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Chapter 1 

Introduction 

1.1 Thesis of experhnentation 

Light.-\.veight computation threads in a multi-threaded operating system IHOUJise to 

provide low-overhead computation objects compared to their couuterparts in coun•n

tional process-oriented operating systems. Traditional distributed applic<~l ions us

ing heavy-weight. and disjoint computation processes could be merged as concurrent 

t.hreads in a multi- threaded platform to take ad vantage of faster context switches Rnd 

interprocess communication Yia shared memory. The hope is that Hwrt> will he sul J

st.antia.l pf'rforma.nce improYement ovf:'r existing impknwutations w.ith si11gk tltn'ad 

processes. Au iu n :-stigation of this hope is made by port.iug au existin g d islri bu ted 

system from UNIX to l\IACII and merging some (single-thread) pnKesses .iuto one 

mult i-t.hrea.d task. This study addresses the benefits. the difficulties, and tlw trade

oJfs of such a nwpping. \Ve suggest some feasible architectures for migrating curre1d 

distributed systems to multithreaded environmeuts. 

Before discussing this issue further. it is helpful to reca ll a few definitions of 

processes, fasb. and threads. 

• A proce8s is "a. program in execution·~ [SalG6]. As the term is usuall~· used, it 

includes a. rollection of system resources (i.e. memory image. register sets. open 

file descriptors. program counter. etc.) " ·it:h a single thread of executiou. 

10 



• A task is a collection of resources equivalent to a process \Yithout. an execution 

t.luea.d, namely a.n execution enYironment: in which threads mny run [Ras86). A 

thread, on the other hand. is Hw bnsic unit of comput<~tion. or simply n program 

counter with a. register set and a coutext \Yithiu a process. Each thread operat<·R 

within the context of exactly o11e task. and man~· thread:; ca.tl f o-exist ,,· if hiu 

the same parent task~ sharing all task resources [.JnG+STa]. 

The usual process abstraction has too many things auchorcd to it to meet. t.lw needs 

of aggressively parallel applications; as a result. process creation and context Rwit ch

ing result in high overhead on the part of the operating system. often using far more 

rE'sonrces than one would like [ABD+S6). As a result. various efforts have lwen made 

by programmers to circumvent this problem. such as using coroutine packages to simu

late a.nd manage multiple contexts \\'ithin a. single process [ea85. JRG+STb). Uom'\Tr. 

these coroutine packages cannot take a.(h·antage of the operating system's sched uling 

services since the kernel has no knowledge of such coroutines or sub-processes. Thus. 

the question of alleviating expeusi,-e cout.ext. s\\'it cltiug is Bot cotllpldcly nddrc·s:o:ed 

by usPr-crea.ted coroutines ami sub-processes. Furti!Prmore. s incP tlu" pron-•sses do 

uot share resources. distributed applications "·ith large amount of data sharing tnusf. 

conununicate via interprocess communication ( lPC) mechanistns, which are costly 

both in time and resources. 

The problems described above can be addressed by the operating systems sup

porting multithreading, with light-weight threads and shared resources . Beiug ligltt

weigiJL creating and maintaining threads require lower operating system overhead 

than heavier processes. A thread. \dwn creatfxl. has access to all Uw process iufor

mat ion in the task . During a context s,,·itch. if a thread to be ntn belongs to Uw s<~nw 

pa reu t. t.ask as the thread curren t.ly occupying the processor. only a few r<'giRf.('l.'S need 

to be saTed. leaving Inost of the task's resources in place. In nddition . tl lf' tltr<eads 

within a task are managed automatically by the operating s~·s tem kernel. Since the 

cotnput.at.ion threads share all resources within a ta~lc including the memory address 

space, "inter-thread'' conununica.tion can be done cheaply and efficiently Yi<l direct 

data sharing. 

11 



For the reasons mentioned. a systematic reduction of heay~·-\Yeight processes to 

light-wC'ight threads, \vhcneHT possible. provides a su bstantial impron='lllf'tJf. in pcrfor

ruance. However, the threads facility restricts the architecture of dist.ri buted syst.e111s . 

Further cost is incurred by the effort spent. in porting existing software systems to a 

new. mult.icthreaded platform, which has some cHfTiculties of its own. Clearly, perfor

mance improvements co1ne at. the expense of the lost generality to the process model: 

loosely-coupled processes can be run simultaneously in different madtiues: tightly

coupled (shared memory) threads must. reside iu the same machine. This Jssue 1s 

investigated by a. UNIX-to-l\IACH port of an existing distributed application. mesh

ing together some processes to threads witltiu the same enclosing task. Thi::; ::;f.11dy 

identifi<:>s t.he problems and benefits of such a re-architedure for future disf rib11fcd 

systems in single and multithreaded environments. 

1.2 The experiment 

;\[atis8f is a. knowledge-based team programming em·ironment under den·lopntenf 

at liP Laboratories. Matisse offers automated support for communication and co

ordination efforts in team programming [AGS89]. Its archit.t:>cture is illustrated i11 

Figme 1-1. The core of each unit of ;Uatisse includes au inference engine, an ohj<~c t 

editor. and a. graphical object browser. a ll residing in the user 's workstation. Wit b 

the current model of implementation. each component 'rithin a nuit of Jfa(i8.w is a 

separate process. These processes are executed concurrenfb· and nntst. share illfornJa

t.ion by passing large amounts of data back a.nd forth bet,weu theu1. For exan tpk·. 

when the user is using the editor to n1odif,y his program objects. the editor. t.lw object 

brmvser. aud the inference engine must commuuic<1te frequeutly. transferri ng numer

ous requests and very large amounts of data Yia. sockets to update and reflect tile most 

rE'cent. and correct. sytem configuration. In a time-sharing computing envirotHnent. 

managing concurrent processes is expensive because of the context switches needed 

to distribute CPU time to each of the processes. Consequently. by merging sonw of 

these lTNIX processes into threads "·it.hiu the same l\IACH tas k. \Ye can obtai11 sig-

12 



-···-····-·-····--····--·· -·-· - .. ···- ·· .. ·-· · ... .. - ·--···-·-···--·-·---·-

nificant. performance improvement wit.b light-weight threads and \Yith intf'r-process 

communication via direct memory sharing. 

In this experiment. it is sufficient to port aud merge only the l l"orA·shnp process 

and the' Editor process. These processes art:' prime candidates to r<'c<:'in:- the hc'llC'

fit.s of the merge because the~- ahYays reside on the same machine and nnu:,f shi:ln-' 

a large collection of data. via numerous large IPC messages . The !orality of I h<'SI' 

proc~sses enctble them to be merged \\'ithout any loss of generality or nsef'ulness , and 

t.heir int.erprocess communication can benefit greatly fron1 direct. memory sharing. 

