The Experimental Migration of a Distributed Application to a
. Multithreaded Environment.

by
Thuan Q. Pham
B.S., Massachusetts Institute of Technology (1990)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science.
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1991
(© Thuan Q. Pham, 1991

The author hereby grants to MIT permission to reproduce and

to distribute copies ¢f this thesis dogument in whole or in part.

Signature of Author..... G ¥ s ihanihion 3 nemmsadfifs wmeos § SRS § 8 SHFHEE § BHETE 5 SHEE § Sreomncornen = o =

- June 3, 1991

Jerome H. SaltZer
gssor of Computer Science, MIT
Thesis Supervisor

Certified by

..
......

Pankaj Garg, Ph.D.
Hewlett-Packard Laboratories
Thesis Supervisor

Accepted by

................
...

' Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

A cknowledgements

The author would like to thank Dr. Pankaj K. Garg for the ideas that formulated
this thesis work, and for the invaluable support, help, and guidance every step of the
way.

Many thanks to professor Jerome H. Saltzer for the ¢lose supervision of the work
at every stage; for the tough questions and the insightful comments that have kept
everything on track; and for the perusal of this thesis’ drafts.

My colleagues Debbie Caswell and Scott Marovich provided enormous help and
expertise with the UNIX and MACH operating systems. Special thanks to Scott
for all the debugging help and to Debbie for the careful readings of the thesis’ early
drafts.

Finally, I would like to thank my parents and my special friend Thédo for their
love and support. A very special tribute to my dear mother, Mrs Ma Thi Kim-Lién,
who made the ultimate sacrifice in bringing us children to this great country from the
oppressive communist state of Vietnam, giving us a second chance to live and think
in freedom. I love her with all my heart and affectionately dedicate this thesis to her.

Thank you, mother, for giving me the past, the present, and the future.

This work was supported in part by the Hewlett-Packard Laboratories, 1501 Page
Mill Road, Palo Alto, California 94303-0969

Contents

1 Introduction

[.1 Thesis of experimentation
1.2 The experiment
1.3 Facility and equipment

2 System Architecture

2.1 Objecteditor . .. « < vu s ¢
2.2 Workshop process
2.3 Interaction.

3 System Re-architecture

....................

....................

....................

3.1 From processes to single-thread tasks
3.2 Merging single-thread tasks to one multi-thread task
3.2.1 Running with threads
322 I/Ocontention
3.2.3 Problems with UNEXEC
3.3 Sharing memoryo
3.3.1 Object modeling
3.3.2 Garbage collection considerations

4 Performance Evaluation
4.1 Timing measurements
4.2 Testcases

4.3 Experimental results and analysis

(b 3

....................

....................

4.3.1 Light-weight threads and shared memory

4.3.2 Bytes vs messages .

Conclusion
51 Summary y

5.2 Discussion and future cousiderations

5.2.1 Shared-memoryv architecture . .

Ut
b
o

System threads vs user threads

5.2.3 Multiprocessor implications

39
41

List of Figures

1-1

3-1

3-3

3-4

Matisse Architecture: A central shared information hase is shared hy
all team members, Each person has an individunal (active) inlormation

hase which talks to various interactive tools.

Matisse: experimental subset 0L
Anexampleobjeck . . .« v v i e s v v e w e s s mE s & F odmE b
A sample display for a function object
Display attributes structure of a segment
Workshop object structure. a) “Object X7 is a collection ol object-sloi-
value triples with the samne object ID. b) We can think ol an object in

the Workshop as having a set of slot-value pairs.

Re-architecture process: from disjoint single-thread tasks to multi-
threads task with memory sharing capability. a) single-thread tasks.
h) multi-thread task. ¢) multi-thread task with memory sharing. . . .
resource contention: the communication channel sidin was “dup”ed
and the copy was given to the Workshop process to avoid contention.
svnchronization on thread exit. To ensure that the Editor thread exits
cleanly. the Workshop thread waits {for the join operation o complete
hefore proceeding to call uneveeo 0oL
Data sharing: The new read primitive transparently reads the data
directly from the Workshop heap and converting it to the format usable

by the Editor, thus eliminating the need for IPC'.

-1

20

20

b

30

3-6

Aei

Read/write synchronization: If the write routine connects or discon-
nects the link to new /old object data in a last, atomic step. there won'
be any conflict with the read routine looking at the same piece of data
at the same time.

Memory management alternative: the object management mechanism
can be implemented by an independent thread. Synchronization of
object access between the Workshop and Editor threads can be handled

by the Object Manager.

Timing measurement. This operation scenario contains 3 E'dilor trans-
actions and 1 Workshop transaction. The total execulion time is the
sum of three (t4-t1) and one (t3-t2). in both user time and system
time. Note that the idle time is not charged to the execution time of

either thread.

31

36

List of Tables

4.1
4.2
4.3
4.4

Performance Improvement. test scenario 1l 39
Performance Improvement, test scenavio 2 39
Performance Profile, test scenariol 11
Performance Profile, test scenario 2 12

9

Chapter 1

Introduction

1.1 Thesis of experimentation

Light-weight computation threads in a multi-threaded operating system promise to
provide low-overhead computation objects compared to their counterparts in conven-
tional process-oriented operating systems. Traditional distributed applications us-
ing heavy-weight and disjoint computation processes could be merged as concurrent
threads in a multi-threaded platforin to take advantage of faster context switches and
interprocess communication via shared memory. The hope is that there will be sub-
stantial performance improvement over existing implementations with single thread
processes. An investigation of this hope is made by porting an existing distributed
svstem from UNIX to MACII and merging some (single-thread) processes into one
multi-thread task. This study addresses the benefits. the difficulties. and the trade-
offs of such a mapping. We suggest some feasible architectures for migrating current
distributed systems to multithreaded environments.

Before discussing this issue further. it is helpful to recall a few definitions of

processes, tasks. and threads.

® A processis “a program in execution” [SalG6]. As the term is usually used, it
includes a collection of system resources (i.e. memory image. register sets, open

file descriptors. program counter. etc.) with a single thread of execution.

10

e A task is a collection of resources equivalent to a process without an execution
thread, namely an execution environment in which threads may run [Ras86]. A
thread, on the other hand. is the basic unit of computation. or simply a program
counter with a register set and a context within a process. Eacl thread operates
within the context of exactly one task. and many threads can co-exist within

the same parent task, sharing all task resources [JRG*8T7a].

The usual process abstraction has too many things anchored to it to meet the needs
of aggressively parallel applications: as a result. process creation and context switch-
ing result in high overhead on the part of the operating system. olten using far more
resources than one would like [ABB*86]. As a result, various eflorts have been made
by programmers to circumvent this problem, such as using coroutine packages to simu-
late and manage multiple contexts within a single process [ea85. JRGT8Th]. llowever,
these coroutine packages cannot take advantage of the operating system’s scheduling
services since the kernel has no knowledge of such coroutines or sub-processes. Thus.
the question of alleviating expensive context switching is not completely addressed
by user-created coroutines and sub-processes. Furthermore. since the processes do
not share resources. distributed applicalions with large amount of data sharing must
communicate via interprocess communication (IP(') mechanisms, which are costly
both in time and resources.

The problems described above can be addressed by the operating systems sup-
porting multithreading, with light-weight threads and shared resources. Being light-
weight. creating and maintaining threads require lower operating system overhead
than heavier processes. A thread. when created. has access to all the process infor-
mation in the task. During a context switch. if a thread to be rin belongs to the same
parent task as the thread currently occupying the processor. only a lew registers need
to be saved. leaving most of the task’s resources in place. In addition. the threads
within a task are managed automatically by the operating system kernel. Since the
computation threads share all resources within a task. including the memory address
space, “inter-thread”™ communication can he done cheaply and efficiently via direct

data sharing.

