core-drum. Pages come into core-drum either from th:e· outside, i.e., disk, 

or by being created in core. Pages entering frdmdtsk can only do so as 

the result of a pag~ fault to disk· or a pre.o:i)agittg from di~k; so a call to 

"meter_disk" (see Appendix A) was installed in the i/eidispatching 

routine to record all reads from disk. Pages cre11:ted in core never 

involve input/output. For the most part, these are pages which were 

never touched before, and would thus cause a page fault no matter how 
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large core-drum were. These page faufts~Jhbwever, involve neither 

multiprogranming, i/o, nor idle time., ~ ~Fe t~s. qf ,sU,gh~ly .. le.-s 

interest in performance predictions than P:P;re :og~J~~~r~)., ~~~: faul,F,s. We 

chose to ignore th~. There is one other_ typ~ of ~~J"d moU;.on, whi.ch 

will be motivated. in our discussion .of outward JDO.tion., 
· - · · · · ~' ~f! -t r : ,-; J ::~ ·· ;-·

. - ' . " -~ 

Outward motiort consis~s of oqstiJ~&• ~I'~ col'e,'7~~~ _This consists 
'- . . .. -- :· ,, --. - . '·--···-'>-' . 

of o\lstings from 41'\qll (which,_ as can be ver~.ti.~Jt, ~J"~.,:,~~ePt..)F';•~Jef~~Jl" 

in the last appendix can only ~~n•~J~ ~,a, i.,.~ .. ~,~~P.PY.: ;LJl. cot:~) ,or tr;"!fl 

core •. Ou.-tings tr~ .5ore .a~~ _onlY 9~F-H!J-• .,~~- F~f~-_c~r~ ,if ,page con

trol (specifically, "try_to_write...P~;&!!~): ~·<(~II 1:t~~. 1:.~ !ht!~d, no.trbe, 

writtep_ to the. dr~ because ~£ e_ithex:, _l_a,;k .~£_ ... ,_~~: .~r!!, q~r t;he; c,opcerned 
. .. _ •. _ .· • · -~. i...,! . • - hr - , ~ .· . ~ -> -- • • • • • 

page is one of the speeial-caB:f!d "&t~~· r•s· ~ !I~J-;1 ~:~fcS~ ic::?n~id~;r. 

the ousting,s fr()1D<dr~. :The ou._tina ~f ,a. ~e. ~\~1 .fsj ~~.ffe,rent than 

its disk copy, if one was ever made,_ is a_ce~;~~~~~4.b~_. th~_ il\1-,t,i~t;~Ol\ ~-~ 

a read-write s~u~ce (rws). These rws initiations were thus meterecl a,. . . ' ' ~ . ,. - ·" - ' . ' . " ... _.,..., .. -.: . ' 

outward movement. The oustins of a opa~e which-~· _i4~tic:~-~ tp, a disk 

copy is don~ .bY .s:i,aply cla:Lm~ the _.d,r~ tr-.a. (s~~-'~;'f-~~~:ifee._pd.,.record"), 

and this event wa.s likewise noted. OQ~tiD&~ f,J'~. fOr:" ,4tt~eat ~s, ~en-:

ever they are not o1,1st~a to the drUIQ .. (Me ~firut ~ ou,_t~ng. "from core 
' ' ) :. ;. - ',. ' .. : • :;:. .~ ·- ~ • . . ,._ '_ ' ' _; •• 1 :· 

to the drum" to be an oustjpg. £:rom core ·~~n ~ copy _p,f .. tbe concerned page 

is on drum. Note that thie implJes, ~n or4ering of th~ ~iftJ:&rchLcal 

memory system.) Tb,ese O'UJ.t_ipg~ from fOr_~ ~o~~~~ lla,fp,~n o~y fof the 

special "Global transparent pa.s~na d~vic.~, (gtpd)" ~5~ of 
1
the root direc

tory, who.se treatment was already fully cov.e;red1 , ~d. in .bad ,cases pf page 

faults or rws initiations, when there are no fre.e, dr• fr.~ts •vai~le. 
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This case was also covered. As an interesting consequence of this defini-

tion of an ousting n.ot to the drum, we observed a large number (approxi

mately 2400 per hour) of oustings of pages which were all zeros, and were 

all zeros when brought into core (the conjunctiGn of these statements es-

sentially tmplies that these pages had no copies on either drum or disk).* 
~ '.l 

Some special experiments designed to discover the source of this peculiar 

traffic were essentially fruitless. The data reduction programs described 

in section 2.3 were modified to ignore these anomalous oustings. 

One consequence of metering read-write sequence initiation as out-

ward motion is that the aborting, or reversal due to e. page fault, of a 

read-write sequence must be metered as iuward motion. This was done (see 

"rws_ai:>orc"). 

