PROJECT ATHENA TECHNICAL PLAN

Section E.4.1

Zephyr Notification Service

by C. Anthony DellaFera,
John T. Kohl,

Mark W. Eichin,

Robert S. French,

David C. Jedlinsky,
William E. Sommerfeld

Zephyr is a notice transport and delivery system under development at MIT Project
Athena. Zephyr was developed for use with 4.3BSD UNIX! but should be portable to other
operating systems. Zephyr was developed for use by network based services and applica-
tions with a need for immediate, reliable and rapid UID based communication with their
clients. Zephyr meets the high throughput, high fan-out communications requirements of
large-scale workstation environments. None of the communications packages currently
availble for use in a workstation environment adequately meet these requirements.
Electronic mail provides guaranteed delivery but is too slow and cumbersome. Broadcast
messages are fast but too transient and don’t scale well.

Zephyr is designed as a suite of services based on a reliable, authenticated, UID to UID
notice protocol. Multiple, redundant Zephyr servers provide basic location, routing, queue-
ing and dispatching services to Zephyr clients that communicate via the Zephyr Client
Library. Other services can be built upon this base.

Note: Comments on this document may either be sent via electronic mail to
zephyr-comments@athena. MIT.EDU or entered into the local Athena “zephyr-comments”
discuss meeting. Areas delineated by change bars are under development and sub-
Ject to change without notice!

Other documents of interest
Besides this document, there are other documents describing parts of the Zephyr system:

* The Zephyr Programmer’s Manual gives a description of the Zephyr Client
Library, including examples of use.

* The Zephyr User’s Manual gives a user-level description of the operation of the
Zephyr Notification Service, including examples of typical use.

IUNIX is a trademark of AT&T Bell Laboratories.

Zephyr Notification Service 5 June 1989
Copyright © 1987,1988 by the Massachusetts Institute of Technology

Page 2, Section E.4.1

Athena Technical Plan

* The Zephyr Installation and Operation Guide describes typical installation, opera-
tion and maintenance of the Zephyr system.

* Zephyr Implementation Notes discuss the current implementation of the Zephyr

system.

* UNIX manual pages briefly describe the programs in the Zephyr suite.

Organization of this Document

This document presents the concept of a notification service, including design considera-
tions, assumptions and constraints of Zephyr, and details the design, constraints, and deci-
sion rationales for each of the pieces of Zephyr.

Definitions

1P
UDP
Notice

ZID

ASCII

ACL

Class

Instance

Recipient

Multicast

Zephyr Client

Subscription

Wildcard
Zephyr Realm

Zephyr Notification Service

Internet Protocol.
User Datagram Protocol.

The fundamental unit of data transmission in the Zephyr system. A
notice consists of routing information in its header plus client-
determined data.

A “Zephyr ID” which uniquely identifies an entity using Zephyr. In the
Athena environment, a ZID is usually the Kerberos [4] Principal iden-
tifier of the entity, such as “jtkohl.root@ATHENA.MIT.EDU.”

American Standard Code for Information Interchange.

Access Control List. An ACL lists in some form the entities permitted to
perform some action.

A part of the notice header specifying a general class of notice type. Of-
ten considered an attribute of a notice.

A part of the notice header specifying a subclass of the notice class.
Sometimes referred to as “Class instance.”

A part of the notice header specifying the destination ZID of the notice.
The recipient may be the null string ("\0") to indicate that the notice
should be multicast.

To transmit to a subset of all clients.
Any program or user agent which can transmit or receive notices.

A tuple of {class,instance,recipient} maintained by a Zephyr server in-
dicating a client’s desire to receive notices with the specified class, in-
stance, and recipient fields in its header.

A string specification that matches all strings for comparison purposes.

The set of hosts supported by a particular set of Zephyr servers. This
will typically be the same as a Kerberos realm.

5 June 1989

Athena Technical Plan Section E.4.1, page 3

May also refer to the name given this realm.

1. An Introduction To The Design Of Zephyr

This chapter is an introduction to the concept of a notification service in general and to
the design of the Athena Notification Service, Zephyr. The sections which follow address
the following issues:

* What role does a notification service play in modern network based workstation
environments?

* What are the motivating factors behind the development of a notification service?
* Under what design constraints must the service be developed?

* What environmental assumptions have been made in the design and implemen-
tation of Zephyr?

* What level and types of services should users expect from a notification service?

* What are some of the unsolved problems and topics for future development?

While much of the information in this chapter is oriented around Zephyr, Project Athena’s
Notification Service, it is our belief that the concepts presented here can be generalized to
fit a broad range of notification services and systems.

1.1. Why a notification service?

As Project Athena deployed large numbers of workstations and servers, it became clear
that current UNIX communications systems were inadequate and incapable of dealing with
many of the needs of the environment being put in place at M.I.T. The advantages of a
notification service as a solution to a broad spectrum of communications needs in a
workstation environment became clear as we began to examine these inadequacies.

When services designed for use in a time-sharing environment are reused for a very large
system of networked workstations, certain communication services begin to fail2. Their
failure is predominantly due to their inability to cope with increasing network size (i.e., an
increase in the number of both workstations and local area networks). In examining how
certain of these services communicate with their clients, we have identified two primary
failure modes: the inability of a service to cope with rapidly increasing numbers of client
nodes, and the inability of clients to deal with the replacement of a local service with a
remote service. Zephyr is the result of what was initially begun as the development of a
solution to these two failure modes. Zephyr has grown into a more powerful tool than was
originally anticipated; what began as the development of a “desirable” service soon turned
into the development of a “required” service.

The following lists some of the existing workstation communication requirements that
have been helped to scale properly by relying on the existence of a notification service.

2Services, in general, begin to fail, but the scope of this discussion is primarily the realm of com-
munication services.

Zephyr Notification Service 5 June 1989

Page 4, Section E.4.1

File Service

Post Office Service

Athena Technical Plan

Users need to be informed of unexpected changes in file server
status. Utilizing the notification service, a file server can send
notices to the users and hosts that it knows would be affected
by a change in file server status. If a user registers an ap-
propriate subscription with the subscription service, he will
receive any such notices. A third party client would be able to
notify subscribers about operational issues associated with that
file server.

Remote post offices can notify users about the arrival of new
mail.

Electronic Conferencing Systems

Print Service

MOTD Service

On-Line Consulting

Host Status Service

User Location Service

Zephyr Notification Service

Electronic conferencing systems do not necessarily keep a
readership list (conferences are often are open to the “general
public”), so the system cannot identify a community of interest
for event notification. However, users interested in the status
of certain meetings can use the subscription service to sub-
scribe to conference update notices.

Print servers (and queuing services in general) can utilize the
notification service to communicate status information back to
the user who submitted a job, whether or not the user has
changed location in the interim. Typical replies might be
“Print job complete.” and “Paper tray 2 empty on LPS40-1.”.

Message-of-the-day information (system wide, service specific
or local) can be sent to users via the notification service when
they begin using a particular service. Notification of changes
to that information can be provided via the subscription ser-
vice.

The notification service can be used as the underpinning of a
dynamic on-line consulting service. The subscription service
can be used to provide topic based information routing, user
location, and consultant to client rendezvous.

Broadcast based host status systems (such as ruptime) do not
scale to a large workstation environment; disk usage grows
linearly with network size, total packet compute time grows
geometrically, and broadcast facilities are available only on the
local network (broadcasts do not propagate through network
gateways). The notification service can provide asynchronous
and immediate host status and error log notification on
selected hosts or servers. Notification can be initiated either by
the server using the notification service to reach predetermined
recipients, or to self-selected recipients through the subscrip-
tion service. This is desirable for service management pur-
poses.

Broadcast based user location systems (such as rwho) also do
not scale to a large workstation environment for the same
reasons noted above under Host Status Service. The notifica-
tion service can provide asynchronous and immediate user
location and state change (login/logout) notification on selected
users. This can facilitate communication among users. For ex-

5 June 1989

Athena Technical Plan Section E.4.1, page 5

ample, within the limits of user permission and access control
(described elsewhere), students could watch for their friends,
Teaching Assistants, or colleagues.

Talk or Phone Service Current systems that do not have access to network-wide user
location information require their users know the exact address
of someone is in order to establish a two-way communication
channel. In addition, such systems typically do not provide any
access control or method of rejecting an annoying “talker”
beyond turning off the service altogether. Using the notifica-
tion service, a “talk” facility can be constructed that locates the
party being called, transmits a connection request notice to
that party and, if permission is granted, automatically (via ren-
dezvous information included in the request notice) establish a
connection.

Emergency Notification There is a requirement to provide a simple, asynchronous and
secure means of sending urgent notices to all users on a
workstation or in a particular group of workstations. Mail is
slow and synchronous (in that the user must initiate the read-
ing process). Broadcast methods are not useful due to scale
and network boundary considerations. In addition, the
workstation user must trust the broadcasting host and the per-
son issuing the message. Finally, broadcast does not answer
the question of how to notify multiple users on a workstation,
should that be the case. Using the notification service, emer-
gency notices can be sent directly to all users on any specified
host.