11

For the reasons mentioned. a svstematic reduction of heavy-weight processes to
light-weight threads, whenever possible. provides a substantial improvement in perfor-
mance. However, the threads facility restricts the architecture of distributed systems.
Further cost is incurred by the effort spent in porting existing software systems to a
new, multi-threaded platform, which has some difficulties of its own. Clearly, perfor-
maince improveients come at the expeunse of the lost generality to the process model:
loosely-coupled processes can he run simultaneously in different machines: tightly-
coupled {shared memory) threads must reside in the same machine. This issue is
investigated by a UNIX-to-MACH port of an existing distributed application. mesh-
ing together some processes to threads within the same enclosing task. This stady
identifies the problems and benefits of such a re-architecture for future distributed

systems in single and multithreaded environments.

1.2 The experiment

Matisse is a knowledge-hased team programming environment under development
at 1P Laboratories. Matisse offers automated support for communication and co-
ordination efforts in team programming [AGS89]. Its architecture is iflustrated in
Figure 1-1. The core of each unit of Matisse includes an inference engine. an object
editor, and a graphical object browser. all residing in the user’s workstation. With
the current model of implementation. each component within a unit of Matisse is a
separate process. These processes are executed concurrently and must share informa-
tion by passing large amounts of data back and forth between them. For example.
when the user is using the editor to modify his program objects. the editor. the object
browser, and the inference engine must commuuicate {requently. transferring numer-
ous requests and very large amounts of data via sockets to update and reflect the most
recent and correct sytem configuration. In a time-sharing computing environment.
managing concurrent processes is expensive because of the context switches needed
to distribute CPU time to each of the processes. Consequently. by merging some of

these UNIX processes into threads within the same MACH task. we can obtain sig-

nificant performance improvement with light-weight threads and with inter-process
communication via direct memory sharing.

In this experiment. it is sufficient to port and merge only the Workshop process
and the Editor process. These processes are prime candidates to receive the bene-
fits of the merge because theyv always reside on the same machine and must share
a large collection of data via numerous large IP(' messages. The locality ol these
processes enable them to e merged without any loss of generality or nselulness, and
their interprocess communication can benefit greatly from direct memors sharing.
Performing the port and the merge. and using the resulting multi-threaded applica-
tions provide us some insights about the costs. the benefits, and the feasibility of such
re-architecture.

This experiment is divided into three stages. In the first phase, Matisse is ported
from UNIX to MACII with its architecture essentially unaltered. This initial port
maps each UUNIX process to a MACH task with only one execution thread. A series
of measurements arve taken to assess the performance of the NLACH implementation
of Malisse and to serve as a baseline for future measurements. In the second phase.
the two single-thread tasks ave merged into a 2-thread task. but with the two threads
still commmmnicating and sharing data via sockets. Another ronund ol performance
measurement is taken here. and the results. when compared against the baseline.
provide us some information about the performance of the system relating to having
multi-threaded task versus single-threaded tasks. In the third and final stage of the
experiment, large IPC' messages between threads are eliminated and replaced with
a memory-sharing protocol. At the completion of this phase. performance measure-
ments are taken and compared against the first two.

In addition to providing performance measurements. the experiment gives us some
understanding of the difliculty of this porting process and some insights into the
troublesome areas. including the conditions and requirements that make the operation
possible and optimal (data representation. locality. garbage collection. etc). These
rules of thumb might be a helpful guide in identifving a suitable architecture. or re-

architecture, of processes and threads for distributed software svstems in the (uture,

13

Global, Shared
Object Base

Import

Export

Workshop Workshop Batch File
Inference e Inference Tools Systems
Engine Engine
e Compiler
!
e Debugger
Object | | Object Object | | Object
Editor | |Browser Editor | |Browser ¢ LaTex
T 1 : ® Nroff/Troff
‘ o e Make
User User
» i

Figure 1-1: Matisse Architecture: A central shared information base is shared by all
team members. Ilach person has an individual (active) information base which talks
to various interactive tools.

14

Intuition and past research on related issues [ABB*86. I'R36. JRG+8Ta. TRAT]
suggest that there is a substantial performance improvement to be gained from
the successful reduction of heavy-weight processes to light-weight threads and inter-
process commuunication via memory sharing techniques. However, such improvement
does not come without costs and it is up to the designer to judge whether this ap-
proach is feasible for his or her specific applications.

('hapter 2 describes the architecture of Matisse. C‘hapter 3 discusses the issues and
problems encountered during the port and the re-architecture. C'hapter 1 presents the
performance data at several stages of the experiment and the analysis of the costs and
benefits learned from the experiment of multithreaded architecture. Chapter 5 offers
the conclusion and thoughts about the experiments as well as listing the possible

issues worth investigating in the future.

1.3 Facility and equipment

The experiment is carried out using the equipment and lacilities ol the llewlett-
Packard Laboratories. Mafisse is currently operating on a single-processor worksta-
tion HP9000/370 running HP-UX 7.0. The MACH port operates on the HHIPP9000/350
running HP's NACH 2.0 [('M89a]. MACH 2.5, although having a better schednling
algorithm than version 2.0 currently used. is not complete enough on the 1129000
wotkstation to he used as a platformn for the experiment. All hardware and software

needs are provided by the Hewlett-Packard Laboratories.

Chapter 2

System Architecture

As depicted in Figure 1-1, Matisse is a distributed application with 3 primary com-
ponents: a persistent object base. an inference engine. and various interactive tools
such as an object editor and an object browser.

The persistent Object Base is provided by an object-oriented database. The Oh-
Jeet Base not only stores the programming objects generated by the users. but also
records the evolution of objects by keeping the links between their successive versions.
Furthermore. the object-oriented database provides the capabilities to support object
inheritance, special object clustering. and object references [A(iS89]. Since Matisse
operates on top of an object platform, file systems are only an auxiliary part of the
environment. In order to support the existing file-hased soltware systems. and to
utilize the existing file-based tools (e.g.. compiler. debugger. text formatter. ete.). it
is necessary to interface the object and file domains. A set of import [Pha90] and
cxport [Gar91] tools is provided to serve {his purpose.

‘T'he second major component of Matisse is the inference engine called the Vork-
shop. The Workshop is a rule-based inference engine and serves also as a local cache
of program objects in a user’s workstation. While its main objective is to perform
the pattern matchings on prograin objects that are needed to support the associative
qqueries, the 1Workshop process also uses its rule base to intelligently manage the soft-
ware development process — from automatic constraint checking to invoking external

tools on an event-driven hasis [AGS89]. Since the Workshop process uses declarative

16

rules rather than conventional. hard-coded. procedures. the user has the flexibility to
customize the set of rules according to his needs. development models, and policies.

The third and most visible component of Matisse is the set of user inferactive
tools used to edit and display program objects. The two most notable tools are the
Object Editor and the Object Browser (also known simply as Editor and Browser).
The Editor is an Emacs based editing and browsing interface [GYA90a]. capable of
displaying programming objects in independent sections of the display bufler. This
capability enables powerful ways of displayving objects. such as grouping together all
the objects of a certain characteristic in the same text buffer for editing. Moreover.
by clicking the mouse on the selected regions of the text huffer. the Editor can be used
simply as a navigation tool through the network of locally cached objects. On the
other hand, a more graphically-oriented Browser provides a powerful way to navigate
through the local object store using X widgets. With a few simple mouse clicks,
one can select to view, create, or delete the program objects. their links, and their
attributes.

For the purpose of this experiment. we concentrate on a subset of Matisse involving
the Object Base, the Workshop. and the Editor (I'igure 2-1). More specifically, we
ported the Workshop process and the Editor process to MACII tasks. then merged
them into a multithreaded task and allowed them to share the same pool of object
data. Although we won't be modifving the Qbjee! Base implementation, its presence
in the architecture is necessary since it is an integral part of Matisse. Both the old
processes and the new task ultimately connect to the Qbject Base in order to function.

A decision was made to merge the Workshop and the Editor because thev are
prime candidates to benefit from such a re-architecture. The two processes share
large amounts of data by communicating constantly with one another via sockets. By
merging these two processes into a multithreaded task and enabling them to share
data directly, we have an improvement in performance resulting from light context
switches and from not having to spend heavy resources on interprocess communica-
tion. The following sections describe in detail the working internals of the Editor and

the Workshop processes.