P<:>rforming the port and the merge. and using the resulting multi-threaded applica

t.ions provide us some iusights about lhe costs. the benefit.s, and the f'easibilit.y of' such 

re-ar chi teet ure. 

This experiment is divided into three stages. In the first phase, Matis.<~c is ported 

from UNIX to ~1AC'H \Yith its architecture essentially unaltered. This initial port 

maps each UNIX process to a l\IACII task with only one execution thread. ;\ serie~ 

of 1neasurements are taken to assess the performance of the r..L\. C l1 i tuplenwntaf ion 

of Mafi88f and to serve as a baseline for future meas ureme11t.s . In the second phase. 

t.he hvo single-thread t.asks are merged into a 2-thrf'ad t ask. hut with the hvo t hreads 

still communicating aud sharing da.t a Yia :::ocket.s. Another ro und of perform ott<"<' 

nwa.surement. is taken here . and the results . when compared against the baselitw. 

prO\·ide us some information about the perfonnauce of the system relating to l1aYing 

mttlt.i-t.lneaded task versus single-threaded tasks. lu the third ami final stage of t lte 

experiment , large IPC messages between threads are eliminated and replan.'d \\'ith 

a. memory-sharing protocol. At the compldion of this phase. performance meas nre

mcnts are taken and compared against. the first t\YO. 

In addition to proYiding per forma nee measuremeu t.s , the experiment. giYe::: us so1nc 

unde rst and ing of the difficulty of this porting process and souw insights iut.o the 

troublesome areas . including the conditions and requirements that make the operation 

possible and optimal (dat-a representa tion. locality, garbage coiled ion. d. c). 1' llf'::;c 

rules of thumb might. be a. helpful guide iu identifying a suital>le architect. tm'. or rt"

a.rcl.ti tecture, of processes and threads for distributed soft"·are sysfellls iu the future . 

13 
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---------- -- ---- ~----

Intuition and past. research on related issues [ABB+SG. FR86, .JRG+Sia. TRS'i] 

suggest that t.ltere is a substantial performance improvement to be gailwd frottl 

t.he successful reduction of heavy-weight. processes to light-weight. threads and inter

process communication via memory sharing techniques . Howen'r. such itn)H'o\·emellt 

does not. come without ~osts and it is up t.o the designer to judge whet.lwr t.his ap

proach is feasible for his or her specific <tpplications . 

Chapter 2 describes the architecture of Jlaiis.'5f . C'h<tpler :3 discusses I be isstws and 

problems encountered during the port and the re-architedure. Chapter J prPsf'nt.s tiJ0 

performance data at several stages of the experiment and t.he ana.!~·sis of the costs and 

benefits learned from the experiment of multithreaded architecture. Clwpl.er !) ofrers 

the conclusion and thoughts about. the experiments as m=·ll as listing the possibk 

issues wort.h investigating in thE' future. 

1.3 Facility and equipment 

The experiment. is carried out using the equipment and facilities of the l.h~\rlett

Packard Laboratories. iUatis.<~f is nuTeutly operating ou a single-processor work~ t.a

f.ion IIP9000j:Ji0 running HP-FX 1.0. The l\lACH port operatef' on th E' llP9000j:F>O 

running HP's l\lAC'll 2.0 [C'l\I89a]. l\IACH 2.5. although haYing a bel.ler scheduling 

algorithm t.han n 'rsion 2.0 currently used. is not complete enough on the llP!lOOO 

workstation to be used as a platform for t.he experiment. All hard\\'are and soft \\'<ll'f' 

needs are provided by t.he Hewlett-Packard Laboratories. 
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Chapter 2 

System Architecture 

As depicted in Figure 1-L Mafi88e is a distributed application with 3 primary co.lll

ponent.s: a persistent object base. an inference engine. and various interacti,·e tools 

snch as an object editor and an object brom::er. 

The persistent Objat Ba8r. is pro,·ided by an objecf-orif.'nted database. The Oh

jrct Ba8f not only stores the programming objects gener<tted by t.hc wwr::- . but also 

records the evolution of objects by keepi11g the links between their successive vt-·rs ious. 

furt-hermore. the object-oriented database provides the capabilities to support object 

inheritance, special object clustering. and object. references [AGS89] . Since 1\la.tis::w 

operates on top of an ob jed platform, file systems are only au auxiliary parf. of the 

etwironment.. In order to support thE' existing file-basE'd software systems. and to 

utilize the existing file- based tools (e.g .. compiler. debugger. text formatter. d c) . it 

is necessary to interface the ohject and file domains. A set of import [Pha!IO] and 

e:rporf [GadH] tools is pro,·ided to sen·e this purpose. 

The second major component of Jfrdi88c is the inference engine called t.hc H'OI·I··-

8hop. The IVorhd10p is a rule-based inference engine and sern:'S also as a lund cHdw 

of program objects in a user's workstation. \Yhile its main object.iYe is to perform 

t.he pa.ttem matchings on program objects that are needed to support the associat.in, 

queries, the IVork~hop process also uses its tule base to intelJigeutly manage the soft

ware development process - from automatic constraint checking to inYoking external 

tools on an event-driven basis [AGS89]. Since the lVorkshop process uses declarat.in:· 
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rules rather t han conn:-ntiona.l , hard-coJ ed , procedures . the user has the flexibility to 

customize the set of rules according to his needs . development: models, a.ud policies. 

The t.hirtl and most Yisible component of Jl!atisse is the set of user iuterac1.in' 

tools used to edit and display program objects. The two most notable tools are t he 

Object Editor and the Object Browser (also known simply as Editor and Bro!l'.'lf·r). 

The Edito·r is an Emacs based editing and browsing interface [G'r.A90a], capable of 

displaying programming objects in ind0:pendent sections of the dis play buffer. This 

capability eua.bles powerful ways of displaying objects. such as groupiug together all 

the objects of a certain characteri stic in the same text buffer for editing. l\ J or~>,·er . 

by clicking the mouse on the selected regions of the text. lJUffer. tlw E ditor ca n be mwd 

simply a.s a navigation tool through t.he net\\"ork of locally cached objects. Ou i lw 

other hand , a. more graphically-oriented Brou·:::er tno,·ides a. powerful way to nadgat f' 

t.hrough the local object store using X "·idgets. \Vit.h a few simple mousf' dicks. 

one can select to view, create, or delete the program objects. t heir links, a nd their 

at tributes. 

For the purpose of this experiment. we concentrate on a subset of Jlati.c;;.<;r inYoldng 

the Object Ba.'lf. the Workshop. a.nd the Editor (Figure 2-1 ). ~lore specifically, \H' 

ported t.he lVork·.c;;hop process a.nd the Editor process to ~L\CII tasks. tlwn merged 

them i nt.o a multithreaded task and all<.med them to share 1lw :'Ia uw pool of obi( 'ct 

da.ta. Although we won' t be rnodifying t lw Objrcl JJast in1pl<·nwntatiou, its pr<-'st-' tl(T 

in the Cl.rchitect.ure is necessary since it is an integral part of Jfat i;:::.c;;r . Bot.lt Uw old 

processes and the new task ultimately connect to t he Objrct Ba8f in order to fuud ion . 