Message Service Current one-way communication services suffer the same
problems noted above under Talk or Phone Services. Using the
notification service the implementation of a “write” utility be-
comes extremely easy; almost all the work is subsumed by the
notification service. Notices can go to individual users or to
multicast subscription groups.

Other Service Events These are only a few of the interesting services. The notifica-
tion service can be used to reliably notify users of a whole
range of asynchronous service events that occur in current dis-
tributed workstation environments.

1.2. Design Requirements And Constraints

A notification service is intended to provide network based services with immediate, reli-
able and rapid entity-based communication for small quantities of time-sensitive infor-
mation. Such a service must be able to efficiently provide these capabilities, with the
highest possible fan-out (i.e., client to server ratio) but without adversely affecting network
load or server host performance.

As the notification service is a distributed service intended to serve a large number of
workstations, it is important that all aspects of service maintenance and operation be easily
controlled and manipulated remotely.

Zephyr Notification Service 5 June 1989

Page 6, Section E.4.1 Athena Technical Plan

Since the notification service is still evolving, it is important that it be designed such that
there is some method of gracefully handling protocol compatibility from one version of the
service to the next. This means that servers and clients must be able to interoperate with
at least the previous and next versions.

The notification service is a communication system and depends upon an underlying net-
work transport mechanism, so it must accept certain design constraints imposed by that
mechanism, and should make attempts to remedy deficiencies present in that mechanism.

In order to provide entity-based communications, the notification service must maintain a
database that maps entity names to the current location(s) in the network of the cor-
responding entity. The only requirement on the entity name used in addressing is that it
be unique across the entire network.

1.3. Environmental Assumptions

The following items are assumed in the design of Zephyr:

Networked environment
Zephyr is designed for use in a networked environment of (marginally)
cooperating hosts. For a stand-alone single-user or timesharing system,
it offers very little advantage over standard UNIX utilities such as write
and talk.

High-speed network
Zephyr assumes the availability of a high-speed network for communica-
tion between hosts within a given Zephyr realm. If a high-speed net-
work is not available, many of the implicit assumptions are no longer
correct and the system may not perform adequately. There is no re-
quirement for broadcast capability.

Authentication Zephyr assumes the presence of an authentication system which is
secure on the network over which it operates. Because of its flexibility,
Zephyr needs a way to reliably determine the sender of any given notice.
Without an authentication system in place, the reliability of this iden-
tification is highly suspect, and the ability to spoof Zephyr becomes easy.
[If Zephyr is being operated in a captive, friendly, cooperative environ-
ment, this may not be a cause for concern.]

Administration = The Zephyr server is designed to run indefinitely without intervention.
1.4. Fitting The Tool To The Job
To satisfy the above requirements, Zephyr is composed of three principal elements:
* A notice transport mechanism.

* A set of “canned” applications which use the transport mechanism.

* A library of functions through which new applications may use the transport
mechanism (the “Zephyr Client Library”).

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 7

The core of the notice transport mechanism is a system of dynamically updated, locally
authoritative servers that provide centralized routing, queuing and dispatching. Clients
communicate with these servers via the Zephyr Client Library interface. The Zephyr Client
Library implements the Zephyr Protocol, a reliable, authenticated, ZID to ZID notice trans-
mission protocol.

A Zephyr server requires no maintenance for daily operations; changing access control
lists or default subscriptions can be accommodated by remote logins to the server host or by
automatic database-fed updates (such as those provided by the Athena Service Manage-
ment System [2]).

The Zephyr Protocol includes a version number so that multiple versions may be sup-
ported simultaneously.

The Zephyr Protocol is UDP/IP based. We chose UDP/IP for several reasons. The campus
network at M.I.T. uses IP almost exclusively, so we were constrained to the IP protocol
suite. We also desired a “lightweight” transport mechanism with little overhead. TCP/IP
has far too much overhead involved in initiating connections. UDP/IP is much more ap-
propriate, since it is connectionless and thus has much less overhead. The 4.3BSD im-
plementation of UDP/IP allows rapid switching of destinations, a necessity if we are to use
a central server to do notice dispatching.

Since Zephyr is based on UDP/IP, it is constrained to operate within the capabilities of
UDP/IP. However, there is nothing in the design of the protocol that would prevent it from
using other network transport mechanisms (such as a remote procedure call system).

The five primary UDP/IP imposed constraints are listed below, along with a brief descrip-
tion of how they may or may not be visible to Zephyr application programmers and end
users.

Duplicate Notices UDP/IP does not provide any suppression of duplicate packets.
This means that it is possible that Zephyr clients may under
certain adverse network conditions receive duplicate Zephyr
notices. Zephyr applications must be capable of dealing with
this possibility even though Zephyr does provide some filtering
to block duplicate notices.

Missequenced Notices UDP/IP does not provide packet sequencing. While Zephyr
notices do contain timestamps it is up to the application to
check the timestamp and be willing to deal with notices
received out of sequence3.

Flow Control UDP/IP does not provide any flow control capability. The ap-
plication must be capable of dealing with notices at whatever
rate they arrive or be willing to lose notices.

Unreliable Delivery UDP/IP does not provide a reliable delivery mechanism. While
Zephyr does provide retransmission and several levels of ack-
nowledgment processing, it is up to the application to decide

3There is still the problem of synchronization of clocks on the (possibly many) sending hosts, so
even the timestamps cannot be relied upon to determine the order in which notices were trans-
mitted.

Zephyr Notification Service 5 June 1989

Page 8, Section E.4.1 Athena Technical Plan

how much overhead it is willing to incur in order to guarantee
notice delivery.

Packet Size UDP/IP packets have a relatively small, fixed size. Consider-
ing the amount of routing data and other information that
Zephyr must store in each packet, there are some strict con-
straints on how much user data may be included with each
packet. To help remedy this, Zephyr provides automatic packet
fragmentation and reassembly, but it is not as efficient as other
means of transmitting large quantities of data. Applications
requiring large data transfers should use Zephyr as a rendez-
vous service, and establish their own separate data transmis-
sion channels.

How visible these constraints are to the end user is up to the Zephyr application program-
mer. For example, the “zwrite” application (which allows workstation users to exchange
“write”’-like messages) only guarantees that the message was sent, not that it will actually
arrive or how many copies will arrive. This is because constraints one and four above
(Duplicate Notices and Unreliable Delivery) were by design not completely eradicated.

Zephyr manages a ZID to location translation database, known as the “user location
database.” This database maps ZID’s to tuples of location information: hostname, IP port
number, and display device (among other things). This database is made available to
Zephyr clients via the “user locator” service. The only ZID’s normally found in the database
are those designating users of the system; by convention network services do not announce
themselves to the user location database, as the database is intended for use by users, not
services. Zephyr maintains a separate location database (containing only ZID, IP address
and port number) for all clients wishing to receive notifications. It is this database which is
used to determine the proper routing of notices.

The reliability of the information stored in the user location database imposes some con-
straints upon applications that rely on Zephyr and the users of those applications.

* User location information stored in the database can be assumed to be a reason-
ably accurate report of a user login. This can be asserted because all user logins
reported to Zephyr must be Kerberos authenticated.

* User location information stored in the database can not be assumed to ac-
curately indicate that a user has not logged out. This must be asserted because
there is no way to guarantee an orderly authenticated user logout (e.g. a worksta-
tion may hang, crash, or reboot due to problems beyond Zephyr’s control).

* User location information not stored in the database can not be used to assume a
user did not login. This must be asserted because a user may choose to not make
his or her login information available.

As designed, Zephyr performs a reasonable amount of housekeeping to prevent transient
data stored in the user location database from persisting when it is no longer valid. If a
workstation crashes, the user login sessions on that workstation terminate without sending
logout notices to Zephyr. This permits invalid information to remain in the database (Note:
the initial logins were not invalid; that the information remains in the database is.). In
order to cope with this, a Zephyr client runs when a workstation reboots, telling Zephyr to
flush any previous state information associated with the rebooted workstation.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 9

If Zephyr application programmers and Zephyr application users understand the above
issues and maintain realistic expectations then the few difficulties should arise.

Zephyr clients determine what level of service they require from the notification service
by choosing which type of routing they use. For example, certain client services have a
concise knowledge of who their clients are and only need the notification service to route
information to those clients, using their ZID (the most basic service). A file server that
knows which users it is serving needs only the ability to reliably notify those users about
service state changes. On the other hand, client services that cannot identify their clients
(or may simply not know who is interested in such state information) may wish to notify
“interested parties” about service state changes. A workstation event logger would fall into
this category. This type of service would make use of the subscription service with mul-
ticasting based on who has declared themselves “interested.” Such a service layer provides
the ability to store communication state information for client services external to those
services. This adds to the notification service the ability to provide to its clients status and
availability information about other client services even when those client services are dis-
abled and, as such, can’t communicate with their own clients directly.