17

Global, Shared
Object Base

process

process

Workshop
Inference
Engine

Object
Editor

User

UNIX

procass

Global, Shared

Object Base

process

tl

t2

[=]

Editor

bject

Worksho

Inference
Engine

User

MACH

Figure 2-1: Matisse: experimental subset

task

o

Objectl
Has-class: c-function
Has Name: printf
Author: Tom Harry
Job: Demo
Element-of: demo-objects.c
Has-source:
printf (arg)
char *arg ;
{
while (*arg++)
putc(*arg) ;
}

Figure 2-2: An example object

2.1 Object editor

The Editor is essentially an Emacs-based Software Object Editor [GYA90D] that has
the capability to display program objects with different sizes and having different
facets in the same text buffers. This special capability is made possible by super-
imposing a structure on top of the linear structure of Emacs [GYA90D]. effectively
dividing the text stream into sections. Lach section can then have its own display
atiributes such as color, visibility. name. etc. An “object”. to the editor. is simply a
collection of segments in the display buffer. Figure 2-2 and igure 2-3 show some of
the ways an object can be displayed according to the user’s desire.

Like E'maes, the user can interact with the Editor via the kevboard and the mouse.
With the extension of sections, the Editor has more sophisticated editing features
such as designating a certain section to be “hidden”. or to be “read-only™, in order
to prevent unauthorized and unwanted modifications, for example. TFurthermore.
sections allows us the convenient way of issuing commands via mouse clicks in the
text buffer. By issuing mouse clicks in certain customizable sections of the text buffer.

the user can either navigate through the local object cache. or invoke actions to he

19

/* <<printf (Demo) >> */

printf (arg)

char *arg ;

i

while (*arg++)
putc(*arg) ;

}
Figure 2-3: A sample display for a tfunction ol ject
Elements
Name Elements Value Elements
[2 B]
lo

Slot; Slot, Slot Slot, Slot, Slot,

Figure 2-4: Display attributes structure of a segment
performed.

To support such a display capability. the Edifor must maintain some information
about the nature of the objects being displaved. This information is stored in a tree of
attribute nodes as illustrated in figure 2-4. Each of the slot nodes contain information
about the object (e.g. object class, inheritance. text string. display attributes. etc.).
Much of the information stored here is also present in the orkshop. and requires
freqnent updates and synchronizations of the two object bases as the program ohjects
in them are created. used. and modified. Here. the potential for a performance gain
from the multi-thread merge is great hecause we would notl have to spend resources
in managing redundant information. and especially not having to spend the effort in

synchronizing the two sets of data.

0 0 0)

Ob Slot Value
j,, 1 1

O 0 0

Objx Slot, Value Slet

[N

O -0
Ob3 Slot. Value
x B n

Value
n

A B

Figure 2-5: Workshop object structure. a) “Object x" is a collection of object-slot-
value triples with the same object ID. b) We can thiuk of an object in the Workshop
as having a set of slot-value pairs.

2.2 Workshop process

The other major component of the system is the Workshop, which is a combination
of a rule-based inference engine and a heap of storage for locally cached objects.
The Workshop not only provides a shared object base of information, but also sup-
ports rule-based reasonings for managing the software development process such as
constraint checking. or processing a user's requests.

The Workshop, also known as Eclipse: a C-based Inference Engine Embedded in
a Lisp Interpreter [BS90], is a product of fusing together XLISP [Bet89] and C'LIPS
[Art38]. with some added features. XLISP is a small. fast. and powerful LISP in-
terpreter written in C'. and CLIPS is a (-based forward chaining inference engine.
Together. they form a flexible. customizable. ('-based inferencing svstem with object
storage capabilities. The Workshop can thus administer the software development
activities by using the set of user-defined rules to intelligently manage data in the
object hase.

Data in the em Workshop is stored simultaneously in two diflerent formats: as facts
to satisfy the rule base’s pattern matching requirements. and as a pool of object-slof-

value triples to facilitate efficient access to objects when direct lookup is needed. Each

21

\\

fact corresponds to an ebject-slot-ralue triple. and a program object is a collection of
object-slot-value triples that have the same object ID (i.e. the first element). Figure 2-
5 illustrates the object structure within the Workshop process. Although slightly
different in format, these objects overlap a great deal with those in the Edifor. A
merge of the two object bases would reduce the cost of having to maintain redundant
information. The redundancy here does not provide us any advantage in a sense of

data replication.

2.3 Interaction

Together, the Editor and 1Workshop cooperate to support users’ transactions. with
the Editor handles most of the I/O while the Workshop performs most of the compu-
tations. In the Current implementation. the Editor accepts a user’s input from the
kevboard and mouse, then passes data via sockets to the Workshop for processing.
When the Workshop finishes the requested job. it sends the data back. also via sock-
ets. to the waiting Edifor. At this time. the Editor uses the data to update its digplay
screen and to synchronize its object pool with that of the 1Werkshop by replacing old
entries with the new data.

By merging the two processes as threads and combining their data storages in
shared memory. we have a performance gain not only from interprocess communica-
tion via memory sharing. but also from not having to maintain unnecessary copies ol

data.

[

Chapter 3

System Re-architecture

As mentioned in chapter 1. the experiment is divided into three stages. We first
performed a “straight port™ of the Editor and the Workshop. making each process
a singlethreaded task in the new environment. The second stage involved merging
these two singlethreaded tasks into one task with two threads while lcaving their
interprocess communication mechanisms undisturbed. Finally. in the third stage. we
replaced most of the IPC messages between the two threads with some primitive
routines that allow direct access of data in memory between threads. aud a new
communication protocol using these primitives. Figure 3-1 graphically describes this
experiment., showing the shared memory and illustrating also the process, task, and
thread boundaries. The division of the experiment into these three stages is natural,
since each stage has its own set of problems that. for the most part, is distincet and
unrelated to the others. The following sections describe each phase of the project.

discuss the difliculties that were encountered, and render our solhitions.

3.1 From processes to single-thread tasks

The first step of porting Matisse from a single-threaded to a multi-threaded envi-
ronment is necessary to establish a stable foundation on which the experiments with
light-weight threads and shared memory can he performed. For this portion of the ex-

periment, our only concern was to reconstruct the system on the new multithreaded

23

Taski Task! Task ' Task

aD

Figure 3-1: Re-architecture process: froin disjoint single-thread tasks to multi-threads
task with memory sharing capability. a) single-thread tasks. b) multi-thread task. ¢)
multi-thread task with memory sharing.

platform, making each former single-thread process a new singlethread task. This
porting effort exposed the dissimilarities between the two operating svstems, both
in features and implemeutation. Furthermore. this version of the system serves as a
haseline against which subsequent versions are measured and compared.

Although this is the simplest and most straight-forward step of the experiment. it
is, however, not necessarily easy. depending on the portability of the existing system.
This step can be as simple as a recompilation. or as arduous as a major rewrite.
For example, our Workshop port went particularly smoothly. requiring little bevond
selting up the directories, the Makefile. and the recompilation. On the other hand.
our Editor. a modified Emacs. was particularly hard to port since its complex and
peculiar code exploited many system-specific features. and exposed numerous system
differences.

While porting. we encountered the usual problem of having dillerent names for
[equivalent] systems calls and different directory hiearchy between the file systems.
This problem can be rectified by meticulously checking. identitying. and tracking
down the right functions and files in the new environment.

A slightly harder problem we encountered was the difference of implementation

and system behaviors between the operating systems. One notable example was the

24

imcompatible side-eflects of the functions regemp/ regea: one set of function stored
the data to be processed in an internal static structure. and thus could not he called
recursively, while the other took the argument from the program stack, contained
no static internal state. and could be used recursively by the program. When facing
this type of discrepancy, where the sonrce of the problem is embedded deep inside
the system libraries. it was not possible for us to re-implement these libraries to suit
ounly our needs since there are other existing programs that may alveady depend on
these svstem hehaviors. Qur solution was to define the macros. functions. and data
structures necessary to use over the existing resources.