A decision was made to merge the TVork·shop and t he Editor beca use thf'y arc 

prime candidates to benefit. from such a. re-arch itedure . The two processes share 

la rge amounts of da ta by communicating constantly with one another , ·ia sockets. By 

merging these two processes int.o a. multithreaded task and enabling them to share 

data directly, we have an improvement in performance resulting from ligh t. context 

s;vit.ches and from not haYing to spend heaYy resources on inter process commuu ica

tion. The following sect. ions describe in detail t.he \\·or king iui eruals of the Editor am 1 

t.lw \ Vorkshop processes. 

17 
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·----·--------------~-------- - - - -··----·------ .. .. ....... . . 

Object! 
Has-class: c-function 
Has Name : printf 
Author: Torn Harry 
Job : Demo 
Elernent~of: derno-objects.c 
Has-source : 
printf(arg) 
char *arg ; 

{ 

} 

while (*arg++) 
putc(*arg) ; 

Figure 2-2: An example objf:'d 

2.1 Object editor 

The Editor is essentially an Emacs-basul So.ftwart Object Editor [GYA90bJ that has 

the capability to display program objects with different sizf:'s and having different. 

facets in the same text buffers. This special capability is 1nade possiblE' by super

imposing a structure on top of the linear structure of Emac.« [C:YA90b]. eJfedivdy 

di viding the text stream int-o sections. Each section can then haw it s own displa.'· 

attributes such as color. visibility. n ame. de. An '·object"· . to the editor. is sin1 ply <1 

colkd -ion of segments in the displ a~· buffer. Figure 2-2 a nd Figure 2-: ~ sbo\\" somP of 

tlw ways an object can be displayed according to the user"s desire. 

Like Er1wcs, the user can interact. " ·ith the Editor ,·ia the ke.'·boa.rd and t.he mousP. 

\Vith the extension of sections, the Editor has more sophisticated editing features 

such as designating a certain section to be "hidden"'. or to be "read-only", in order 

to prevent unauthorized a.nd umva.nted modifications. for example. Furt.lwrmore. 

sed.ions allows us the convenient \\"a.y of issuing commands via mouse clicks in Hw 

text buffer. Dy issuing mouse clicks in cert ain customizable sections of the text bufl"er. 

the user ca.n either navigate through the loccd o bject cache. or itJYoke ar1 ions 1o lw 
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I* <<printf (Demo) >> *I 
printf(arg) 

{ 

} 

char *arg ; 

while ( *arg++) 
putc(*arg) ; 

-. . ...... ..... .... - ---·-··--·-·-······ -- - -···· ----·-··-·- ---···--··----------... ·-· -··· ----------··· ... ------·-

Figure 2-:3: A sample display for a function object 

performed. 

Slot 
n 

Elements 

Slot 
n 

Figure 2--!: Display attributes structure of a segment 

To support such a display capability. the Editor must maintain some information 

about t.lw nature of the objects being displayed. This information is s tored in a tree of 

attribute nodes as illustrated in figure 2-4. Each of the slot nodes conta in informnf.ion 

about the object (e.g. object class. inheritance. text string . display attributes. etc.) . 

l\lucb of the information stored here is also present in the IForl.·shop. and Jocquires 

freqnent updat es and synchronizations of the two object bases n s th(' program nhjf't'ts 

in them are createcL used. and modified. Here. the potential for a perform«nce g« in 

from the mult.i-thread merge is great because we would not lun·e to spend resourn,s 

in managing redundant information. <md especially not having to s pend the efforf 111 

s.ruchronizing the two sets of data. 
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Figure 2-5: Workshop object structure. a) "Obj~ct x·· is a collc>ction of object-slot
Yalue triples with the same ob jcct ID. b) We can thiuk of an object iu tlte Workshop 
as having a set of slot-value pairs. 

2.2 Workshop process 

The other major component. of the system is the lrork8hop. \Yhich is a coml,iu afion 

of a rule-based inference engine and a heap of storage for locally cadwd objects. 

The lForkshop not only provides a. shared object base of information, but also sup

ports rule-based reasonings for managing the soft,Yare developmeut. process such as 

const.ra.iut checking. or processing a user's requests. 

The Workshop , also known as Eclipse a C-bo.c;;ed lnferenre Engi11e Eml)f(ldul in 

a Lisp lnterpnder [BS90). is a product of fusing together XLISP [Bet89) and CLIPS 

[Art88]. with some added features . XLISP is a smalL fasL and pO\\'f'rful LrSP in

tf'rpretf>r written in C. and CLIPS is a C-b<~sed fonYard chaining iuft·reucf' t>ll,!!;im·. 

Togf>llwr. they form a flexible. customizabh'. C-hased infereucing systnn with o l1jf'rt 

st.orage capabilities. The ll'ork·shop c<1u thus <1dminist.er the software developnwul 

ac:t.i,·it.ies by using the set of user-defined rules to intelligent.}:· manage data in t!J(' 

object. base. 

Data in the em ·workshop is stored simultaneously in two different formats: as fact s 

to satisfy the rule base's pattern ma.tching requirements. and as a pool of obju:t-8/of

valut triples to facilitate efficient access to objects when direct lookup is ueeded. Each 
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fad. corresponds to an objfct-slot-r:nl!lf triple. and a program object is a colkctiou of 

objrcf-.<;lot-vn1ue triples that have the same object ID (i.e. the first element). Figurr> 2-

!j illustrates the object structure within the lForkshop process. Although slightly 

different in format, these objects owrlap a great deal wit.h those in the Editor. A 

merge of the two object. bases would reduce the cost of baYing to maintain 1'~1\undant 

information. The redundancy here does not prm·ide us any adYantage iu a ~wnse of 

da.t.a replication . 

2.3 Interaction 

Together , the Editor and rrork.shop cooperate to support. users ' transactions. wit.h 

the Editor handles most. of the I/0 while t.he lrork-::hop performs most. of t.lw colllJHl

t.at.ions. In the Current implementation, the Editor accepts a user's iuput. from the 

key board and mouse, then passes data via sockets to the lFork.shop for processing. 

\Vhen the Workshop finishes the requested job. it. sends the data back. also Yia sock

ets. to the waiting Editor. At this time. the Editor uses the data to updat.e its display 

screen and to synchronize its object pool \\'ith that of the I l'ork<lhop by replacing old 

entries with the new data. 