We do not specify how this system of services should be implemented. Our current im-1I
plementation of Zephyr makes both the user locator service and the subscription service
functions of a single base notification server. While this implementation may not be op-
timal due to too tight a coupling between the individual services, it proved easiest to imple-
ment within a tight schedule. It is our intention, at some future date, to further separate
the individual services, thereby gaining the flexibility of a system of modular and abstract
services.

In Zephyr, notices are understood to consist of two parts, a routing header and client data.
It is the job of the Zephyr servers to route notices from Zephyr clients to other Zephyr
clients and servers based upon attributes specified in the notice’s routing header. Servers
should never expect to be able to examine a notice’s client data; it is entirely possible that
that data is encrypted or otherwise uninterpretable. By examining the attributes in a
notice’s routing header, it is possible for any Zephyr server to compute a finite list of
recipients to whom the notice should be sent. The most basic routing attribute that may be
specified is a tuple of <class, instance, recipient ZID>. Additional and more complex rout-
ing attributes might need to be specified for layered services that use more complicated
routing methods. For example, an experimental rule based routing service might need spe-
cialized keywords.

We refer to the process of determining multiple notice recipients based upon routing
header attributes as “multicasting.” Multicasting is a passive routing technique; attributes
not recognized by a routing service are simply ignored. This allows layered services to im-
plement different notice routing methods that peacefully coexist while utilizing the same
base notification service. It is not our intention that scores of notice routing methods be
immediately available, but rather that the notification service fulfill an immediate need
without blocking future development. Multicasting differs from other common message
routing techniques. It is more efficient and less subject to failure due to diseconomies of
scale than broadcast techniques because the complete set of recipients for any notice can
always be determined, and uninterested recipients need not process a notice only to dis-
cover it should be ignored. It requires less maintenance and incurs less administrative
overhead than traditional list based message transmission techniques (such as electronic
mailing lists) because additional resources, routing methods and recipients (within limits)
may be dynamically added by almost any user. Multicasting is a notice routing technique
that is well suited for use as the core of a notification service.

Zephyr Notification Service 5 June 1989

Page 10, Section E.4.1

Athena Technical Plan

A good understanding of Zephyr in perspective can best be acquired by comparing the
Zephyr Notification Service and a more traditional method of workstation message

delivery, electronic mail.

The following table compares some of the critical metrics of

notice/message delivery that are applicable to both Zephyr and electronic mail delivery by a
typical UNIX mail delivery system, sendmail.

A Comparison Between Zephyr And Mail

Metric

Zephyr

Electronic Mail (Sendmail)

Addressing

Implicit/Dynamic: All addressing
is dynamically determined; an ex-
plicit “address” is not required.
One-to-one addressing is sup-
ported via explicit specification of
recipient ZID. In addition, sub-
scription based notification allows
the recipient to be determined by
notice attribute information.

Explicit/Static: Sender must know
and explicitly provide the name
and address (except for “local”
mail) of each recipient or list of
recipients being sent to. Static
mailing list support is provided.
Only recipients explicitly named
will be delivered to.

Delivery Method

Notices are delivered via dynami-
cally routed datagram. No connec-
tions need be established or main-
tained. Multiple levels of notice
acknowledgment are supported, to
provide reliability as needed.

Mail is delivered via point to point
SMTP connection. Acknowledg-
ments are not supported per-se,
but return receipts may be re-
quested (but may not work in all
SMTP implementations).

Delivery Action

Asynchronous/Active: Notices ar-
rive and are displayed without
user intervention.

Synchronous/Passive: Mail is read
by user action. Mail, in general, is
delivered to one particular place (a
“post office” or “mail drop”) for
each user; he or she must then ac-
tively retrieve it.

Message Length

Usually short notice length, with
support for fragmentation of
larger messages.

Long, typically unfixed, message
length. Mail messages may be and
often are extremely large, on the
order of many pages of text. When
message length is fixed it is
usually done so by unpredictable
rules that vary from site to site.

Message Persistence

Notices are considered time sen-
sitive, no queuing is provided. If
the destination client is not on the
network then the notice is dis-
carded. If a user didn’t see it, he
probably didn’t need to.

Long time-to-live. Messages typi-
cally remain in your mail drop un-
til you retrieve and delete them.
Two weeks’ worth of junk mail
remains two weeks’ worth of junk
mail.

Zephyr Notification Service

5 June 1989

Athena Technical Plan

Section E.4.1, page 11

A Comparison Between Zephyr And Mail (continued)

Metric

Zephyr

Electronic Mail (Sendmail)

Message Fan-out

High fan-out: Sending to large
lists is efficient. When multicast-
ing, each client sends only one
copy of a notice regardless of the
number of recipients. Each server
receives only one copy of a notice
being routed regardless of the
number of recipients. Client-
determined lists require separate
notices for each recipient. No
notice queuing is provided by the
server. Clients determine whether
or not to retain notices.

Low fan-out: Sending to large lists
can be very resource consuming.
If a message is sent to many users
many copies are generated by the
mail processing system, each of
which is retained until deleted by
its recipient. Queuing due to in-
ability to contact destination hosts
can consume large amounts of file
storage space.

Traffic Performance

High volume/High throughput:
Notices may be transmitted in
large numbers due to the low over-
head of dynamically routed
datagrams.

Medium volume/Low throughput:
Multiple large mail messages can
send a reasonable volume of data
but slowly as connections need to
be established and routes deter-
mined.

System Configurability

Dynamically reconfigurable: Dy-
namic resource allocation and con-
figuration within the base notifica-
tion services allows automatic and
simple user level reconfiguration
of other services.

Statically reconfigurable: Recon-
figuration of Sendmail is wizard
level work and has significant
global impact. No utilities are
provided for dynamic system
modification or reconfiguration.
All changes must be made
centrally and atomically.

System Maintenance

Low maintenance: Zephyr servers
dynamically recover unused
resources through time-outs and
reference counting. <class, in-
stance, ZID> tuples, ZID location
information and other subscription
service resources have a well
defined time-to-live.

High maintenance: Mail requires a
post office staff to maintain post
office boxes (mail drops), mailing
lists, the routing system and to
manually reroute undeliverable
“dead letters.”

1.5. Future Directions And Unsolved Problems

Once the basic notification service is in place it becomes a simple matter to provide many
other layered services based upon it. The “talk” service mentioned above is a good example
of a service that utilizes multiple Zephyr services: the user locator service and the notice
routing service.

We envision Zephyr as a transport service that can incorporate new notice routing
methods as they are developed. Because of the dynamic configurability of the subscription
service, Zephyr allows communication development efforts to occur side-by-side with run-
ning production systems that utilize Zephyr. For example, we are currently working with

Zephyr Notification Service 5 June 1989

Page 12, Section E.4.1 Athena Technical Plan

researchers at MIT’s Sloan School of Management who are looking at using Zephyr as the
transport service layer for a rule based communication system [3]. Such a system under
development could use the subscription service to gather and process notices, and when
complete could coexist with the subscription service as an alternate routing method.

Following is a list of some of the areas that the authors have slated for future develop-
ment. They are either unsolved problems or areas that we feel need further investigation.

* Make the Zephyr Protocol and retransmission algorithms robust enough for use
across long-haul and/or lossy networks.

* Modify the Zephyr server to interact sensibly with other Kerberos authentication
realms, including problems of user registration across realms and notice forward-
ing across realms.

* Develop a more formal interface definition for use between the Zephyr notice
transport layer and Zephyr routing services.

* Develop a more advanced user interface for the Zephyr WindowGram Client.

2. An overview of Zephyr's Components

2.1. Notice transport

Zephyr’s notice transport mechanism involves two major components, the Server and the
HostManager.

The server provides the user location service and the subscription service. All notices
delivered via Zephyr are routed through at least one Zephyr server. There are typically a
small number of Zephyr servers for each site using Zephyr.

The HostManager provides a reliable contact point for clients. Each host supporting
Zephyr runs a HostManager, which locates a server and routes any notices sent by clients
to the server. If a server becomes unreachable, the HostManager will attempt to contact a
new server. By placing this functionality in one place, the server’s job of detecting host
failures is made easier, since it has a known contact point. In addition, the clients become
less complicated as they need not find and establish communication with a server.

2.2. Clients

Client programs use the notice transport mechanism to deliver and receive notices across
the network. Clients send notices to a Zephyr server (via the HostManager) to establish a
subscription. Other clients send notices to servers for redistribution to clients. The
recipients of the redistributed notice are determined by the subscription service.

Figure 1 shows a typical interaction between clients, HostManagers and servers.
3. The Zephyr Protocol

This chapter describes the current Zephyr protocol, version ZEPHO0.2. A description of the
protocol used for database transfers between servers is given below in section 4.4.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 13
Figure 1: A typical exchange between clients

updates

updates m updates
Server Server

Server

HostManager

HostManager

WindowGra

WindowGra:
\ display

device

The arrows labeled A, B, C, C1, C2, D depict notices involved in establishing a subscription.
The WindowGram client requests a subscription by transmitting a notice to the HostManager
(A), which forwards it to a server (B). The server responds with an acknowledgment (C) which
is forwarded to the client (D). The server also forwards the request to the other servers (C1,
C2).