The problems described above are just a few of the many that could arise in every
port effort. There 1s no hard and fast rule for telling in what form and flavor the
problems will come under, but their cause is most often some syvstem dependencies
or assumptions by the application program that happen to expose the dissimilaritics
between the two operating systems. These problems are straight-forward and can be
resolved with some debugging. Our port of Matisse was determined “complete™ when
we have achieved identical system behavior. in both look and feel. of six typical usage

scenarios.

3.2 Merging single-thread tasks to one multi-thread
task

Once the initial port was completed, we proceeded to merge the two single-thread
tasks into one 2-thread task. In order to measure the eflects of light-weight threads on
system performance. and to effectively deal with the issues arising [rom the merge,
we left the interprocess communication mechanism unchaunged. The performance
measurements taken at this stage. when compared with the base line. gave us some
insights about the advantages to be gained from converting an existing single-threaded
application to a multi-threaded one. Furthermore. the merge also presented us some
interesting problems regarding the use of common system resources and synclironiza-

tion between threads, particularly with the termination of threads and restarting

them before and after unervec!. The following sections describe in turn the merge

process, the problems encountered, and their solutions.

3.2.1 Running with threads

In order to merge the singlethreacled tasks. we first resolved duplicate file names
and global variable names of the previously disjoinl programs. incliding the main
functions which had to be renamed. A new main function was implemented to set up
global, shared resources such as thread IDs. mutex and condition variables. This main
function forked the Editor thread and then ran the last [Vorkshop code as part of the
main thread. In addition, since the thread interface allowed only one argument fo
be passed to a thread at creation time. the main function must parse the command-
line arguments, package them in to appropriate structures. aud hand them to the

appropriate threads when calling the thread creation routine.

3.2.2 1I/0O contention

Alter bringing up the mulli-threaded system. we noticed that it hehaved unpre-
dictably on a random set of user inputs. Upon investigating the matter. we uncovered
a problem of resource contention between the two concurrent threads. In our case. the
two threads both used the file descriptor associated with the standard input stream
and listened on this channel for user’s input?. Facing this problem. we either had
to modify the Editor’s code extensively to have it look for input in the real channel
of the editing window. or to remove the Workshop's dependence on stdin. We chose
the latter option because the modification of code required was much simpler. Onr
solution was to dup the open file descriptor stdin and give this copy to the Workshop.

As a result, the two processes no longer contend for the same file descriptor. This

"ineree is a utility that dumps an image of a running program into a file in order to restart it
later at that point

?Although the Editor has it own editing window and does not use the shell windew that the other
thread uses for input (which is really sidin). its code is written in such a way that the core ol the
FEditor expects user inputs from stdin by having some routines maps the channel associated witl the
editing window to sidin. The two threads’ dependence on the input stream created a confusion that
led to system failure. See Figure 3-2.

26

PRURRSNNIS, | f—

dupped stdin : stdin

j

.
LY
“ea.

Text window|

mouse & keybeard
input

mouse & keyboard
input

Figure 3-2: resource contention: the communication channel stdin was “dup”ed and
the copy was given to the Workshop process to avoid contention.

- g cau

problem is graphically described by Figure 3-2.

3.2.3 Problems with UNEXEC

Matisse takes a rather long time to start up because it has to load in the necessary
files (such as the rules for the inference engine) needed for operation. Because ol
this lengthy process. it is convenient and useful to terminate a session of work by
freezing the image of the program and dumping out to an a.ouf format file capable
of being restarted by the operating system. This is accomplished by a mechanisim
called wnerec. However. making unexree work for a multi-threaded task requires that
we properly start up the threads. coordinate their terminations. and clean up afler
thev exit.

First of all. in order for the program to be restarted after an unerec. we ninst call
the thread initialization routine to set up the internal system resources needed for
operation since the individual thread states were not saved by unexec. Since the effects

of calling the thread initialization routine are not idempotent. in many systems. this

thread initialization routine is automatically called by the start up code, and only
once. Our (' threads [('D8S] package. for example. saved a static {lag to indicate
whether or not the initialization routine was called and is used to avoid initializing
more than once. This static flag prevented the initialization routine from being called
when we restarted from the unevec image. To resolve this problem. we modified the
thread library and made the flag available as a global variable so that the program
can set it and force the C start up code to call the initialization routine at the next
start up.

Even if the thread initialization routine were being called every time. we still were
not able to restart the dumped image of the program if it was not cleaned up properly
before the unexec dump. The problem here was that the thread initialization routine
did not set up new internal data structures to support the startup threads il these
structures were present in the dumped image from the previous run. Worse yet, it
did not re-initialize these structures corresponding to the states of the newly started
threads. and left the stale data in these structures to corrupt the threads, which led
to system crashes. To remedy this problem, we extended the thread-exit code to free
all such data structures, thus forced the thread initialization code to create new ones
each time the program was restarted {rom an unerec.

[Finally. we must ensure that the thread calling the nnexec code be the last one
to exit. This requirement ensures that all other threads have cleanly exited and can
be safely restarted. This was accomplished by making this last thread wait for the
others to terminate via a jein operation. In our application. when the user issues
a termination command. the Editor tells the Workshop to terminate before calling
the thread exit routine to terminate itself (Figure 3-3). The Workshop. on the other
hand, waits for the join operation to succeed before calling uneree to dunp out the
program. When the join operation succeeds. we are guaranteed that the Editor thread
has exited cleanly (i.e. the thread-exit routine had time to clean up all the internal

data structures). and it is safe to proceed with the unexec dump.

o]

fork Editor
Workshop| thread
thread

thread exit

Figure 3-3: syvnchronization on thread exit. To ensure that the Editor thread exits
cleanly, the Workshop thread waits for the join operation to complete before proceed-
ing to call unewvee

3.3 Sharing memory

This third and final stage of the experiment involved the removal of large IPC' mes-
sages between the Workshop and Editor threads. In its place. we implemented a
communication protocol using direct mnemory lookup. specifically keeping all data in
the heap of the Workshop thread and allowing the Editor to read them as needed.
The object lookup is facilitated by a thin layer of routines that read the needed data
from the Workshop's heap and convert it to the format usable by the Editor. This
layer of code is completely transparent to both the Workshop and the Editor. To
protect the integrity of the data during the critical time when data are read and
converied, the execution of this code and the Workshop's garbage collector mmnst he

3

mutually exclusive®. This is accomplished by a simple locking scheme described in

section 3.3.2.

3The Workshop's update operations and the garbage collector are already mutually exclusive
since they are part of a single thread of control. Read-Write synchronizaton are discussed in section
& €
3.3.1.

Editor thread Workshop thread

Read
Read et —

primitive

IPC IPC

T Il

Figure 3-4: Data sharing: The new read primitive transparently reads the data di-
rectly from the Workshop heap and converting it to the format usable by the Editor.
thus eliminating the need for IPC'.

3.3.1 Object modeling

Having merged the threads, the Workshop and Editor now shared the same address
space and can access cach others” data directly. At this time, we no longer needed
to keep two separate copies of data in both the Workshop and the Editor. Since the
Workshop process does most of the computation with objects, our decision was to
let. the Workshop thread manage all the data. I'urthermore. since the two threads
use the data in different formats. we implemented the memory-read primitives to
perform a conversion from the Workshop format to that of the Editor. In effect.
this read operation is transparent to the Editor. but the data comes directly [rom
the Workshop's storage. Figure 3-4 illustrates the design of the new read mechanism.
which bypasses the interprocess communication channel and enables data to be shared
between the Workshop and the Editor.

With the Workshop modifying objects and the Editor reading them to update the
display. we must ensure that these two operations do not contend with one another.
For this, a simple locking scheme implemented at the objeci-hase level (i.e. one
mutex locks the eutire object base) or at the finer object level (i.e. one mulex per
object) would ensure the mutual exclusion of reading and writing on the same object.