By merging the two processes as threads and combining tlwir daJa storag<'s in 

shared memory. we ha.Ye a performance gain not. only from interprocess commuuic<l

t.ion Yia memory sharing. but also from not. ha ,·ing to main t aiu UJllH~cessary copies of 

data. 



Chapter 3 

System Re-architecture 

As mentioned in chapter 1, the experiment is dh-ided into three stages. We first 

p(:'rformed a. "straight port'' of the Editor and the \Yorkshop, making each process 

a singlethrea.ded task in the new environment. The second stage iHYoh·ed merginp; 

these two singldhreaded tasks into one task with two threads while kaviug their 

iuterprocess conununication mechanisms undisturbed . Fin aU_,-. in Uw tl1ird s tage. we 

replaced most of the IPC messages between the two threads \rith some primitive 

routines that. allow direct access of data. iu memory between threads. aud a tww 

rommunication protorol using these primitin's. Figure :3-1 graphirally describes t.his 

experiment, showing the shared memory and illustrating also the process, task, and 

thread boundaries . The division of the experiment into these three stages is naturaL 

since each stage has its own set. of problems that.. for the most part, is distinct. and 

unrelated to the others. The follo"·ing sections describe each phase of Uw project . 

discuss the difficulties that \Yere encounterecL and render our solutions. 

3.1 From processes to single-thread tasks 

The first step of porting Jfatisse from a single-threaded to a mult.i-t.hreaded ell\·i

ronment is necessa.ry to establish a. stable foundation on 'vhich the experiments with 

light-weight threads and shared memory can be performed. For this port.ioH of t.he ex

periment, our ouly concern was to reconstruct the system on the lle\V multithn:-aded 
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Figure 1-1: Re-architecture process: from disjoint single-thread tasks to mult.i-t breads 
task with memory sharing capability. a) single- thread tasks. b) nntlt.i- t.hn:'ad task. c) 
mult.i-thread task with memory sharing. 

platform, making each former single-thread process a ne" · siuglethread tc-,sl.,;. This 

porting effort exposed the dissimilarities between the tn·o operating systems. both 

in features a.ud implemeutat.iou. Furthermore. this version of the system sen·es as a 

baseline against which subsequent versions are measured and compared. 

Although this is the simplest and most st.ra.ight.-forward step of the experiment. it 

is, however, not necessarily easy, depending on the portability of the existiug syst f'ttl. 

This step can be as simple as a recompilation. or as arduous as a major rewrit e. 

1;-or example, our \Vorkshop port \Yent particularly smoothly. requiring litlk l:wyond 

setting up the directories. the 1\Iakefile. atHl the recompilatiou. Ou the other bawl. 

our Editor, a modified Emacs. was particularly hard to port siuce it s con1pkx and 

peculiar code exploited many system-specific features. and exposed numE'rous sysf<:'m 

differences. 

\Vhile porting. we encountered the usual problem of having different IHHltf's for 

[equi\'alent} systems calls and different directory hiearchy between t.he file sysh~ms. 

This problem can be rectified by meticulously checking, identifying. and tracking 

down the right functions and files in the uew em·ironmeut. 

A slightly harder problem we encountered '"as the difference of implementat ion 

and system behaviors between the operatiug systems. Om~ nota ble example was t he 
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imcompatible side-effed.s of the fundions rr.gcmp/ rege:r: one set of function stored 

t.lw da.t.a to be processed in an internal st.atk structure, and thus could not he called 

recursively. while the other took the argument from t.he program st.ack, contained 

no static internal state, and could be used recursiYely by the program. \Yhn1 faring 

t.his typ<' of discr<>pancy, where the sonrr.c of tlH' problem is e1nbrddcd d<'<'P iusid(' 

the system libraries. it \Yas not possible for us to re-implemeut these libraries to suit 

only our needs since there are other existing programs that may already depend on 

these system behaYiors. Our solution \\·as to defiue the macros. functions . alld data 

st.rudures necessary to use o\·er the existing resources. 

The problems described above a.re just a. fe,Y of the many that could arise in P\'f' l'Y 

port. effort. There is no hard and fast rule for telling in what form a.tl(\ Ha vor the 

problems will come under, but their cause is most often some system dq>f:'tt<lencies 

or a.ssumpt.ions hy the application program that hnppen to expose the dissimi larilif's 

bebveen the two operating systems. These problems are st.ra ight.-for"·a rd and can he 

resolved with some debugging. Our port of i\lati.<:.<:f was determined "complctf'" \Vlwn 

we have achieYed identical system beha.Yior. in both look and feeL of six t.ypica l usage 

sce11a.nos. 

3.2 Merging single-thread tasks to one tnttlti-thread 

task 

Once the initial port was completed, we proceeded t.o merge the t. \ro single-thread 

tasks into one 2-thread task. In order to measure the effects of light-wf'igltt thr£>a ds 011 

s.rstem performance. and to effectively deal with the issues arising frolll the 11w.rg<·'. 

we le ft the interprocess communicatio11 mechanism unchanged. The perfom1ance 

measurements taken at this stage. ''"hen compared \Yith the base linf' , gaTe us somf' 

insights about the ad,'antages to be gainf'd from con,·erting an existing siuglf'- lhreaded 

application to a multi-threaded one. Furthermore, the merge also presentPd us sonw 

interesting problems n"ga.rding tl.te use of common s.vstem resources and synchroniza

tion between t.hreads, particularly " ·ith the termination of threads and restartiug 
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them before and after llllf;l'fc1 . The following sections describe in turn the ntt'rgc 

process, the problems encountered, and their solutions. 

3.2.1 Running with threads 

In order to merge the singlethreaded tasks. we first reso!Yed duplicate file nanws 

aud global variable names of the preYiously di~joiut programs. irwludiug the 111ai 11 

ft.tllctions which had to be renamed. A new moin fundion was illlpletnented to set up 

global, shared resources such as thread IDs. mntex and condition ,-ariables. T his nut in 

function forked the Editor t hread and then rau the last ll"ork-<~lwp code as part of the 

main thread. In addition. since the thread interface allowed only one argu nte11t t.o 

be passed to a thread at. creation t ime, the maiu function must parse the couHnau<l

line arguments, package them in to appropriate structures. aud hand them to tlw 

appropriate tbreads \vhen calling the thread creation routiue. 

3.2.2 1/0 contention 

After bringing up the multi-threaded system. we noticed that it lwbaw·d UHpn·

dicta.bl_v on a random set of user iupu ts. Upon in vestigatiug tlw maJ t.er. \\"e uncoH'I'!'d 

a problem of resource contention between the t.wo co11current threads. In our ca::w. the 

t. wo threads both used the fi le descriptor associated '"ith the standard iuput. st.ream 

and listened on thi s channel for user's input. 2 . Facing this problem. we <'if.h<·' r ha.d 

t.o modify the Editor's code extensh-ely to haw it look for input in the real channel 

of the editing window, or to remow the \Vorkshop's dependence on 8fdin. \Ve dtose 

tlw latter option because the modification of code required \Yas much simpler. Our 

solution was to dup the open file descriptor stdin and giw this copy to t.he \Vorkshop. 