The arrows labeled 1, 2, 3, 4a, 4b, 5 depict notices involved in sending a notice from one
client to another. A user on one host sends a notice to another user on a different host by
sending the notice to the local HostManager (1), which forwards the notice to its server (2).
The server transmits the notice to the other user (3), and then acknowledges the notice to the
sender (4a). The recipient acknowledges receipt of the notice (4b). The HostManager for-
wards the server acknowledgment to the sender (5).

Zephyr Notification Service 5 June 1989

Page 14, Section E.4.1 Athena Technical Plan

3.1. Overview

The Zephyr Protocol is implemented on UDP/IP, providing authenticated subscription-
based multicast and ZID to ZID message delivery. The Zephyr Protocol is used both for
messages delivered to end users of the system and for control and maintenance of the mes-
sage transport system.

Notices may be sent from a client program to a Zephyr server, from one Zephyr server to
another, or from a Zephyr server to a client program; they are not intended to be sent
directly from one client to another. Instead, a Zephyr server always acts as a relay for the
message.

Each datagram may contain either part of a notice or a complete notice; separate notices
must be transmitted in separate datagrams. Transmission and reception of notices is
modular and properly abstracted. Zephyr clients and servers utilize a common Zephyr
Client Library that provides routines for such operations as datagram port setup and shut-
down, notice transmission, and notice reception.

All notices share a common header format followed by a client specific data area. All
notices are routed, queued, parsed and acted upon by examining this header. In this way
the client specific data area need never be examined except by the destination Zephyr
client(s).

It is intended that Zephyr be usable as a "rendezvous" system; thus, higher-level protocols
can be built using Zephyr as a transport mechanism. The rendezvous can be accomplished
by using Zephyr to exchange internet addresses and port numbers.

3.2. Notice Datagram Format

The datagram is in two parts. The first part is a variable length header, followed by a
client data area. All header fields are represented in net ASCII. Those header fields with
multiple-byte integer values are translated into network byte order before conversion to net
ASCII. Each field is terminated by a NUL (character code zero). Non-string values are
represented in net ASCII as "Oxaabbccdd Oxeeffgghh...", where aa is the
hexadecimal representation of the first byte of data, bb is the representation of the second
byte, etc.

In order, the datagram fields are:

Version String This consists of a unique identifying string (initially "ZEPH") followed
by a major version number, a period, and a minor version number.
Changes in the major version number will cause the Zephyr Client
Library to report that a packet was formatted using an incompatible
version of the Zephyr protocol. A change in the minor version number is
used to indicate that the overall format is compatible, but certain pieces
of data may need to be treated differently.

Number of Header Fields
4 byte integer. This field is included so that future extensions to the
Zephyr protocol may be made by appending additional fields to the
header. The Zephyr library will ignore fields it is not expecting. This
count includes the Version String and Number of Header Fields fields.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 15

Notice Kind

Unique packet ID
Port

4 byte integer. This field contains the kind of notice, using one of the
named values below.

UNSAFE (code 0) - The notice is simply transmitted. No acknowledg-
ment from the local HostManager or a server is expected.

UNACKED (code 1) - The notice is acknowledged by the HostManager,
but the HostManager does not forward the server acknowledgment to
the client. The HostManager acknowledgment will be handled inter-
nally by the Zephyr Client Library.

ACKED (code 2) - The notice is acknowledged by both the HostManager
and the server. The HostManager acknowledgment will be handled in-
ternally by the Zephyr Client Library. The application must handle the
server acknowledgment itself.

HMACK (code 3) - The notice is an acknowledgment from the
HostManager to the client application.

HMCTL (code 4) - The notice is a HostManager control message.

SERVACK (code 5) - The notice is a server acknowledgment indicating
that the notice was received and handled successfully.

SERVNAK (code 6) - The notice is a server acknowledgment indicating
that something went wrong during the handling of the notice. This nor-
mally indicates that there was an authentication failure.

CLIENTACK (code 7) - The notice is an acknowledgment from a client.
These notices are generated automatically by the Zephyr Client Library.

STAT (code 8) - The notice is requesting the destination HostManager or
server to return statistics about itself.

12 bytes. 4 bytes internet address, 8 bytes host-generated timestamp.

2 bytes. This is the return port that should be used to respond to this
notice, if such a response is necessary. The port from which the mes-
sage was received (as reported by the operating system) should be
ignored, since it will typically be the port of a Zephyr HostManager or
server.

Authentication 4 byte integer. A code representing the type of authentication that was
used while formatting this packet. The currently defined codes are:
0 - No authentication
1 - Kerberos authentication
Authenticator length
4 byte integer. The length in bytes of the following authenticator field.
Authenticator Variable length character data. The authenticator used to determine
the authentication of the packet.
Class NUL-terminated ASCII string identifying a notice’s class. The notice’s

class specifies the service class of notice’s originating Zephyr client.
Class is the highest level of notice classification. Examples of classes
are: LOGIN, ZEPHYR_CTL, MESSAGE, FILSRV.

Zephyr Notification Service 5 June 1989

Page 16, Section E.4.1 Athena Technical Plan

Class Instance

Opcode

Sender

Recipient

NUL-terminated ASCII string containing the particular instance of the
class with which this notice deals. Examples of class instances are:
rfrench@eATHENA MIT.EDU, SUBSCRIBE, PERSONAL,
HELEN.MIT.EDU:/filesystem.

NUL-terminated ASCII string identifying the particular operation
which the notice’s originating Zephyr client has performed or expects
the target(s) to perform. Opcodes are class specific. Examples of op-
codes are: USER_LOGIN, USER_LOGOUT, SUBSCRIBE, UNSUB-
SCRIBE.

NUL-terminated ASCII string identifying the ZID of the sender of the
notice.

NUL-terminated ASCII string containing the ZID of the desired
recipient of the notice. If the recipient is the null string then the
target(s) are determined by the notice’s class and class instance as out-
lined in the Server Chapter (Chapter 4).

Default Display Format

Checksum

NUL-terminated ASCII string that is used by the WindowGram client to
display the notice if it has no other rules regarding the notice’s par-
ticular class and class instance.

4 byte integer. This field is for authentication. When Kerberos is in
use, this field is built by the Zephyr server using the quad_cksum
routine in the DES library to cryptographically checksum the previous
header fields using the DES session key. It is assumed that the byte
order of the checksum generated by the DES library is invariant across
all machine architectures.

Fragmentation count

Unique notice ID

Other fields

NUL-terminated ASCII string. This string is in the format
"part/partof”, such as "707/8000", indicating the data area of this packet
contains a block of data starting at byte 707, and the total data size of
the unfragmented notice is 8000 bytes. If this field is empty, the packet
was not fragmented during transmission. A more detailed description of
packet fragmentation can be found in the Library Chapter (Chapter 6).

12 bytes. 4 bytes internet address, 8 bytes host-generated timestamp.
All fragments of a fragmented notice will have identical Unique notice
ID’s.

Other fields will be placed here when the protocol is expanded.

Variable length client data:

Data

Byte stream data. The format of this data is specific to the particular
communicating clients. It normally consists of one or more NUL-
terminated strings containing ASCII data.

Zephyr Notification Service 5 June 1989

Athena Technical Plan

Sample datagram (268 bytes long):

0:
8:
19:
30:
63:
70:
81:
92:
93:
101:
110:
111:
134:
154:

195:
206:
207:
240:

"ZEPHO.2\0"

"0x00000011\0"

"0x00000002\0"

"0x1248008D 0x22FA1319 0x000AEA49\0"
"0x004b\O0"

"0x00000000\0"

"0x00000000\0"

"\ Q"

"MESSAGE\O"

"PERSONAL\O"

"\ 0"

"rfrench@ATHENA.MIT.EDU\O"
"tony@ATHENA.MIT.EDU\O"

"Message from $sender at"

" $time:\n\n$message\0"
"0x12345678\0"

"\ Q"

"0x1248008D 0x22FA1319 0x000AEA49\0"
"Hello - This is an example!\0"

3.3. Naming Conventions

Users and daemons share the same ZID namespace.

3.4. Predefined Class Operations

Section E.4.1, page 17

Version string
Number of fields (17)

Kind - "ACKED"
Unique packet ID
Port

Authentication (None)
Authenticator length
Authenticator (None)
Class

Class instance
Opcode (None)

Sender

Recipient

Default format

Checksum
Fragmentation count
Unique notice ID
Message

The following table describes the predefined classes and their effects when received by
servers, HostManagers, and WindowGram clients.