However, certain systems do allow us to forgo the expense of some locking if we

30

OID ——»l 55 S —)

Iligure 3-5: Read/write synchrounization: If the write routine conunects or disconnects
the link to new/old object data in a last. atomic step. there won't be any conflict
with the read routine looking at the same piece of data at the same time.

carefully take advantage of its semantics. For example, in Matisse, the Workshop
first. modifies the object. then sends a notice to the Editor about the changed status.
The Editor then reads the object to update its display. With this semanfic. the
Editor never reads an object for new information unless the Workshop has finished
changing it and sent its notification. Prior to receiving the notification. any Editor
look up of the object (due to a screen refresh. for example) would be interested in
the old object. In the rare event where the Editor’s object lookup on an ol)ject is
performed in the small time frame when the Workshop just modified an object, and
the notification of the changes is being sent to the editor, what the Editor gets back
from the read operation is the new \'.ersion of the object. not the old one it is seeking.
This “error”™ is perfectly harmless, since the Editor will receive the notification of that
object being modified soon, and would update its display with the new information
anyway. To ensure correctness, we must take care that when adding or removing
object attributes, the update functions add the link to new information or cut the
link from data to he deleted as one last step (FFigure 3-5). Prior to this step, any read
done by the Editor will see the old object: after this step. the Editor’s read will get
the modified object.

It i3 worth mentioning here that other implementations for this type of data
sharing is possible. such as providing a separate thread to manage the entire shared

object base, including synchronization primitives and garbage collection (Figure 3-

31

Messages
Workshop

Tead,write

Object Manager

Object pool

Figure 3-6: Memory management alternative: the object management mechanism can
be implemented by an independent thread. Synchronization of object access between
the Workshop and Editor threads can be handled by the Object Manager.

6). However. due to the architecture of J[m‘issa; it was much simpler. and just as
cffective, for us to work with the scheme described above. Using a general data sharing
method would have required us to rewrite many memory management operations and
the garbage collector. which are already present as part of the Workshop. Designers
of future systems should carefully consider exploiting the existing architecture before

resorling to this general scheme.

3.3.2 Garbage collection considerations

Having the tio threads sharing the same heap of data, we had to consider carefully the
memory management issues, specifically the garbage collector’s operation. to protect
the system [rom object movements due to the garbage collector during the critical
read/write regions. In this version of Matisse. the Editor accesses Workshop's heap
of data directly and must be protected from the Workshop’s garbage collector during

a critical time when it is holding pointers to Workshop's object and performing the

reading and conversion between object formats. If this provision is not made, it is
possible that the Workshop™ garbage collector is called to perform its job and relocates
the data being pointed to by the Editor amidst its read operation. which results in a
segmentation fault as the Editor attempts to read the data from the pointer that is
no longer valid. This mutual exclusion between the Workshop garbage collector and
the Editor's read primitive can be achieve by a simple mutex lock to be seized by
either of these two entities as they tryv to get to the data. Locking can be done at a
finer object level, but the infrequent Editor’s look-ups make its costly and infeasible
to implement a mutex for each object.

This simple locking scheme is sufflicient if there is never a need for obtaining the
mutex lock again during the critical section where the mutex lock is already held by
either the garbage collector or the read primitive. However, in our syvstem. there is a
problem when the memory of the object heap runs low during the critical section of
the Editor's read operation. In this case. the Editor thread would block by running
the garbage collector. which would block waiting for the mutex lock to he released
by the IEditor. This deadlock can be resolved by requiring the Editor to vield the
mutex lock to the garbage collector and redo its read operation later*. A very simple
heuristic which also worked for us was to let the garbage collector abort when the
mutex Jock is held by the Editor thread in its critical segment. and to rely on the
Workshop to call the gabage collector soon after the Editor releases the mutex lock®.

Thus, with the effort of porting Matisse to the new multithreaded environment.
of merging the singlethreaded tasks to a multithread task. and ol replacing most of
the IPC byte transfers with the new memory-sharing protocol. we have produced a
new svstem with is identical in appearance to the original one. but with imnch hetter
speed and responsiveness. The performance improvement is discussed in the following

chapter.

The redo can be done simply by having the read primitive releases the lock, call the garbage
collector, and then call itself with the original arguments.

5This works in Matisse, hecause the Editor thread seizes the mutex lock very infrequentiy. and
the Workshop thread does all of the information processing which almost always notice the need for
garbage collection hefore the memory is depleted.

33

Chapter 4

Performance Evaluation

This chapter reports and analvzes the performance data collected with versions of
Matisse from each stage of the experiment. illustrating the benefits and performance
improvements resulting from having light-weight threads and memory-sharing inter-
process communication (IPC).

As described by the previous chapters. Matisse evolved through three stages. Ver-
sion 1 is a “straight port”. featuring a one-to-one mapping of UNIX processes to
MACH singlethreaded tasks. Version 2 is the merge of these singlethreaded tasks
into one multithreaded task with the IPC' mechanism unaltered. And finally. version
3 is the multithreaded version similar to version 2, but most of the IP(' messages have
been replaced by direct read/write of data in shaved memory between the threads.
However, it was also necessary to implement version 3 in two steps: in the first we
only reduced the number of hytes being transferred (Version 3a). and in the second
we reduced both the number of IPC' messages and bytes (Version 3b). It hecame ap-
parent during the experiment that reducing the number of IPC messages sent would
provide us even better performance improvement than by reducing the number of 1P(*
bytes alone. The rationale for this two-steps implementation will be discussed later
in this chapter. Also, we made no attempt to compare the performance of the ported
system to the original one running on the UNIX platform since there are simply too
many system differences between UNIX and MACH to have a meaningful compari-

son. Therefore, version 1 of Matisse serves as the baseline with which all performance

34

mecasurements are COI]lpﬂ-].'(:‘d .

4.1 Timing measurements

To effectively illustrate the performance improvement from the rearchitecture de-
scribed in the previous chapter. two scenarios with significant IPC' overhead were
chosen as benchmark tests for each version of the system as it evolved from two
singlethreaded tasks to one multithreaded task with shared-memory IPC. The P!
overhead of these scenarios, mostly involving passing data back and [orth between
the Workshop and the Editor. is estimated at 40%. We use our estimate here be-
cause the actual execution time. comprised of wuser time! and system time?. cannot
be precisely measured across thread boundaries. The task of breaking a message into
data packets, sendiﬁg the packets across the wire. and reassembling the data stream.
starts in one thread and ends in another. The system timing utilities available to
us could not be used to measure svstem execution time across thread boundaries.
Thus, in order to coarsely measure the percentage of IPC' overhead in a transaction.
we computed, from time stamps. the real time it takes to send a message from the
sending thread to the receiving thread. Since we can only measwre this using real
time, the number we get is, of course, slightly larger than the actual real execution
time of the two entities due to some other system threads (such as the scheduler.
the window manager) having the CPU in between. Other than the essential system
threads, the experimental threads are the only user threacds running in an extremely
lightly loaded system. The ('PU cost of the system threads. heing constant across
all measurements, does not aflect the qualttative analysis of the performance profile.
and amounts only to a small offset factor in the quantitative analysis. Along with the
timing measurements, a pair of counters is also implemented to count the nnmber of
messages and the number of bytes being sent via the communication sockets.

The execution time of each scenario is measured by obtaining the total running

Luser time is the total amout of time the system spends executing in user mode
2system time is the total amount of time the system spends executing on behalf of the thread or
process.

Editor Workahop

user
command
\ tl JN 9 .
t]
£ IPC
! (idle) o
b IPC
t4 —
tl '; (ldle) ’_‘__.4—"‘-——-‘ t3 T
IRC i (idle)
| t4 !
display 4
result

Figure 4-1: Timing measurement. This operation scenario contains 3 Edilor trans-
actions and 1 Workshop transaction. The total execution time is the sum of three
(t4-t1} and one {t3-12). in both user time and system time. Note thatl the idle time
is not charged to the execution time of either thread.

time of all threads (or tasks. in version 1) between its start and end points. The
acquisition of user time and system time is done by calling the svstem utility getrusage.
With getrusage, we have a timing granularity of 1 microsecond. which is adequate
for measuring transaction time lasting in the order of tens of seconds. The following
paragraph and Figure 4-1 illustrate the timing measurement for a typical transaction.