As a result, the two processes no longer contend for the same file descriptor. This 

1 U ntN C is a utility that. dumps an imag~ of a running program into a fl\e i11 ordr r to rPst art it. 
lat Pr a.t. that. point. 

2 Alt.hongh the Editor- has it own f"dit.in g IYindow and do!"s not w:w the shd l window t.ha!. tht' otlwr 
t.hrPad uses for input (which is r~a lly .sfdin). its code is written in sw:h a way that t. he core or f.lw 
Edifo1· expects user inputs from .5tdi11 by having some routines maps t he channel associated wi th Hw 
ed it.ing window t.o sldin. The t.wo threads ' depeud~nce on the input. s tream created a confusion thnt 
Jed t.o syst.em failure. See Figure 3-2. 
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Figure :3-2: resource contention: the communication channel .stdin was ''dup·· ed and 
tbe copy was giYen to the \Vorkshop process to aToid contention. 

problem is graphically described by Figure 3-2. 

3.2.3 Problems with UNEXEC 

i\latisse takes a rather long time to start up because it. has to load in t.lw neressary 

files (such as the rules for the inference engine) needed for oper<~tion. Bt·e~use of 
' 

this lengthy process . it is conYenient and useful to terminate a session of work b.Y 

freezing the image of the program and dumping out. to an n.out format fil e ra.pHble 

of being restarted by the operating system. This is accomplished by a mechanis111 

called un u·rr. Howewr. making unuu· work for a multi-threaded i ask requires th at 

\Ve properly s tart up the threads. coonlinate their tenniuatious. and clf'all up after 

the~' exit. 

First. of all. in order for the program to be restarted after au un r::rrc. we n111s l call 

the thread initialization routine to set up the internal system resources needf:'d for 

operation since the individual thread st at es were not san:~d by une:rec. Since the effert.s 

of calling the thread initialization routine are not idempotent , in many s:vstems. tltis 



thread initialization routine is automatically called by the start up code, and o11.ly 

once. Our C thrrads [C'D88) package. for example. saved a static fl<~g to iudicaff' 

whether or not the initialization routine was called and is used to aYoid initializiug 

more than once. This static flag prevented the initialization routine from beiug called 

\Yhen we restarted from the unf:-;rec image. To resoln:- this problem. we tnodirled tlw 

thread library and made the flag aYail<,,ble as a global ,·arialJ]e so that th(' progra111 

can set it and force the C start up code to call the initialization routine at Ute uext 

start up. 

Even if thf" thread initialization ron tine were being called ever~· t i nw. \H' s1 iII \H're 

not able to restart the dumped image of the program if it \\·as not. deaued up propf:'rl _,. 

before the unexec clump. The problem here was that the thread initialization rou t ine 

did not set. up new internal data structures to support the startup threads if these 

strud ures \Vere present in the dumped image from the JH·e,·ious run. \Vorse yd. it 

did not. re-init.ialize these structures corr<:>sponding t.o the states of the newly sfad1:' d 

threads, and left the st.a.le data. in these structures to corrupt the threads. which led 

to system crashes. To remedy this problem, we extended the thread-exit codP to free 

all such data structures, thus forced the thread initialization code to create new ones 

each time the program \Vas restarted front an un euc. 

Finally. we must ensure that the thread calling t lw unexec codP lw tlw l<~ s t otw 

t.o exit.. This requirement ensures that. all other threads h<lH' cleanly ex ited and can 

be safely restarted. This was accomplished b:y making this last thread wait for the 

others to t.ermiuate via a join operation. In our application. \\' llf'n the us<'r issuE's 

a termination command. the Editor tells the 'Vorkshop to terminate before calliug 

the thread exit routine to terminate itself (Figure 3-3). The Workshop. on the other 

hand. waits for the join operation to succeed before calling uncrec t.o dump out the 

program. vVhen the join operation succeeds. we are guaranteed tha.t the Editor t hrecHI 

has exited cleanly (i.e. the thread-exit. routine had time to clean up all the internal 

data. structures ), and it is safe t.o proceed with the unexec dump. 
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Figure :3-:3: synchronization on thread exit. To ensure that the Editor thread exit.s 
d eauly, the \Vorkshop thread waits for the join operation t.o complete before proceed
ing t.o call une:uc 

3.3 Sharing memory 

This third an d final stage of the experiment. inYoh·ed the remo,·al of large IPC mes

sages between the \Vorkshop and Editor threads. In it s place, we implement<'d a. 

communicat ion protocol using direct memory lookup. specifically keeping a ll data iu 

the heap of t he \Vorkshop thread and allowing the Edi tor to read them as needed . 

The object lookup is facilitated by a thin layer of rout ines that read the needed da ta 

from the Workshop's heap and conw rt it to the format usable by the Edit o r. This 

layer of code is completely transparent to both the \Vorkshop and the Edit or. To 

protect the integri ty of the data during the critical time when d at a. are read a nd 

conYertecL the execution of this code and the \Yorkshop ·s garbage collector tnust. I)(' 

nmt ually exdusiYe3. This is accomplished by a simple locking scheme described in 

section :3.:3.2. 

3T he Workshop ·s updat.e operations and the garbage collector are already mutually exclusiw 
since t.lwy a.re part. of a single thread of control. H~>ad- Write synchroniza.ton arE' discnssE'd iu SPcl.ion 
a.:u. 
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Figure :3-4: Data sharing: The ne\V read prirnitive transparently reads the data di
rectly from the \Vorkshop heap and com·erting it to the format usable by the Editor. 
thus eliminating the need for IPC. 

3.3.1 Object modeling 

Having merged the threads, the \Vorkshop and Editor now shared the same address 

space and can access each others· data directly. At this tinH:', we no longer needed 

to kE'ep two separate copies of data in both the \Vorkshop and the Editor. Since the 

\'Vorkshop process does most of the computation with objects, our decision was to 

let. the Workshop thread manage all the data. Furthermore. siuce the hm threads 

use the data iu different formats. ·we implemented the memory-read primitiv<"s to 

perform a conversion from the \Vorkshop format to that of tl10 Edit or. l11 effect. 

this re<ul operation is transparent to the Editor. but the data comes directly from 

the \Vorkshop~s storage. Figure :3--l illustrates the design of the ne\v read mechanism. 

which bypasses the interprocess communication channel and enables data to be shn red 

bC:>tween the YVorkshop and the Editor. 