Reserved Class Definitions

Class

Instance Opcode

Effect

ZEPHYR_CTL

CLIENT SUBSCRIBE

Client -> Server. Subscribe the
client indicated by the port
number in the notice to the
class, class instance, and
recipient triples listed in the
message section of the notice.
If this notice establishes the
first subscriptions for the
client, also subscribe the client
to the server default subscrip-
tions. This notice must be au-
thenticated.

Zephyr Notification Service

5 June 1989

Page 18, Section E.4.1

Athena Technical Plan

Reserved Class Definitions (continued)

Class

Instance

Opcode

Effect

ZEPHYR_CTL

HM

SUBSCRIBE_NODEFS

UNSUBSCRIBE

CLEARSUB

GIMME

GIMMEDEFS

BOOT

FLUSH

DETACH

Client -> Server. Subscribe the
client indicated by the port
number in the notice to the
class, class instance, and
recipient triples listed in the
message section of the notice.
This notice must be authen-
ticated.

Client -> Server. Unsubscribe
the client indicated by the port
number in the notice from the
class, class instance, and
recipient triples listed in the
message section of the notice.
This notice must be authen-
ticated.

Client -> Server. Clear all sub-
scriptions relating to the port
number specified in the notice.
This notice may be authen-
ticated. If it isn’t, the server
will attempt to verify that the
client at the specified port has
actually gone away.

Client -> Server. Return sub-
scriptions associated with the
specified port. This notice
must be authenticated.

Client -> Server. Return
default system-wide subscrip-
tions.

HostManager -> Server. Tell
the server that this host has
just booted and all state as-
sociated with it should be
flushed.

HostManager -> Server. Tell
the server to flush all state as-
sociated with this host.

HostManager -> Server. Tell
the server that this
HostManager no longer con-
siders it to be its owning serv-
er.

Zephyr Notification Service

5 June 1989

Athena Technical Plan

Section E.4.1, page 19

Reserved Class Definitions (continued)

Class

Instance

Opcode

Effect

HM_CTL

HM_STAT

SERVER

CLIENT

HMST_CLIENT

ATTACH

SHUTDOWN

PING

FLUSH

NEWSERV

GIMMESTATS

HostManager -> Server. Tell
the server that this
HostManager now considers it
to be its owning server.

Server -> HostManager. Tell
the HostManager that the serv-
er is going down, and that it
should find another server.
This packet optionally includes
a suggested server in the client
data area for the HostManager
to transfer to. If included, the
suggestion will be the IP Ad-
dress of the suggested server,
in Internet Address dot nota-
tion, in ASCII.

Server -> HostManager. Ask
the HostManager to acknowl-
edge. This assures that the
HostManager (and thus the
host) is still operating after a
client fails to acknowledge
notices.

Client -> HostManager. Tell
the HostManager to flush all
host information by sending a
FLUSH message to its server.

Client -> HostManager. Tell
the HostManager to abandon
its current server and choose a
new server.

Client -> HostManager. Ask
the HostManager to return
statistics about itself.

Zephyr Notification Service

5 June 1989

Page 20, Section E.4.1

Athena Technical Plan

Reserved Class Definitions (continued)

Class

Instance

Opcode

Effect

LOGIN

USER_LOCATE

WG_CTL

<ZID>

<ZID>

USER

<EXPOSURE>

USER_LOGOUT

USER_FLUSH

LOCATE

REREAD

SHUTDOWN

STARTUP

Client -> Server. Tell the serv-
er that the user named by
<ZID> has logged in to the host
listed in the message field.
This notice must be authen-
ticated. The opcode contains
the exposure level, one of
NONE, OPSTAFF, REALM-
VISIBLE, REALM-
ANNOUNCED, NET-VISIBLE,
or NET-ANNOUNCED. The
client data area contains the
following NUL-terminated AS-
CII strings, in order: official
hostname, login time, and dis-
play device.

Client -> Server. Tell the serv-
er that the specified user has
logged out. The client data
area contains the same fields
as specified above for

USER_LOGIN.

Client -> Server. Tell the serv-
er to flush all location infor-
mation for the user.

Client -> Server. Ask the serv-
er to return all visible locations
of the user named by <ZID>.
This notice must be authen-
ticated.

Client -> WindowGram client.
Ask the WindowGram client to
re-read the description file
(which specifies its action on
receipt of notices).

Client -> WindowGram client.
Ask the WindowGram client to
cancel its subscriptions and to
ignore subsequently delivered
notices.

Client -> WindowGram client.
Ask the WindowGram client to
reinstate subscriptions can-
celed by a SHUTDOWN notice
and to display subsequently
delivered notices.

Zephyr Notification Service

5 June 1989

Athena Technical Plan

Section E.4.1, page 21

Reserved Class Definitions (continued)

Class

Instance

Opcode

Effect

ZEPHYR_ADMIN

€

<VERSION>

HELLO

IHEARDYOU

GOODBYE

LOST_CLIENT

KILL_CLIENT

STATUS

DUMP_AVAIL

Server -> Other Server. Inform
the other server that this serv-
er is operating normally.

Server -> Other Server. Inform
the other server that this serv-
er received its HELLO notice.

Server -> Other Server. Inform
the other server that this serv-
er is ceasing operation.

Server -> Other Server. Inform
the other server that this serv-
er cannot contact a client and
the other server should attempt
to verify the failure of the
client. The client data area
contains two NUL-terminated
strings: the Internet address of
the client’s host, in Internet
ASCII dot notation, and the
port number of the client, in
ASCII.

Server -> Other Server. Inform
the other server that this serv-
er has verified the failure of a
client, and that the other serv-
er should remove the client
from its database. The client
data area contains information
in the same format as noted
above for LOST_CLIENT.

Client -> Server. Ask the serv-
er to respond with various
statistics about its operation.

Server -> Other Server. Inform
the other server that a brain-
dump is available. The in-
stance is the version number
identifying the brain-dump
protocol. The client data area
contains two NUL-terminated
strings: the Internet address of
the originating server, in AS-
CII dot notation, and the port
number from which the brain-
dump is to be obtained, in AS-
CII.

Zephyr Notification Service

5 June 1989

Page 22, Section E.4.1 Athena Technical Plan

4. The Zephyr Server

The Zephyr server manages subscriptions, default subscriptions, user location infor-
mation, and access control lists, and redistributes notices between clients.

4.1. Server Authority

Each server is authoritative only for those client hosts which have associated themselves
with it. All other data the server holds is considered correct but may be invalidated at any
time by command of the server which is authoritative. This scheme provides a distributed
database between the servers. Each server may correctly redistribute any notice without
consulting any other server. Incremental update is available, but without the complexity of
maintaining complete consistency between all the servers, at the cost of associating with
each piece of information an identification of the server which controls that information.

For efficiency, we desire that each server maintain the entire database of subscriptions
and locations. But maintaining a fully distributed database with incremental update is too
difficult to be worthwhile for Zephyr. So we have compromised our desire for distribution
with the reality of maintenance and implementation constraints.

4.2. Server Initialization and restart

When a server is started, it either asks the name service Hesiod [1] or consults a file to
determine which other servers it should communicate with. It puts each other server into
the DEAD state (see Figure 2), schedules an immediate HELLO packet transmission for
each other server, and commences operation. In addition to the “normal” servers, each
server maintains the state of a “limbo” server. This nonexistent server is used for storing
the state of hosts which were formerly associated with a server which is now considered
DEAD. If a server loses contact with another server for a significant amount of time, it
considers that server DEAD, and transfers the information which was formerly controlled
by the other server to “limbo.”

The server also initializes the access control lists of any registered classes in the class
registry, and reads and caches the system default subscriptions from a file.

If two servers establish contact with each other, they exchange authentication infor-
mation (to verify identities) and any authoritative data they hold and mark each other as
UP. They may also exchange “limbo” information if one of the servers does not have any
hosts in “limbo.” This allows the information associated with each host to be retained
across server failures and restarts.

When exchanging information, a server may ask another server to send its idea of the
server’s state and use that information as its authoritative information. This prevents loss
of information if a server crashes and restarts before other servers notice its failure. If the
failed and restarted server did not retrieve its state from another server, any client re-
quests dependent on that lost state might be improperly dispatched or discarded.

The servers normally communicate using the standard Zephyr protocol. If a server
receives any response from another server it previously thought DEAD, it opens a “brain-

4This choice is dependent on compile-time flags.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 23

Figure 2: The Finite State Machine (FSM) of server states

Each server maintains a separate FSM for each other known server. There are four major
states: UP, TARDY, DEAD, and STARTING.

Transitions labeled with ‘e’ are empty transitions which always occur, requiring no events or
input.

Boxes attached to states indicate actions performed upon entering that state.