One remaining event which had to be metered was that of page destruc-

tion. The event we chose to represent this destruction was the handing 

back of the disk frame, if one existed, to the free disk pool, of any disk 

frame at all. This happens in two cases. First, explicit page destruc-

tion via the deletion of segments of the virtual memory requested by super-

visor call, or their explicitly requested truncation causes this to hap-

pen. Secondly, as we have described, find_core deallocate& both disk and 

drum frames when a page containing all zeros (a void page) is found with its 

usedbit off. As described in section 2.2, we are interested only in the 

destruction of pages which are not in core-drum. The destruction of any 

such non-void page will always involve the deallocation of a disk frame, 

and thus will be properly metered. The destruction of void pages is not 

*Even though this constituted about one quarter of all core-drum oustings, 
they bear absolutely no significance to the experiment. 
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a significant event, as they do not occupy a place in either the LRU or 

LRU extension stacks of section 2.1. The discovery of a newly void page 

by find core also causes such an event to be recorded in the trace data 

as a page deletion. However, this page cannot be in the extension stack, 

because it was found by find_core because it was, in fact, in core. The 

data reduction programs were aware of these out-of-list deletions, and 

duly ignored them. The destruction of pages in core-drum which were never 

ousted is handled and ignored by this same mechanism. 
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Interface Details 

The Multics hardcore interface for this experiment was designed to be 

a semi-permanent part of the Multics system, and thus have as little e£-

feet as possible on it when not it use. Thus, a page of the virtual memory 

was allocated for the circular buffer described in section 2.3 and its 

auxiliary data. When the experiment was enabled, via highly privileged 

supervisor primitive, this page was given a dedicated page frame and with-

drawn from the pool of pageable core. 'l'bis was necessary to insure that 

page control, when storing data in this buffer, would not take a page 

fault. Page control was also made to check a switch (the "enabled/dis-

abled" switch) as to whether or not this had been done before attempting 

to reference the buffer. Another highly privileged supervisor pr~itive 

freed the page frame given to this buffer, resetting this switch before 

doing so. 

The copying of data out of this buffer, via privileged supervisor 

entry point, ostensibly requires simply copying its contents into a user-

specified area. However, it was an a~ of the interface design to insure 

that the buffer would not change while the information was being copied. 

This could happen by either the processor not doing the copying taking a 

page fault, or the processor doing the copying taking a page fault refer-

encing the user's area. Hence, to insure that no page control activity 

took place while this data was being copied, the data-gathering pr~itive 
f. . 

had to lock the "page table lock" while doing this copying. This, in 

essence, prevents page faults from being processed, and cannot be done 

until any other process has unlocked this lock. The effect of this lock 

is to insure that only one processor is in page control at a t~e. When 
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one has the page table lock locked, one uust not take a page fault, or infi-
;;::~ __:, ! ~ . :' ~ j '-

nite looping will result when that processor tries to lock-the page table 
,..,.,-

lock to process it. What is more, the p.qe fault haacller is not recur-
i' , ::::-\ 

sive o 'lhus, it was necessarY- to "'Wire" a dedicated page of the virtual 

~(allocate a dedlc.ated core ~e fr- .~.:~dsdr.., the .\latter from 
... ' . ·.:· 

the pool of pageable core) to copy the wired buffer into. Both pqes 
·-.· • -~o '-:. r~~- ;.r:- ..;-.;.., '..z" ~ .. '· i.-:--i:· ~~~ :~~::.-~ ~::.:·-·.·~.Et··· ;d:l i'l.tHi¥ ~ ·~~~-~Ef: ~(~"'J . . ~ .. ]'":(L: 

being wired (the buffer 8.Dd the ta.porary copy paae) ensured that no page 
~':l~ ,:;j_·~.:; ~fi"~J·~_;·-:·.--- :· .. ·· 

fault would take place during the copy. 'l'be conteDts of the copy page 

could then be copied to the user-speeifiecl area after the page table lock 
., 
'. 

had been unlocked o 

;.J .~- -'-. -~-~i<- :_;f:~_:: 

A further difficulty arose because the segaent contalaing the tea-

porary copy page 
.· ~-~· _: J , • ; ' --~ -~ » ·:L-;.. .. ~L.,·~ ·.\/ .. "': ·: ... -} 

by two processes sialltaneously. 'l'hus, a lock had to be used to exclude 
.-. : .. ~ ~ ~\~ :_:~)-:·Js t;l~~:\-_-·· :-:;··<-s -·-· ,.· -·:;;.:... -~ . .: 

such use of this segment. 'l'his lock would be loetecl ~y any process wanting 

to gather data before it wired the temporary copy pase, aDd unlocked after 
.. _ .. :· -_..- :. ·1 ~-- .. £ -~ '· -. -~ 1! : •• LtP'::· :;,_. _:; .F>b --~ C ZJi L~ -~~ '~ \J- ~; 

it had been uuwired. A process or fiDdJ.ac the lock locked would be uulti-
. ::--<. ~· 'H-~~t'J.~~1!):"f·~fd.3-2UJ9:}~ :~:·-'···; 

----prograllllled, aDd the associated process notifiecl when the loek was unlocked. 
- ~:· ') !~- _,.. .• • • . -~ ~:-\-~; :J l 1' ':t.:.:; Ts·~~~}Jr ~ ;,.~~-~:,-·";·,:· -~ . 

'lhe code which copies the wired buffer iatO the t.-porarily wired 

temporary copy page is entered only when the lattel' has been wired. Bow-
- I . . 