\Vith the \Vorkshop modifying objects and the Editor reading them to update the 

display, we must ensure that these two operations do uot contend \vith one a.uot.lwr. 

For this, a. simple lockiug scheme implemented a.t. the object-base level (j .e. one 

mutex locks the entire object base) or a.t the finer object. level (i.e. one mutex per 

object ) would ensure the mutual exclusion of reading and 'nit.ing 011 the same object.. 

However, certain systems do allow us to forgo the expense of some locking if we 
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figure :3-5: Read/>vrite synchronization: If the \vrite routine cour1ects or disconJ1ects 
the link to new/ old ob jed. data in a. last. atomic st.ep. there won't be any conflict. 
wi t.h the read routine looking at. the same piece of data at the same time. 

carefully take cHh·antage of its semantics. For example. in Jfati.c:.c:e, the Workshop 

first. modifies th<" object. then sends a notice to the Editor about t.lw changed stat.us. 

The Editor then reads the object to update its display. \Yith this ::wnumtic the 

Editor never reads an object. for new information unless the \Yorkshop has finished 

changing it and sent its notification. Prior to recei,·ing the notification . any Editor 

look up of the object (due to a screen refresh. for example) would be interested iu 

the old object. In the rare event where the Editor's object lookup on an object is 

performed in the small time frame when the \Vorkshop just n1odified an ob.i<'d., aiHI. 

the notification of the changes is being sent to the editor, what the Editor gets back 

from the read operation is the new version of the object. not the old one it is seeking. 

This "error" is perfectly harmless, since the Editor will receive the notification of !.hot 

object being modified soon. and would update its display \Yith the ne\Y infonnat.ion 

artyway. To ensure correctness, we must take care that when adding or rcmoYillg 

olJjed. attributes, the update functions add the link to neiY iuformat.iou or cut t.lw 

link from data. to be deleted as one last step (Figure :3-5). Prior to this step, ally read 

done by the Editor will see the old object: aHer this step. the Editor's read \rill gt•t 

t.he modified object. 

It is worth mentioning here tha.t. other implementations for this type of data 

sharing is possible, such as providing a sepa.rat.e thread to mauage the entire sluued 

object. base, including synchronization primiti\·es and garbage collection (Figure :}. 



Obj•ct pool 

Figure :)-6: Memory management. a.lterna t i ,-e: the ob jed management mecha.nisn1 c au 
be implemented by an independent thread. Synchrouization of object access lwt \H'<-'11 

the \Vorkshop and Editor threads can be handled by the Object l\lauager. 

G). Ilov,:ever, due to the architecture of J!afi.':lsc it was much simpler. ami just. as 

effective. for us to work with the scheme described above. Psing a general dat.a sharing 

method would have required us to re"-rite many memory ma.na.gen1e.nt operations ar.1.d 

t.he garbage collector. which are already present as part of t.hf' Workshop. Desig11ers 

of future systems should carefully consider exploiting the existing architecture Lwfore 

resort.ing to this geuera.l scheme. 

3.3.2 Garbage collection considerations 

Having the two threads sharing the same heap of data, v;e had to consider carefully the 

memory management issues. specifically the garbage collector's operation. to protect 

the system from object movements due to the garbage collector during Uw crit.iral 

read/write regions. In this version of J.lfati.<~8f . the Editor accE'sses Workshop ·s heap 

of data directly and must be protected from the 'Vorkshop's garbage collect.or during 

a cri1.iral time ·when it is holding pointers to \Vorkshop 's ob ject and perforllliug f lw 



reading and conversion bchveen object formats. If this provision is not nwde. it. .is 

possible that the \Vorkshop' garbage collector is called to perform its job and relocot.es 

tlw data being pointed to by the Editor amidst its read operation. \\·hicl1 results iu a 

segmentation fault as the Editor attempts to read the data frotn the pointer that is 

no longer valid. This mutual cxclusion Lwt.wcen the \Yorkslwp garbage collector ami 

the Editor's read primitive can be achien." by a simple mutex lock to be st·ized by 

either of these two entities as they try to get to the data. Locking cau be done at o 

finer object level, but the infrequent Editor's look-ups make its costly and infeasible 

to implement a mutex for each object. 

This simple locking scheme is sufficient. if there is never a need for obtaining the 

mutex lock again during the critical section where the mutex lock is already beld by 

either the garbage collector or the read primitive. However. in our system. there is a 

problem when the memory of the object heap runs low during the critical sect ion of 

the Editor's rea.d operation. In this case, the Editor thread would block by ntuniug 

tlw garho.ge collector. which would block "·ait.ing for the mutex lock to lw rdf';.uwd 

by t.he Editor. This deadlock can be resoh·ed by requiring thE' Editor to y ield t lw 

mutex lock t.o the garbage collector and redo its read operation lat.er4 . A Yery simple 

heuristic which also worked for us was to let the garbage collector abort. '"lwu t.lw 

mutex lock is held by the Editor thread in its critical segment.. and to rely on the 

Workshop to call the gabage collector soon after the Editor releases t.he mutex lock". 

Thus, with the effort of porting Jlati.::se to the new multithreaded E'nviroi!Utellt. 

of merging the siuglethreacled tasks to a multithread task, and of replacing most of 

the IPC byte transfers with the ne\Y memory-sharing protocoL '"e haYe produn"d a 

uew system with is identical iu appearance to the original oue, but. \Yith HHtch lwU(-'1' 

speed and responsin"ness. The performance improvement is discussed in the folkmiHg 

chapter. 

4The r f do can be done simply by having the read primit.iw releast>s tlw lock. call t.he garbage 
collt>ctor , and t.hen call itself wit.h the original argunwnts. 

5This works in ilfa.iis.sc because the Edit.or thr!"ad Sf"izes t.he mutex fo rk very infrerplf"llf.ly. and 
t.lw \Vorkshop t.hread does all of the information processing which almost. always not.ice t.he n~d for 
garbagt> collection before t.he memory is depleted. 



Chapter 4 

Performance Evaluation 

This chapter reports and ana.lyzes the performance data collected with versions of 

Mali::::::e from each stage of the experiment, illustrating the benefits and perfonnance 

improvements result.ing from having light-weight threads and memory-sharing inter

process comnumicat ion (IPC'). 

As described by the previous chapters. iVai ist~F eYoh·f:'d through threE' stages. Ver

sion 1 is a "straight port", featuring a one-to-one mapping of t.TNIX processes to 

l\L\CII singlethrea.ded tasks. Version 2 is the merge of these singlet.hreadecl tasks 

into one multithreaded task with the IPC' mechanism unaltered. Aud fiHally, Yersion 

:3 is the multithreaded version similar to ,·ersion 2, but most of the IP(' messnges haY<' 

been replaced by direct. read/m·ite of data in shared memory lwtwe<•n Llw t llr('iHh'l. 