Timers are named T-xxx where xxx is a name representing the timer’s use. Resetting a timer
means resetting the expiration of the timer to the full value. T-xxx labeling a transition means
that transition is taken when the timer expires.

| Reset T-tardy

receive
notice

T-tard

‘Go away’
received

receive or >n

P T-up send timeouts
orack HELLO
success
Reset T-dead
‘Go away’
received flush data
failure
Brain Dump
HELLO acked © ‘Go away’
‘Go away’ received
received e
or HELLO
not acked

T-dead
Reset T-tardy send
HELLO
T-tardy @

receive

notice
or ack

send
HELLO

Zephyr Notification Service 5 June 1989

Page 24, Section E.4.1 Athena Technical Plan

dump” socket and requests the other server to connect and initiate the “brain-dump”
protocol. When communicating via the “brain-dump” protocol, servers use the Zephyr
library routines for packing and unpacking notices, but instead of using the standard
datagram transport they use a TCP/IP connection for reliable transport for the “brain-
dump.” If this “brain-dump” succeeds, each server schedules an immediate HELLO packet
transmission to its peer, which when acknowledged will result in a state transition to UP.

4.3. Server Operation

The Zephyr server operates in a dispatch loop. Through its datagram socket it receives
notices from clients and servers. These notices are dispatched via appropriate server
routines. The server also processes previously set timeouts, such as a retransmission timer
or a server contact timer.

4.3.1. Timers

The Zephyr server associates a timer with each other server. The timeout of this timer
and the action taken when it expires varies depending on the state of the other server in
the current server’s FSM. Figure 2 shows the FSM and the actions taken.

Each notice which has been distributed to a client but not acknowledged has a timer
which controls retransmission attempts.

Each inter-server update notice which has been forwarded to the other servers but not
acknowledged has a timer which controls retransmissions.

4.3.2. HostManager interactions

Any notices which have been transmitted to clients but not acknowledged are queued and
retransmitted several times with a short interval between retransmission attempts. If the
notice remains unacknowledged, the server attempts to establish contact with the
HostManager on the client’s host. If the server is authoritative for that host, it sends a
HostManager Ping packet to the hostmanager. If the server is not authoritative, it re-
quests the authoritative server to send the ping. If the server believes the host to be in
“limbo,” the recovery attempt is aborted.

If the ping is acknowledged, the state associated with the unresponsive client is flushed.
If the ping is not acknowledged after a short interval, the state associated with the entire
host is flushed, under the assumption that the machine has crashed®.

All notices originating from a HostManager are acknowledged. The acknowledgment may
take one of several forms, depending on the disposition of the notice. If the notice was
unauthentic or unauthorized and attempted a function requiring authentication and/or au-
thorization, the acknowledgment is type SERVNAK with message LOST. If the packet as-
sumed some internal server state and that state was not present, the acknowledgment is
type SERVNAK with message FAIL. Otherwise the type is SERVACK, and the message is
SENT if the notice was redistributed or processed without error or LOST if no clients were
subscribed to that notice.

5Note that if only the HostManager was dead, and not the whole machine, the clients on that host
would still have no way to transmit information via Zephyr, and the flush is still appropriate. See
Chapter 5 for more details on the HostManager.

Zephyr Notification Service 5 June 1989

Athena Technical Plan

4.3.3. Notice handling

Section E.4.1, page 25

When datagram notices are received, the server invokes the appropriate dispatch routine
to handle the notice, based on its origin and the contents of its header. The following table

details the dispatch rules.

Dispatch rules

Notice origin

Notice class

Dispatch routine

A known server

Some other origin

(any class)
HM_CTL
ZEPHYR_CTL
LOGIN
USER_LOCATE
ZEPHYR_ADMIN

<anything else>

server dispatch
hostm dispatch

control dispatch
ulogin_dispatch
ulocate dispatch
server_adispatch

sendit

When the notice originated from another server known to this server, server_dispatch

performs more dispatch processing:

* If the notice is an acknowledgment of some previously transmitted notice (i.e. the
notice has z_kind == SERVACK), the packet it acknowledges is removed from the
retransmit queue and the server is marked as having responded (this may modify
the state of the other server and cause a notice transmission, according to

Figure 2).

¢ If the notice is of class ZEPHYR_CTL, LOGIN, or USER_LOCATE, it is passed on
to the corresponding dispatch routine, after determining the true origin of the
notice. This case occurs when a server has acted on a client request, and asks the
other servers to update their databases to maintain synchronization by transmit-
ting the notice it received from the client to the other servers.

¢ If the notice is of class ZEPHYR_ADMIN, it is passed on to admin_dispatch,

which dispatches on opcode:

Zephyr Notification Service

* If the notice has opcode HELLO, the notice is a hello packet, and the FSM for
the originating server is updated appropriately.

* If the notice has opcode IHEARDYOU, the notice is an acknowledgment of a
hello packet, and the FSM for the originating server is updated ap-
propriately.

* If the notice has opcode GOODBYE, the notice is a shutdown packet, indicat-
ing impending shutdown of the peer server. All the state associated with
that server’s hosts is put into the “limbo” state until those hosts contact a
new server, and the server is marked as DEAD in the FSM.

* If the notice has opcode DUMP_AVAIL, the server initiates a “brain-dump”
connection to the peer server (see Section 4.4).

*If the notice has opcode LOST_CLIENT, the server initiates the
HostManager recovery protocol with the host of the client named in the body
of the message. The body contains two strings, each NUL-terminated. The
first is an ASCII representation of the address of the client in Internet ASCII
dot-notation. The second is an ASCII representation of the port number of
the client.

5 June 1989

Page 26, Section E.4.1 Athena Technical Plan

* If the notice has opcode KILL_CLIENT, the server flushes the state as-
sociated with the client named in the body of the message. The body is in the
same format as the LOST_CLIENT notice.

* If the notice has any other opcode, its reception is logged and it is ignored.

hostm_dispatch does further dispatch work, based on the opcode of the notice:

e If the notice has opcode BOOT, the server flushes any state associated with
clients on the originating host, and adds (or replaces) the host on its list of
“owned” hosts for which it is authoritative, informing other servers that it has
assumed “ownership” of the host. The other servers mark the host as owned by
the server which has claimed ownership.

¢ If the notice has opcode FLUSH, the server flushes any state associated with the
originating host, but maintains the owning server of that host.

¢ If the notice has opcode ATTACH, the server claims “ownership” of the host and
informs other servers that it has done so. The other servers mark the host as
owned by the server which has claimed ownership.

¢ If the notice is an acknowledgment of a server query resulting from a failed client
(see Section 4.3.2), the server flushes the information stored for the failed client,
and turns off the timer set when the query was sent.

control_dispatch does further dispatch work, based on the opcode and instance of the
notice:
¢ If the instance is HM, the notice is passed to hostm_dispatch for processing.

* If the opcode is GIMME, the originating client is returned a list of his subscrip-
tions.

* If the opcode is GIMMEDEFS, the originating client is returned a list of the sys-
tem default subscriptions.

* If the opcode is SUBSCRIBE, the originating client is subscribed to the <class,
instance, recipient> triples specified in the message body. The message body con-
tains null-terminated strings. Each set of three is considered a triple, starting at
the beginning of the message body. If the client had no previous subscriptions,
the client is also subscribed to the system default subscriptions.

* If the opcode is UNSUBSCRIBE, the originating client is unsubscribed to the
triples specified in the message body. The format of the body is identical to that
of the SUBSCRIBE operation.

* If the opcode is CLEARSUB, the originating client is unsubscribed to all the
triples he is currently subscribed to.

* If the notice has any other opcode, its reception is logged and it is ignored.

ulogin_dispatch does further dispatch work, based on the opcode of the notice:

o If the opcode is OPSTAFF, REALM-VISIBLE, REALM-ANNOUNCED, NET-
VISIBLE, or NET-ANNOUNCED, a location for the ZID of the originating client
is added to the location database, with the exposure set as the opcode directs, and
other fields filled in as specified in the body of the notice. The body contains three
NUL-terminated strings: the machine name of the client’s host, the time of the
exposure change, and the name of the display device in use by the client.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 27

If the exposure is sufficiently broad, a login notice is fabricated for this user (with
opcode set to USER_LOGIN) and transmitted to those clients which are both per-
mitted to receive such notices and subscribed to login messages for that ZID.

* If the opcode is NONE, the location (as specified in the notice) of the ZID of the
originating client is removed from the location database.

¢ If the opcode is USER_LOGOUT, the ZID of the originating client is removed from
the location database, and if his exposure is sufficiently broad, the notice is
retransmitted to those clients which are both permitted to receive such notices
and subscribed to login messages for that ZID.

¢ If the opcode is USER_FLUSH, all locations for the ZID of the originating client
are removed from the location database.

¢ If the notice has any other opcode, its reception is logged and it is ignored.

ulocate_dispatch does further dispatch work, based on the opcode of the notice:
¢ If the opcode is LOCATE, any locations of the ZID named in the instance of the
notice which the sender is authorized to receive are sent to the port specified in
the port field of the notice. Each location is returned in the message body as a
triple {machine_name, login_time, terminal} of NUL-terminated strings. Succes-
sive locations are appended to the message body.

* If the notice has any other opcode, its reception is logged and it is ignored.

server_adispatch does further dispatch work, based on the opcode of the notice:
e If the opcode is STATUS, a notice containing server status information in the
message body is returned as an acknowledgment to the originating client.