Initially, both the Editor and the Workshop stay idle in their respective scleel
loops waiting for some triggering event either from the user or from each other. This
idle time is not charged to the executing timme of the threads in our measurements.
Immediately after the user issues a command (via the Editor) to start a transaction.
the Editor takes a snapshot of its running time. say t1. by calling getrusage. Since
the communication is asynchronous, after sending data to the Workshop, the Editor
returns to its waiting loop to wait for another event. However, before returning to the
waiting loop, it makes another call to getrusage, t4. which is used later to compuie

the Editor’s recent execution time for the transaction. The Workshop on the other

36

hand, makes a call to getrusage, 12, immediately upon receiving the data and then
proceeds to read data from the socket. After assembling the message. the Workshop
carries out the requested job. and interactively sends the results back to the Editor as
they become available. At the end of the job. the Workshop once again samples the
time, £.3, and retwrns to its waiting loop. The differences between ¢4 and {1, 1.7 and 12
are the Editor’s and Workshop's execution time for the transaction. By summing the
execution times. we obtain the total execution time of the system for the transaction.
Note also that each of our test scenarios involves a number of transactions from both
the Editor and the Workshop. so the execution time of the scenario is the sum of

execution times of all the transactions involved.

4.2 Test cases

The first test case is the startup sequence of actions that takes place as each user
logs into Muatisse. This scenario has a high percentage of IPC activities because
the Lditor and the Workshop must communicate with each other extensively to set
up the environment for the user. The setup process involves the Editor getling the
numerous program objects from the Workshop and initializing the display screen.
This interprocess communication is done via sockets in version 1 and 2. and via
direct memory sharing in version 3 of the system.

The second test case involves another IPC-intensive sequence of actions: modifing
and saving a program object. In order to save a text object, the Editor first sends
the modified object to the Workshop where it is validated. updated. stored. and sent
back to the Editor to be displayed. In addition. the Workshop uses its rule base to
determine and update the necessary changes in the system confliguration.

Although the IPC overhead in both test cases is high (about 40%). they are
slightly different in composition. The first test case involves numerous small 1P
messages. while the second test case is comprised of lewer, bhut larger, IP(" messages.
This difference plays a key role in explaining the amount of system performance

improvement and will he discussed in the following sections.

37

4.3 Experimental results and analysis

Before discussing the experimental results. it is necessary to label the various versions
and components of the system for comparison. First. the differences bhetween versions

of Matisse arve highlighted to be later used in the performance analysis.

e Version 171 comprises the singlethreaded Workshop and Editor tasks, each com-

municating with the other by sending messages via sockets.

e Version 1'2is a multithreaded task with concurrent Workshop and Editor threads.

each still communicating with the other by sending messages via sockets.

e Version V3a is a multithreaded task with concurrent Workshop and Editor
threads. and most of the bytes formerly communicated over sockets are now
communicated by a shared-memory read/write protocol. This version ol the

svstem reduces significantly the number of IPC bytes being sent via sockets.

e Version V30 is a multithreaded task with concurrent Workshop and Editor
threads, and most of the IPC messages have been replaced by a shared-memory
reac/write protocol. This version of the system reduces significantly the number

of both the IPC bytes and IPC messages being sent via sockets.

The followings are syimbols and labels used in the discussion on performance anal-

vsis:

e Scenario 1 and Scenario 2 are the first and second test cases described in the

previous section. respectively.
o ('PU Time is the sum of user time and system time of all relevant threads.

e The percentage change of either CPU time or IP(' bytes is computed according
the the formula (v2 - v1)/v1 * 100. The negative sign indicates a reduction of

cost, or, equivalently, improvement of performance.

38

Change in IPC bytes | Change in CPU Time
Vi—172 -3.80% -5.30%
12— 1730 -31.25% AL 1%
V1= 13a 33879 -15.82%

Table 4.1: Performance Improvement. test scenario 1

Change in IPC bytes | Change in CPU Time
Vi—172 -1.87% -5.05%
12— 134 -40.86% -15.38%
Vi—13a L1.97T% 17 11%

Table 4.2: Performance Improvement. test scenario 2

4.3.1 Light-weight threads and shared memory

The first set of experiments pits versions 177, 1’2, and 13a together to compare the
performance improvements resulting from the migration of a distributed application
from two singlethreaded tasks to a multithreaded task and then to a multithreaded
task with shared memory interprocess communication. Table 4.1 and Table 4.2 il-
lustrate the percentage reduction in IPC' bytes and C'PU time hetween every two
versions compared.

As seen in Table 4.1 and Table 4.2. the improvement between 17/ and 172 is
indicative of the light-weight thread issues. Unfortunately, only a slight improvement.
is observed here because the scheduler of our MACII 2.0 does not provide light-weight
threads with much advantage over conventional processes or tasks. and crossing the
kernel boundary is expensive (as much as for processes). With a smarter scheduler
such as one in MACH 2.5%. we would expect to win in the event that two consecutive
threads occupying a processor execute within the same task, and therefore. share the
same address space. For example, our system (ITP9000 series 350) uses a virtual cache

which can hold information for one address space at a time. A smarter scheduler

3Although MACH 2.5 exists for the IIPY000 machines, it was not readtly available for this
experiment.

39

could notice that the next thread running on the processor uses the same address
space as the previous on. and avoid any unnecessary cache flush. Thus, by allowing
the next thread to use valid data in the cache rather than causing expeusive cache
misses (after an unnecessary cache flush). an intelligent scheduler can cut the cost of
a context switch on a virtual cache machine [('MS9D).

The tables also show that the performance improvement between 172 and 173a.
however, is much more significant. By shifting {rom socket-based [PC' to shared-
memory IPC, we reduced the number of hytes to be sent via sockets by 31% and
improved the overall system speed by 11%. Since roughly 40% of the original system
over head is IPC related. we Lave effectively slashed the 1P’ overhead by approxi-
mately 25%.

The comparision between 17 and 173a indicates the total performance improve-
ment from having both the benefits of light-weight threads and memory-sharing IP(".
This comparision is less specific than the previous {wo comparisons since il does
not distinguish the contribution of each component of interest. but does provide the
total effect of the performance improvement. Note also that the cumulative figure
presented in this comparision is not the simple addition of the previous two compar-
isons, but slightly less. This is correct since the comparison between 17 and 1774
is the improvement of version V3a with respect to version V1. not the mmprovement
of version V2 with respect to version V1 and the improvement of version Via with
respect to version v2.

In addition, second order effects exist which indirectly improve system perlor-
mance. These beneficial factors occurred naturally as part ol our re-architecture ol
Matisse and required no additional work. For example. with the data sharing in ver-
sion 1"7a, the Editor no longer has to keep its local copy of the data, saving 100X of
memory at run time. This version is leaner than version 1’2 takes up less memors.,
and can thus run faster. Being smaller in size. the merged version has less paging
overhead, takes much less time to load into memory. and is less likely to be swapped

out during a context switch.

40

Change IPC bytes | Change IPC msgs | Change CPU Time
Vis 12 -3.80% 0% 5.30%
[EESET 3125% 0% LTI
Vi— Vda -33.87% 0% 15.82%
e e e T P M A = G T WA
[V3a— 130 -30.88% -80.50%
~— ey T sz W
[VioVa] RT35% [-80.50%

Table 4.3: Perlormance Profile, test scenario 1

4.3.2 Bytes vs messages

Although the use of shared memory for interprocess communication already provide
us with some performance improvement. it was discovered that we can do much better
than this by not only reducing the munber of bytes being sent between threads. but
also the number of IPC' messages. This section examines the result of two slightly
different variations of version 173's memory sharing technigues: version 173a which
reduces the IPC' bytes, and version 1°3b which reduces the number of 1PC' messages
as well. But in order to understand the causes and benefits of this design decision.
we must first examine the syvstem’s interprocess comununication activities.