. ·. _,;: ~· " -·-~ .· \..:,;; -~-~-;. ",(<'~ LJ...-:..;·.t·:::·~~! ""', 

ever, it is possible that the former -.y DOt be wired, specifically, if 
·.;; ·=-f' JJ1.f:_:\: :!(L·-~~:~•<)~·':!,._T -~-r~.: -~- ':;.; :..,. :.. 

the experiment has not been eaabled. If this is tile case, a fatal page 
-.~,E._-.·:;,_ -1 ,:._.: !f<-, "'"'! •. .::.·:n~r:: ,_,;_~: .. ~LLi ...:.-~·ci . . :~·":; 

fault with the page, table lock locked wauid ruult. To avoid this, the 
T • • {" f:.: j ;:-~ h -:· .. i. L~ . 1 •• :: ~~_.· - + ; • ~ 

enabled/disabled switch wust be checked ~ this code, but it cannot check 

this switch until the page table lock le actually locked. Only when it is 
•• ~ <. F.:=: -~,~~--~~,-f 

locked can no page possibly be llade unrefereucealale, as no other process 

can be in page control. 'l'be enabled/disabled switch is turned to disabled 
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BEFORE the buffer is unwired, and the.,buffer ·~~ only be aacle unreference

able AFTER the page table lock is loe'ked -AFT£ll';tt·h•ei'been wired. Thus, 

the sequence of events in a call to gather i' ~ follows: 
-: ;;·:5, '·' ;).U.':, > ~ .. 

1. 

2. 

3. 

4. : 

Attempt to lock the copy page lock; BUltipograll aiHl retry if 

failure,. 

Wire the temporary copy page. 

Attempt to lock the page table loek; -lCk>p until successful. 

Inspect die ::eAablMAd:tsabbed switZeit; · copy•,;,dJe wbed buffer. into 

.the copy page if,,eJ;l&b:\.ed. ,e,lae <r9PJ,zet;~s!' .. ;,. 
- - • J • - • • •• :;.-. ...... ...... 

5. Unlock the page table lock. 

6. Copy the temporary copy page out to the user-specified area. 

7. Zero the temporary copy page, and unwire it. 

8. Unlock the copy page lock; notify any waiting processes. 

The step of zeroing the copy page is done so that this page will be illlne-

diatedly claimable to find_core. This is done as both a friendly gesture 

and an attempt to keep this page off of the drum and out of the disk traf-

fie visible to the experiment. The page frame is always void when unwired 

(returned to the pool of pageable core). 

The sequence for enabling the experiment is as follows: 

1. Wire the buffer page. 

2. Set the enabled/disabled switch to enabled. 

The sequence for disabling the experiment is as follows: 

1. Set the enabled/disabled switch to disabled. 

2. Unwire the buffer page. 

The only remaining question of locking is that of the buffer be-

coming unwired as page control is placing data in it. This cannot happen. 

Any page control operation sequence other than those just described can 

be summarized as: 
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lo Attempt to lock the page table lock; loop until successfulo 

2. Do all nature of page control. 

3. Conditionally, unlock the page table lock and end this sequenceo 

4. Check the enabled/disabled switch; add data to the buffer if and 

only if it is enabledo 

5. Go back to step 2o 

The making unreferenceable of pages by find_core falls under step 2 

above. During the checking of the switch and the placing of data in the 

buffer, this making unreferenceable cannot happen on this processor. The 

page table lock excludes any other processor, and there is no problemo 



135 

Appendix c 

System Performance Graphs duriBS Experiments 

We present here graphs of user load, cpu utili,ati~, and paging over

head as functions o~ -=ime of day on ~he days of tq,~,, two ~periments, 11dtm 
.-4' 1/ ""'~ -

- ' ,-c .•;:.- /' --: 
21" and "dtm 23u. '!hlls data was ,condensed from a "gi:aflfeal presentation 

of these parameters rputinely p~pared by the M.~;~~ lftf&rmation Processing 
:~ . - ~ ~i;.; Ei ;~: E . ~ 

Center. It is giv. here to pq,vide a- Ueling f. tthe-~J."elaUl.ve user load 
' ~ ,' . 

during the experiment', and to alloW' a rough approx~tion t~~ toal system 
' 

headway during the ~riment to be ..c9iaPutecl. This may be dOmputed by 
...,_ ., 

multiplying the time J>f~the experimen~---(~~- 14 hours, J 50,000 seconds) 
~.... - .....___~- ~ t~ 

$ ~ 

by the fraction of the qstem which was not id1e- t~- or pa~ng overhead 
~ 

(quite roughly, 40~,~ obtaining 20,000 seconds, aDd 'ltilti~Ytng by the 
:""'i: ' ., .-· .. ~ 

system memory reference ~):ate (400, 000 refereac~f~~~ second)~ obtaining 

8 x 10
9 

virtual 111e1q0~ r.ferences. _,.--
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Figure C.2 Percent of Total System Time 
Spent Idle, as a Function of 
Time of Day (approximate). 
All types of idle time combined. 
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