However, it was also necessary to implement ,·ersion :3 in t.\\·o steps: iu the first we 

only reduced the number of bytes being transferred (Version :Ja). and iu the second 

vVf' rf'dttced both the number of IPC' messages and bytes (Version :Jb ). It. became ap

parent during the experiment that reducing the number of IPC messages sent would 

provide us even better performance improYement. than by reducing the number of IP C' 

bytes a.lone. The rationale for this hYo-st.eps implementation will be discussed later 

iu this chapter. Also, we made no attempt t.o compare the perfonnance of the ported 

system to the origina.l one running on the UNIX platform siuce there are simply too 

many system differences between ONIX and l\IACH to have a meaningful compari

son. Therefore, version 1 of J!ati.ss€ serws as the baseline with which all perfornw11n' 
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measuremeuts are compared. 

4.1 Timing meas.urements 

To dfed.iYel:r illustrate the p€'rformance improw•ment from the rearcbit.edtu·e dE'

scribed in the pre,~ious chapter, two SCPHarios with significant IPC' overlwad \H'rP 

chosen as benchmark tests for each version of the system as it evoln·d from two 

singlethreaded tasks to one multithreaded task \Yith shared-memory IPC'. The IPC 

O\'€'rhead of these scenarios, mostly invoh·ing passing data back and forth bet ween 

the \Vorkshop and the Editor. is estimated a.t -!0%. \Ve use our e.~timat e here be

cause the actual execution time. comprised of user time1 and sy.sf em timf2
, cannot 

be precisely measured across thread bou11daries. The task of breaking a 1nessage iuto 

data packets, sending t-.b.e packets across the wire. and reassembling the data Rtream . 

starts in one thread and ends in another. T he system timing utilities available to 

us could not be used to measure system execution time across tll read boundaries. 

Thus, in order to coarsely nwasure the percentage of IPC on'rhelld in a t.ranR<lrt ion. 

we cornputed , from time stamps, the rfal time it. takes to send a messagP. from the 

sending thread to the recei,,ing thread. Since we can only rneasure this using nal 

time, the number we get is, of course, slightl_,. larger than the actual real execution 

time of the two entities due to some other system thrP.ads (such as the scheduler. 

the \vindow manager) having the C'Pl.T in between. Other t.hau the essential systf:'lll 

threads, the experimental threads are the only user threads running iu a.n ext.n"lllf'ly 

lightly loaded system. The CPU cost of the system threads. bei11g constant across 

allmeasuremeuts, does not afff.'ct. tht> q11alitative analysis of the performancf:' profllt:', 

and amounts only to a small offset f<~ctor in the quanti latin:' analysis. Along with the 

timing measurements. a pair of counters is also implemented to count t.lw lllllllbt-,•r of 

lllE'Ssages and the munber of bytes being sent ,-ia. the communic<~ tion sockets . 

T he execution time of each scenario is measured b:;· obtaining the total ruuniug 

1 uso' time is the t.ot.a.l amout. of time t.hl:' system spends executing iu IISf'l' rnode 
2 s:y.stem time is t.he t.ot.al amount of t.ime t.he system spends execut.iug on behalf of !lw t hrl:'ad o r 

process. 
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Figure 4-1: Timing measurement . This operation scenario wntains :3 Editor tr<~n s

act.ions and 1 TVorkc:hop transaction. Th<> total execution tirne is the sum of thrf'e 
( t.-!- tl) and one ( t:3-t2 ). in both user time and system time. Note that t.lw idle tinte 
is not. charged to .the execution time of either thread. 

time of all threads (or task=:, in versiOn 1) between its start and end points. 'fhe 

acquisition of user time and .<:y.<:tun tim e.· is done by calling the system utility g(fl'lt.<:n.gc 

Wit.h gctrusage, we have a timing granularity of 1 microsecond. \Yhicb is aclequat.e 

for measuring transaction time lasting in the order of t.f:'ns of seconds. The following 

paragraph and Figure 4-1 illustrate the timing measuremt>nt for a typical transaction . 

Initially, both the Editor and the \Yorkshop stay idle in t.lwir res jwd.in:· .~rluf 

loops waiting for some triggering eYent either from t he user or from each other. This 

idle time is not. charged to the executing time of the threads in our measnrt:'Hlt'nts. 

Immediately after the user issues a conunand (\·ia the Editor ) to start. a transaction. 

the Editor takes a. snapshot of its r unning t.ime. say tl , by calling grtrusngc Since 

the communication is aBynchronous, after sending data to t.he \Vorkshop, t.l~e Ed itor 

returns to it:s waiting loop to wait for another ewnt. However , before returning to the 

waiting loop, it makes another ca.ll to gefruMge. t4. '"hich is u sed later to compute 

the Editor's recent execution t ime for the transaction. The \Vorkshop on t.he o1.lwr 
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hand, makes a calJ to getrusage, t2, immediately upon recei,·ing the data and then 

proceeds to read data from the socket. After assembling the message. the \Vorksl1op 

carries out the requested job. and intcracth·ely seuJs the rE'stdt.s back to the Edit.or as 

they become available. At the end of the job, the \Yorkslwp once again sa n1pks t l1e 

timP., t:J. and returns to its waiting loop. The differences between t 4 and fl. /.]and 1.2 

are the Editor's and \Vorkshop's executiou time for the transaction. By summing Uw 

execution times. we obtain the total execution time of the system for the transaction. 

N ot.e also that each of our test scenarios in Yoh·P.s a number of transactions from both 

the Editor and the \Vorkshop, so the execution time of the sceuario is the sum of 

execution times of all the transactions inYoh·ed. 

4.2 Test cases 

The first test case is the startup sequence of actions that takP.s place as eflch user 

logs into 1llati.'~sf. This scenario has a high percentage of IPC activities .because 

th(' Edit.or and the \Vorkshop must communicate "·ith each olhf:'r extensin{v to fld 

up tbe environment for the user. The setup process involn's the Editor get.t.ing t.lw 

Humerous program objects from the \Vorkshop and initializing the display snee11. 

This interprocess communication is done via sockets in version 1 and 2. and via 

direct memory sharing in version 3 of the system. 

The second test case im'oh·es another IPC-intensiw sequence of actions: modifing 

and saving a program object. In order to saYe a text object, the Editor first sends 

the modified object. to the \Vorkshop where it is Yalidatecl, updated. stored. flltl.l sent 

back to the Edit.or t.o be displayed. lu addition. the \Yorkshop uses its rule base to 

determine and update the necessary changes iu the system configuration. 

Although the IPC overhead iu both test cases is high (about ,1()</(. ). they are 

sLighlly different in composition. The first t-est. case irl'>oln's numerons small IPC 

messages, while the second test case is comprised of fewer, but larger. IPC messages. 