¢ If the notice has any other opcode, its reception is logged and it is ignored.

When the notice is some other class, the notice is passed to sendit, which checks au-
thorization for transmission of this class, and then transmits the notice to all clients sub-
scribing to it. Most notices will be of this type.

4.3.4. Subscriptions

The Zephyr server maintains a list of subscriptions for each client. Each subscription
contains the class, class instance (possibly a wildcard), and recipient of the notices re-
quested. For security considerations, the recipient may only be either the ZID of the sub-
scribing client or a null recipient. A null recipient is effectively a multicast address. Any
interested client may subscribe to a class/instance pair with a null recipient field (subject t
access control restrictions on that class), and any notice transmitted to the same
class/instance pair with a null recipient field will be redistributed to all those subscribed
clients.

In addition to the subscriptions explicitly requested by a client (via a
ZEPHYR_CTL/SUBSCRIBE notice), all clients are automatically subscribed to a set of
default subscriptions (the list of default subscriptions is stored in a file on the server host.).
A client may wunsubscribe to any of these defaults via the standard
ZEPHYR_CTL/UNSUBSCRIBE mechanism.

Zephyr Notification Service 5 June 1989

Page 28, Section E.4.1 Athena Technical Plan

4.3.5. Classes and Access Control

There are two types of classes maintained by the server, registered and unregistered
classes. Any client may send or subscribe to unregistered class notices. The class registry
is a file specifying which classes are registered. Each registered class is associated with
four access control lists. Each list specifies the ZID’s with the authorization for the function
associated with the list. It is permissible to place wildcards in the access control lists. The
four authorization types are:

* SUBSCRIBE authorization. If a ZID is named in this list, it may subscribe to
notices in the class. Otherwise, it may not subscribe to notices in this class.

¢ INSTWILD authorization. If a ZID is named in this list, it may specify a wildcard
instance in a subscription to notices in the class. Otherwise, it may only subscribe
to non-wildcard instances of the class.

e TRANSMIT authorization. If a ZID is named in this list, it may transmit notices
of the class. Otherwise, it may not transmit notices of this class.

* INSTUID authorization. If a ZID is named in this list, it may transmit notices of
this class with any instance. Otherwise, it may only transmit notices of this class
with instance equal to its own ZID.

If the file representing the access control list specifying an authorization type for a given
registered class is missing, all authenticated ZID’s are granted that authorization, but no
unauthenticated ZID’s are granted authorization.

4.3.6. Instances

The server does not make any restrictions on instances except those imposed by access
control lists.

4.3.7. User Locations

The Zephyr server maintains a table of user locations. Each entry includes the ZID of the
client at the location, machine name, time of login, display device name, and an exposure
level. All elements but the ZID are stored exactly as reported by the login notice. The ZID
is extracted from the authentication information.

4.4. Server-to-server Download Protocol

When two servers establish contact, they initiate the Server-to-server Download protocol
(Brain-dump protocol). If at any time during the brain-dump exchange an error occurs, the
entire dump is aborted.

When the brain-dump is completed, each server will have nearly identical copies of the
database information (the information assigned to “limbo” and to other servers not a party
to the brain-dump operation may differ). In effect, the brain-dump re-plays all the opera-
tions necessary to establish the state present in the servers.

The initiating server sends its peer an opcode “DUMP_AVAIL” notice (described below in
Section 4.4.1). When a server receives such a notice from another server, it attempts to
connect to the indicated TCP port. Upon success, it sends a Kerberos ticket and authen-
ticator to the peer, and waits for a ticket and authenticator in return.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 29

When a server which is listening to a TCP socket receives a connection request, it accepts
the connection and closes the listening socket. It then reads an authenticator from the
newly accepted socket, and if authentication yields the principal “zephyr.zephyr” in the
server’s Kerberos realm, it forms an authenticator and sends it to the peer®.

After authentication succeeds, the peers begin the actual data transfer. The server which
bound and listened to a socket begins a send loop, and its peer begins a receive loop. When
this transaction is complete, the roles are reversed.

The data transmission is accomplished by using the standard Zephyr library routines to
format and decompose notices into and from a character stream. Each formatted notice is
transmitted via the TCP connection to the peer, preceded by a two-byte length field (in net-
work byte-order) specifying the length in bytes of the following packet.

The server in the receive loop (the receiver) asks the sender for data in separate “chunks.”
The receiver may, at its option, ask for the “LIMBO” data and “MY_STATE” data (data on
hosts assigned to “limbo” and those assigned to the receiver), in that order. It then must
ask for “YOUR_STATE” (data on hosts assigned to the sender).

Servers which have no hosts in the limbo state will request “LIMBO” data. In this way,
hosts which have not been heard from since a server crash-restart cycle are retained in the
database. Servers which have never received any information from another server will re-
quest “MY_STATE” data. In this way, if a server restarts quickly, before a peer notices his
absence, his authority is retained for those hosts which have not yet chosen a new server.

For each chunk request, the receiver enters a loop. Inside this loop it expects one of the
following:

¢ A boot notice for a host.

* A login notice for a user. The receiver must have received a host boot notice be-
fore it will accept a login notice.

* A client registration notice (Opcode “NEXT_CLIENT”). The receiver must have
received a host boot notice before it will accept a client registration notice.

* A subscription notice. The receiver must have received a client registration notice
before it will accept a subscription notice.

* An end of dump notice (Opcode “DUMP_DONE”).

When an opcode “DUMP_DONE” notice is received, the loop is exited, and the next chunk
is requested. If the receiver desires no more “chunks”, it is finished, and the roles reverse
(if appropriate).

The server in the send loop waits for a request for a chunk. It then iterates over all hosts
associated with the chunk requested, sending a host boot notice, then all the locations on
that host, and then sends client registration and subscription notices for each client on that
host. When finished with the set of hosts, it sends an opcode “DUMP_DONE” notice.

6This is a crude form of mutual authentication; in the future a more secure form of mutual authen-
tication involving decrypting, modifying, and returning random data will be used.

Zephyr Notification Service 5 June 1989

Page 30, Section E.4.1 Athena Technical Plan

4.4.1. Server brain-dump notice definitions

Following is a table describing notices used in the brain-dump protocol which are not part
of the reserved class definitions (Section 3.4). All classes, instances, and opcodes used are
NUL-terminated ASCII strings.

Messages used for Brain Dumps
Class Instance Opcode Effect

ZEPHYR_ADMIN | <VERSION> DUMP_AVAIL |Inform the other server that a
brain-dump is available. The
instance is the version number
identifying the brain-dump
protocol. The sender is the
hostname of the originating
server. The client data area
contains two NUL-terminated
strings: the Internet address of
the originating server, in Inter-
net ASCII dot notation, and the
TCP port number from which
the brain-dump is to be ob-
tained, in ASCII.

ZEPHYR_ADMIN | LIMBO DUMP_AVAIL |Request the other server to
send the state associated with
hosts in “LIMBO.”

YOUR_STATE |DUMP_AVAIL |Request the other server to
send the state associated with
hosts assigned to the other
server.

MY STATE DUMP_AVAIL |Request the other server to
send the state associated with
hosts assigned to this server.

“” (empty string) | DUMP_DONE | Indicate that this phase of the
brain-dump (or the entire
brain-dump) is complete.

CBLOCK NEXT_CLIENT | Begin a subscription transfer
for a new client. The sender
field is the client’s ZID. The
client data area contains two
NUL-terminated strings: The
client’s port number, in ASCII,
and the client’'s DES session
key, in ASCII. The client’s In-
ternet address is assumed to be
the address of the most-
recently registered host.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 31

5. The HostManager Client

5.1. Overview

Each host in the network that supports Zephyr clients runs a Zephyr HostManager
Client. When a host boots it starts a HostManager which contacts a Zephyr server
(designated by the Hesiod name server), sending it a <ZEPHYR_CTL,HM,BOOT> notice
specifying that the server should flush all states previously associated with this host.

The HostManager is the focus for all outgoing messages from the local machine. Mes-
sages are sent from client programs via Zephyr Client Library function calls to the
HostManager, which sends an acknowledgment to the library routine. It then relays the
packet to the current “owning” server. The server sends an acknowledgment back to the
HostManager. The HostManager uses this to make sure that the server is still responding.
It then forwards the acknowledgment to the client, unless the notice type specified that the
acknowledgment should not be forwarded.

Whenever the HostManager fails to receive an acknowledgment of a transmitted notice, it
retransmits the notice several times, after which time it seeks out a new server.

The Zephyr server may occasionally send an <HM_CTL,SERVER,PING> notice to the
HostManager if it doesn’t receive an acknowledgment from a client program. The
HostManager simply sends back an acknowledgment notice.