The original IPC' in Matisse was done by processes sending requests and receiv-
ing data via sockets. In Matisse. the requests and data are sent back and forth in
messages. Lach message contains a [OID.Slot Value] triplet. The OID is the ob-
ject’s unique 1D. and the Slot-Value pair is part of the object’s content. An object is
represented by a set ol triplets with the same OID (see IMigure 2-5).

Typically, the Editor would send to the Workshop a data request for an [O1D.Slot].
or send a notification regarding a particular [O1D.Slot.Value| that has been modified.
The Workshop. upon receiving either the request or the notification, performs the
necessary search and update functions, respectively, and then sends the entire object
back to the Editor. Depending on the nature of the request and notifications, tens of
messages and thousands of bytes are sent back and forth between the processes for
each request or notification.

Versions 11 and 172 of Matisse use the above method ol interprocess communi-

41

Change 1PC bytes | Change IPC msgs | Change CPU Time

V172 -1.87% 0% 5.05%
EEL -10.86% 0% 15387
Vi— 130 -41.97% 0% %

[Vida— Vi3b -85.23% -82.95% -20. 1%
p— - Oy = = s = , m M.-.—,.u.;aa:-..mw.:a_

[V=130 -01.42% -82.95% -31.00%

Table 4.4: Performance Profile. test scenario 2

cation. Version 13, however, eliminates most of the byte transfer by allowing the
Workshop to only send back the small messages containing the fixed length [O1D.Slot]
pairs of data. while making the Editor perform the lookup and copy of large Valuc
data fields directly from the Workshop's memory. As illustrated by Table 4.1 and
Table 4.2, the amount of data being sent across sockets is reduced by one-third.
boosting -overall system performance by 16%. Consider the fact that 40% ol version
1'I’s overhead is 1P(. a reduction of 15.8% total system time is equivalent to roughly
39.5% reduction of the original IPC overhead. knowing that all other activities remain
unchanged.

However, we can do much better in Version 1730 by reducing not ouly the nuwmber
of IPC' messages being sent between the two threads, but also the nmumber of 1P
messages in transit. In this version, the Workshop only sends one message. containing
a single [OID]. to the Editor for each object that is modified. The Editor thus has a
greater responsibility to look up the Slot and Value attributes of the desired object.
In contrast to version 1°3a. where there were still tens of [OID.Slot] messages sent
(same OID, but different Slots) for each modified object. version 176 has only one
message sent for each modified object. Ilere. we reduced both the IPC! hytes and
messages (over 80% from 173a) and obtained significant improvements. Since most
of the IPC messages are small. and the cost of sending messages up to a certain
size i3 constant, the benefit is not fully realized if we just reduced the IPC' hytes.
For example, in our system. the cost is the same for messages up to 8 bytes in

size. so it is not very beneficial to send just small data packets. This explains why

the large reduction in IPC byte transport in version 1°3a did not vield comparable
performance improvement. In test scenario [where the communication activities
involve many small messages. a reduction of 80.88% of IPC' hytes and 80.50%. of 1P
messages reduced the overall CPU time by 28.50%. On the other hand, in the test
scenario 2 where the conmmunication pattern is comprised of fewer but larger messages.
a comparable reduction of 85.23% ol 1PC' bytes and 82.95% ol IP(' messages led (o a
much smaller reduction of 20.44% overall CPU time.

The performance data in Table 3 and Table 4 show that. in version 17h. we
have reduced the byte traffic by as much as 85% and ('PU time by 28% over version
V3a. C'omparing this performance with the original version 177, we have achieved
approximately 40% reduction in CPU time in running our set of test cases. This
reduction means we have virtually eliminated the original system overhead related
to IPC of 40%. Obviously. there is still a trickle of IPC' messages present in the
system since we have not completely abandoned the practice. but the performance
improvement resulting from any secondary eflects have covered this cost. In addition.
the performance gained from these secondary eflects also covered the cost incurred

from the shared-memory read/write protocol.

43

Chapter 5

Conclusion

5.1 Summary

As stated in chapter 1. this project did not attempt to prescribe the proper devel-
opment of new applications for a multithreaded platform. but rather our goal was to
establish a uselul [ramework for [uture users to accomplish successtul migration of ex-
isting applications in order to obtain better performance with minimal eflorts. It was
our projection and successful finding that existing singlethreaded applications with
a major overhead of message-based interprocess communication can benefit greatly
from the light-weight threads and the shared-memory interprocess communication
mechanism offered by a multithreaded environment.

We also introduced Matisse in the first chapter as the target of our experiment
and discussed the reasons why it is a suitable candidate: its high overliead ol imessage-
based IPC' and the fact that the processes can be merged without any loss of [une-
tionality. To the end user. the re-architected Matisse looks and hehaves just like the
former one, only faster and more responsive.

Chapter 2 discussed the system architecture of Matisse in detail. It also identified
the subsystems to be ported and illustrated the coordination between them. The
chapter focused especially on the similar internal data representation of each compo-
nent and the communication pattern that was the main target of the re-architecture.

By providing some details about the operation and coordination model of Matisse's

44

components — the Workshop and the Editor processes — this chapter provided the
readers with the background information needed to understand the architectural re-
design discussed in chapter 3.

Chapter 3 presented the migration process taking the application from the sin-
glethreaded UNIX environment to the multithreaded MACI environment. We dis-
cussed the three phases of the migration process in great detail from the initial port
to the merging of singlethreaded tasks to the replacement of message-based IPC' with
shared-memory IPC. Throughout the discussion. we enumerated the problems and
difficulties faced during each phase of the process. examined their causes. and rve-
ported our solutions. The problems we faced ranged from the well known thread
synchronization problem to the more peculiar uncrec routines. It is hoped that the
reader will find this section useful in considering and attempting to performn future
ports of applications from singlethreaded to multithreaded environments.

C'hapter 4 reported the performance analysis and discussed onr findings. We pre-
sented the techniques utilized to obtain the experimental data. especially our timing
measirements of the threads to account for both IPC overhead and ('PU costs. We
further described the testing scenarios and analyzed their operations and resource
composition to identify the sources of costs and benefits in the performance analysis.

And finally, this chapter attempls to swimmarize the whole process, Lo assess our
resulls, and to take a brief look abead into the possible future extensions of the current

eflort.

5.2 Discussion and future considerations

5.2.1 Shared-memory architecture

[n general, the result of the experiment matched our initial expectation. As reported
in chapter 4, we virtually eliminated the cost of message-based 1PC' by replacing
it with shared-memory TPC. Of course, the replacement of message-hased 1PC' by

shared-memory [P (' is not possible for existing applications under the traditional sin-

glethreaded environment since singlethreaded processes cannot share memory. Even
with operating systems providing interprocess shared memory mechanisms such as
UNIX System V. shared memory can only he done by explicitly allocating and man-
aging specific regions of memory. With a svstem like Malisse which has two separate
LISP environments, sharing LISP objects via an explicitly managed region of mem-
ory would require implementing a garbage collector while not making nse of the ones
already available in each LISP environment. This redundant work and potentially
complicated process defeats the purpose of a quick and inexpensive migration of ex-
isting application to the new platform.

Furthermore. we have formulated a rough guideline for the migration process. By
laying out the steps and identifving the potential problems associating with each step.,
we hope future migrations can be done quickly and painlessly.