Upon receipt of a SIGHUP, the HostManager sends a <ZEPHYR_CTL,HM,FLUSH>
notice to the server, to indicate that all information about this host should be flushed. This
can be used to insure that any stale information in the server database is cleaned up when
workstations are no longer in use. The HostManager then goes into the “deactivated” state.
In this state, it remains unattached to any server until a client sends a notice to be for-
warded to a server, at which point the HostManager contacts a server, sends it a boot
notice, and forwards the client’s notice.

5.2. HostManager Subsystems

The HostManager is driven by a blocking read function call which waits until a datagram
arrives on its input port. The packet is checked for the host of origin. If the host is the
local loopback address (Internet address 127.0.0.1), then the packet is sent to the trans-
mission tower routine, otherwise the server manager is called.

5.2.1. Transmission Tower

The transmission tower routine is called whenever a client program sends a notice des-
tined for a server. If the HostManager is in contact with a server, it forwards the notice to
the server. Whether the HostManager sends the notice or not, it adds the notice to a queue
of unacknowledged notices, to be used should retransmission be necessary.

If the notice is of kind HMCTL, the notice is handled internally by this routine.
<HM_CTL,CLIENT,NEWSERV> notices cause the HostManager to call the New Server
routine. <HM_CTL,CLIENT,FLUSH> notices cause the HostManager to send a
<ZEPHYR_CTL,HM,FLUSH> notice to its server, and go into “deactivated” state.

Zephyr Notification Service 5 June 1989

Page 32, Section E.4.1 Athena Technical Plan

5.2.2. Server Manager

The server manager routine is called whenever a notice arrives from a Zephyr server port
on a machine other that the local host. If the originating host is not the current server
machine and it is not an acknowledgment (kind SERVACK or SERVNAK) or HMCTL (kind
HMCTL) notice, the receipt of the notice is logged and it is ignored.

The HostManager expects only three notice types from the server. These are HMCTL
control notices and packet reception acknowledgments, which can be either SERVACK or
SERVNAK types.

If an HMCTL notice is received, the notice opcode is examined. If it is “SHUTDOWN?”,
then the New Server routine is executed. If the opcode is “PING”, then the HostManager
sends an HMACK notice back to the sender. If the HostManager was not in contact with a
server before the HMCTL notice was received, the queue of unacknowledged notices is
resent, unless the notice received from the server is a SERVER_SHUTDOWN message.

If the packet received is an acknowledgment of a packet sent earlier, the HostManager
checks to see if the client wants the acknowledgment, and if so sends the acknowledgment
packet to the client. It then removes the packet from the queue of unacknowledged notices.

5.2.3. New Server Routine

The new server routine is called when the server manager receives an announcement that
the server is going down, when a packet is not acknowledged and the HostManager decides
to change servers, or when a client sends a new server notice to the HostManager.

The routine first sends an unacknowledged <ZEPHYR_CTL,HM,DETACH> notice to the
current server so that the server can remove its references to this HostManager provided
the server has not crashed, but is just overloaded. The HostManager then sends another
Zephyr server a <ZEPHYR_CTL,HM,ATTACH> notice. When the new server acknowl-
edges the attach notice, it becomes the “owning” server. The HostManager then sends all of
the unacknowledged packets to this new server, to insure that all of them get delivered.

5.2.4. Queue Routines

Whenever a client sends a packet destined for a server to the HostManager, it is placed in
a queue and then forwarded to the server. The queue is a linked list, each element consist-
ing of a timeout field, a number of retries already sent, and the unacknowledged packet.
The timeout field is set to the current time (in seconds) plus the number of seconds to wait
before a timeout should occur.

Whenever a timeout occurs, each entry in the queue is examined, and the number of
retries is incremented in each one which has a timeout value less than the present time. If
the number of retries is greater than the configured safety margin, the New Server routine
is called. If the number of retries is less than the safety margin, the packet is resent to the
server.

Whenever a new server has been successfully contacted, the entire queue is resent. Each
entry in the queue is sent, its number of retries is reset to zero, and the timeout field is set
to the proper value.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 33

6. The Zephyr Client Library

The Zephyr Client Library, a C language function library, implements the Zephyr
protocol. Specific function interfaces are described fully in the Zephyr Programmer’s
Manual.

6.1. Functionality provided

To be gleaned from the Zephyr Programmer’s Manual.

7. The WindowGram Client and Browser

7.1. Overview

The Zephyr WindowGram client is the primary Zephyr user application. It displays in-
coming notices on the user’s screen as directed by a description file. The WindowGram
browser allows the user to save notices and review them later. The WindowGram client
and browser are the only sections of the Zephyr system that will be immediately obvious to
the naive user.

7.2. Client Operation

When a user logs in, a WindowGram client is automatically started for him or her by the
standard initialization files. The WindowGram client registers the user with the user loca-
tion database, using the last exposure set by the user (or a system default if the user has
never set his own exposure), sends the user’s standard subscriptions to the server, executes
the user’s initialization program (or the system initialization program if the user has not
specified his own), reads the user’s description file and the system default description file.

The WindowGram client then waits for incoming notices on an allocated port. When a
notice is received, it is matched against the description file and, if no match was found,
against the system default description file, and is acted upon appropriately.

In addition to notices delivered by the normal client-server path, the WindowGram client
may also receive incoming packets directly from user applications programs that instruct it
to perform special functions.

The WindowGram client will work whether or not the user is using an X Window System
(“X”) display. If the client is not using X, a simple terminal-based display (similar to the
UNIX write utility) will be provided. The user may, if desired, select the simple terminal-
based display while using an X display.

If the client is using X, the WindowGram browser can be used. The browser waits for
commands from the user (via mouse or keyboard), allowing the user to scroll through the
notices he has received, discard those he doesn’t want, or save certain notices in files.

A similar browser will be available in the future as a separate application for clients not
running X.

When the user logs out, the system delivers a SIGHUP to the WindowGram client, which
then deregisters the user from the user location service, and cancels all its subscriptions.

Zephyr Notification Service 5 June 1989

Page 34, Section E.4.1 Athena Technical Plan

7.3. WindowGram Subsystems

The WindowGram client is composed of the following subsystems. The client waits until
any of several input channels (file descriptors) is ready, and then the appropriate subsys-
tem is invoked to respond to the channel.

7.3.1. Notice Handler

When the WindowGram client receives a notice, its class, instance and origin are checked.
If the class is “WG_CTL,” the instance is “USER” and the origin is the local host, the notice
is passed on to the WINDOWGRAM_CTL handler. Otherwise, the notice is displayed by
the Display Handler as directed by the description files.

7.3.2. WINDOWGRAM_CTL Handler

When the WINDOWGRAM_CTL handler is invoked, the notice opcode is examined, and
the following actions are taken:

¢ If the opcode is “REREAD,” the user’s description file is re-read.

¢ If the opcode is “SHUTDOWN,” the user’s current subscriptions are retrieved and
saved, and then the subscriptions are canceled. In addition, the client ignores all
further notices except “WG_CTL” notices. This state is called “catatonia”

¢ If the opcode is “STARTUP,” the saved subscriptions are re-subscribed to and the
client resumes normal operation. If the client was not in “catatonia,” there is no
effect.

Because these notices are sent directly to the client from another client on the same host,
there is no need to subscribe to these notices.

The WindowGram client will make sure that the packets are authentic (from the proper
user) before performing any of the above operations.

7.3.3. Display Handler

When a notice arrives, the Display Handler composes a displayable form using the format
specified in the description file. It then displays the notice. The actual display is based on
the type of display interface and description file used. The display interfaces available are:

* X Window System Display

¢ Generic terminal

Any other interface that can control a file descriptor (for select(2)) or interrupt the
program can be integrated into the existing client.

8. Acknowledgments

The authors would like to acknowledge the following people from MIT Project Athena for
their help in making Zephyr a reality: Michael R. Gretzinger former Systems Programmer
and David G. Grubbs former Manager of Systems Integration for their input into the initial
concept of a Notification Service. Dan Geer, the Manager of Systems Development at MIT
Project Athena for his undying support of our efforts.

Zephyr Notification Service 5 June 1989

Athena Technical Plan Section E.4.1, page 35

9. References

[1] S. P. Dyer and F. S. Hsu.
Hesiod Name Service.
In J. H. Saltzer (editor), Project Athena Technical Plan, chapter Section E.2.3. M.I.T.
Project Athena, 1987.

[2] P. Levine, M. R. Gretzinger, J. M. Diaz, B. Sommerfeld, and K. Raeburn.
Service Management System.
In J. H. Saltzer (editor), Project Athena Technical Plan, chapter Section E.1. M.I.T.
Project Athena, 1987.

[3] W. E. MacKay.
An Educational Communication System That Integrates Electronic Mail, On-Line
Consulting, Electronic Meetings and Educational Software..
Project Athena Working Paper 87-4, MIT Project Athena, 1987.
Work in progress.

[4] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer.
Kerberos Authentication and Authorization System.
In J. H. Saltzer (editor), Project Athena Technical Plan, chapter Section E.2.1. M.I.T.
Project Athena, 1987.

Zephyr Notification Service 5 June 1989

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