In the migration process. however. not all components of a multi-process applica-
tion need to be merged as concurrent threads, nor would we want to do so. Although
migrating singlethreaded processes to concurrent threads within a multithreaded task
enables the threads to communicate cheaply via shared-memory, the trade off is that
we lose the generality of the original process model: losely-coupled processes can be
run simultaneously across different machines. On the other haud. tightly-coupled
threads sharing memory are restricted to the same machine. In effect, by porting
and merging processes as concurrent threads. the threads must now be executed on
the same machine, whereas they could be run on different machines before. There-
fore, candidates of this re-architecture process should be those that have a large [P'(
overhead. and always reside on the same machine. Many existing applications fit this

requirement, and are good candidates for migration.

5.2.2 System threads vs user threads

The concept of merging singlethreaded processes to gain shared-memory communi-
cation capability can be applied to coroutine packages as well. Such an approach
does not require a migration to an operating svstem with multithreaded support. but

rather the merging of processes to user threads of a coroutine package. This merging

46

process is similar to that described in chapter 3. If the user already has a coroutine
package that manages the scheduling ol user threads. the merge can vield performance
improvement by the resulting user threads having shared-memory 1PC.

In order to speculate about the relative performance of an application using user
threads versus the performance of the same application using kernel threads, some
background on threads scheduling is needed. First of all. as a scheduler picks a thread
to run on a processor in a time-sharing fashion. each kernel thread gets a time slice.
User threads, however., multiplex within the process’ single time slice. and are not
seen by the system scheduler.

Thus. with the scheduling issues illustrated. we would expect that on a lightly
loaded system, the performance of an application using coroutine package (with user
threads) would be comparable or faster than the performance of the same application
running in a multithreaded environment (with svstem threads). The reason for this is
that on a lightly loaded system, ideally with only one process and its user threads. the
process can have much CPU time. And within this one time slice, the user threads
can slightly outperform light-weight kernel threads because they are lighter in weight
and have the same ability to directly share memory.

However, in a heavily loaded system. we would expect the coroutine implemen-
tation to run slower since each system thread is a candidate to be scheduled on a
processor, while the user threads are only recognized as one schedulable. Therelore,
when there is competition among threads to run. a multi-system threaded applica-
tion is given more opportunity to run. Another important difference hetween user
and kernel threads is that in a multithreaded multiprocessor environment, the sys-
tem threads can potentially be scheduled on several processors. exploiting the real
concurrency, while the user threads in a coroutine package can be scheduled and run

oun only one processor at a time.

5.2.3 Multiprocessor implications

A logical next step would be to rehost Alatisse onto a multithreaded. multiprocessor

environment running MACH. The migration to this type of environment would require

47

no additional work bevoud that described. In a multiprocessor MACII environment,
each thread is a candidate for scheduling on any processor. If two or more threads
sharing memory are run concurrently on different processors. the system transpar-
ently manages the shared memory addressed by the different C'PUls. Given that
the operating system for the multiprocessor machine is designed and implemented
properly. then we would expect to see a multithreaded application run faster on a
multiprocessor NMACH machine than on a uniprocessor MACIH machine as a result of
the parallelism of the multiprocessor architecture.

To better take advantage of multiprocessor machines. however, this work can be
extended to break up the code into many threads. hence “parallelize™ the application
whenever possible. The numerous threads can then be run in parallel across the pro-
cessors, thereby effectively utilizing the hardware resources. For example, in Matisse,
the Workshop's garbage collector can be implemented as a sepavate thread. Also.
object updates or queries can be done in parallel by forking a thread for each job.
rather then simply doing them in serial.

In conclusion, the primary purpose of the work presented in this thesis is to
establish a useful framework for the migration of existing singlethreaded applications
to a multithreacded environment. Such applications can then undergo a rapid and
simple re-architecture to replace tlie costly message-hased interprocess communication
mechanism with shared-memory IPC. It is also an intention of this work to explore,
identify, and resolve the many common problems of the migration process. In doing
0. it is hoped that future implementors will find this a useful guide in targeting
and porting similar svstems to multithreaded environments in order to achieve better

performance with minimal cost and effort.

Bibliography

[ABB*86] M.J. Accetta, R.V. Baron, W. Bolosky, D.B. Golub, R.F. Rashid,

[AGS89]

[Art88]

[Bet]

[BS90]

[CD88)

[CM89a]

A. Tevanian, and M.W. Young. Mach: A new kernel foundation for

unix development. Proceedings of Summer Useniz, page 5, July 1986.

J. Ambras, P.K. Garg, and R. Splitter. The workshop: A team program-
ming environment. Proceedings of the 2nd European Software Engineering

Productivity Conference, pages 55-57, May 1989.

Artificial Intelligent Section. Lyndon B. Jonhson Space Center. Clips

reference manual, 1988,

David M. Betz. Xlisp: An object-oriented lisp. Unpublished manual,
pages 1-3. Available from author at P. O. Box 144, Peterborough, NH
03458, April 1989.

B.W. Beach and R. Splitter. Eclipse: A c-based inference engine embed-
ded in a lisp interpreter. Technical Report HPL-90-213, Hewlett-Packard
Laboratories, Software Systems Lab, pages 1-2, December 1990.

E.C. Cooper and R.P. Draves. C threads. Technical Report CMU-CS-
88-154, Carnegie-Mellon University, School of Computer Science, pages
1-10, June 1988.

D.L. Caswell and S. Marovich. Stl mach project retrospective. Technical
Report STL-89-20, Hewlett-Packard Laboratories, Software Systems Lab,
pages 2-4, August 1989.

49

[CM89b)

[ea85]

[FR86]

[GBF+91]

[GYA90a]

[GYA90D]

[JRG*+87a)

[JRG*87D)

D.L. Caswell and S. Marovich. Stl mach project retrospective. Technical
Report STL-89-20, Hewlett-Packard Laboratories, Software Systems Lab,
pages 13-14, August 1989.

M. Satyanarayanan et. al. The itc distributed file system: Principles and
design. ACM 10th Symposium on Operating Systems Principles, pages
35-50, December 1985.

R. Fitzgerald and R.F. Rashid. The integration of virtual memory man-

agement and inpterprocess communication in accent. ACM Transactions

on Computer Systems, 4(2):147-149, May 1986.

P. K. Garg, B. Beach, W. Fong, A. Ishizaki, and T. Pham. Matisse:
A knowledge-based team programming environment. Technical report,

Hewlett-Packard Laboratories, Software Systems Lab, in preparation,

April 1991.

P.K. Garg, D. Young, and J. Ambras. An emacs-based software object
editor. Technical Report HPL-90-72, Hewlett-Packard Laboratories, Soft-
ware Systems Lab, pages 2-4, June 1990,

P.K. Garg, D. Young, and J. Ambras. An emacs-based software object
editor. Technical Report HPL-90-72, Hewlett-Packard Laboratories, Soft-
ware Systems Lab, pages 4-9, June 1990.

A. Tevanian Jr., R.F. Rashid, D.B. Golub, D.L. Black, E. Cooper, and
M.W. Young. Mach threads and the unix kernel: The battle for control.
Technical Report CMU-CS-87-149, Carnegie-Mellon University, School of
Computer Science, pages 1-2, August 1987.

A. Tevanian Jr., R.F. Rashid, D.B. Golub, D.L. Black, E. Cooper, and
M.W. Young. Mach threads and the unix kernel: The battle for control.
Technical Report CMU-CS-87-149, Carnegie-Mellon University, School of
Computer Science, pages 0-1, August 1987.

50

[Pha90]

[Ras86]

[Sal66]

[TRS7]

Thuan Q. Pham. Creating a hierarchical network of objects that repre-
sents a file of programs. Bachelor Thesis in Computer Science and Engi-

neering, Massachusetts Institute of Technology, pages 1-5, June 1990.

Richard F. Rashid. Threads of a new system. UNIX Review, page 39,
August 1986.

Jerome H. Saltzer. Traffic Control in a Multiplezed Computer System.
PhD thesis, Department of Electrical Engineering, Massachusetts Insti-
tute of Technology, page 2, June 1966.

A. Tevanian and R.F. Rashid. Mach: A basis for future unix development.
Technical Report CMU-CS-87-139, Carnegie-Mellon University, School of
Computer Science, pages 1-2, June 1987.

51