Tl1is difference plays a key role in explaini11g the amount of system performanc!" 

improvement and will be discussed in the following sections. 



4.3 Experitnental results and analysis 

Before disntssing the experimental rcsu Its. it is 11ecessa ry to ]a bel ihe Y<H.ious n·rsiom: 

and components of the system for comparison. First. the differ('nces betwef'n ,·ersions 

of Mati.~sf are highLighted to be later used in the performance analysis. 

• Version 1·1 comprises the singlethrraded \Vorkshop and Editor tasks. each com

municating with the other by sending messages Yia sockets . 

• Version F2 is a multifhreadrdtask "·ith concurrent Workshop and Editor thrf'ads. 

each still conununicating with the other by sending messages ,·ia socket.s. 

• Version l '.'la is a multithreadfd task wit.h concurrent \Yorkshop awl Editor 

threads, and most of the bytes formerly communicated ow:-r sockets arf:' now 

conununicated by a shared-memory read/write protocol. This Yersion of l.lw 

system reduces significantly t.he number of IPC bytes being sent Yia sockets. 

• Version V3b is a multiihreadul task " ·ith concurrent \\'orkshop au<.l Editor 

threads, and most of the IPC messages han:· been replaced by a shared-nwrnory 

read/write protocol. This version of the system reduces significantly tlw nuinl)('r 

of both the IPC bytes and IPC' messages being sent via sockets. 

The followings are symbols and labels used in the discussion on performance aual

ysJs: 

• Scenario 1 and Sn'nario 2 are the first and second test casf:'s descrilwd 111 the 

previous section, resped.i vely. 

• CPU Tim e is the stun of u8er timr and 8.lJ8f em time of aH releYaut threads. 

• The percentage change of either CPU time or IPC bytes is computed accord i11g 

the the formula (v2- vl)/vl * 100. The negative sign indicates a reduction of 

cost, or. equivalently, improvernent of performance. 
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----------~----~----------··-------------

Changf l/1 /PC byte8 Change m CPfJ Time 
l .:l-+ 1".2 -:3.80% - .r:> .:3() ';(. 
l''2-+ F:Ja -:{1.25% -11..11 % 

Fl-+ F.Ja -TL87% 1 r: ) ~'A:· - .).~:., ( ' 

Table 4.1: Performance ImproYemenL test scenario 1 

Cha nge. Ill JPC bytu: Change Ill CPl ; 1'i me 
1'1--+ Fg -1.87% -).0!)% 
~ -~- I ,..Ja -40.86{;7(, - L5.:38% 
Vl-t F.'in --!1.97% -17.11 rp;:, 

Ta.lJle 4.2: Performa.uce ImproYement. test scenario 2 

4.3.1 Light-weight threads and shared 1nen1ory 

Tlte first set of experiments pits versions 1·1 . V~. and V.9a together t.o contpare tlw 

performance improvemeuts resulting from tlte migration of a distributed a.pplicatiou 

from two singlethrea.ded tasks to a multithreaded task and then to a mult if breaded 

task with shared memory iut.erprocess communication. Table 4.1 and Table 4.2 il

lustrate t.he percentage reduction in IPC b~·t.es and C'Pl1 time bet \\"een f'Very hm 

ve.rsions compared . 

As seen in Table 4.1 and Table 4.2. the impron'ment. between 1'1 and l '•J is 

iudicat.i\'e of the light-weight thread issues. Pufort.unately, only a slight impron:'mf:'nf. 

is ohselTed here because the scheduler of our I\L-\CII 2 .0 does not proYide Light-\Yeight 

threads with much advantage over conYentioual processes or tasks. and crossing l.he 

kernel hounda.ry is expensive (as much as for processes) . \Yith a smarter schedule r 

such as one in MACH 2.53 • we would expect to win in the event tha.t h vo consccuti n , 

threads occupying a processor execute within the same task, and therefore. share Ow 

sa.me a.dtlress space. For example, our system (IlP9000 series 350) uses a virtual cache 

which can hold information for one address space at a time. A stnarf-cr sclwdu.kr 

:J Alt.hough l\IACH 2.5 exists for the UP!)OOO machines. it was not readily aYailabiP for t his 
experiment . 

39 



could notice that the next thread nmnmg on the proC"essor uses t h<" same addrc:'ss 

space as the previous on, and avoid any 11nnecessary cache flu sh. Thus, by allo\\· illg 

the next. thread to use Yalid data in the cache rather than causing exveusin' cache 

misses ( aft.er an unnecessary cache flusl1). a n intelligent scheduler call nd the cost of 

a context. S\\"itch on a virtual cache machine [C'l\IS9b]. 

The tables also show that. the performance improYE·meut bet\reeu 1·2 aud I".Ja. 

however, is much more significant. By shifting from socket-based lPC t.o shan'd

memory !PC, we reduced the number of bytes to be sent Yia sockets by :31% and 

impron·d the overall system speed by 11%. Since roughly 40% of the original system 

over head is IPC related , we han• effectiwly slashed the IPC OYerhea.d by approxi-

t l . ')r:O:t ma. .e y - ·J ;o. 

The comparision between 1·1 a.nd F.Ja indicates the total performance impron"

men t from having both the benefits of light-weight thrf.'ads and meinory -sharing IP C. 

T his con1pa.rision is less specific thau the previous t.wo comparisons si11<:e it does 

not distinguish the contribution of each component of interest. but does provide the 

total effect of the performance improvement . Note also that. t he cumulative HgurP 

presented in this comparision is not the simple addit ion of the previous two compar

ISons, but slightly less. This is correct. since the comparison between VJ and 1'3o 

is the improvem fnf of version l ":Ja tcith r e8JHcf to rersion VJ , not the i mprot•emf llf 

of l't.Tsio n V.Z with r esJH:ct to l'eJ·sion Vl and th e improt·emul l of t•er 8ion l":Jo ll'ilh 

re.spect to rersion td . 

In addition, second order effects exist which iudirect.ly impro\'e s.rstem perfor

mance. T hese beneficial factors ocnu-r«:>d naturally as part. of our re-archit ed un· of 

Matisse and required no additional ''"ork. For example. with t.he data sharing in ver

sion V:Ja, the Editor no longer has t.o kef'p its local copy of t he d<~ta., s<wiug "1001\. of 

nwmory at run time. This version is lf:'aner than version F2. takes up less memory. 

and can thus run faster. Being smaller in size, the merged version has less paging 

overhead, takes much less t ime to load iuto memory. and is less likely to be swapped 

out during a. context swit.ch. 
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- --- ----------·--· ---------- ------ ---- --- - ---

Change IPC bytes Change !PC msg8 Cha11qf CPl i Tim ( 
Vl-1 '2 -3.80(1(, 0% -5.:30tlf', 
1·:2- l"3a -31.25% o(;;:, - j l.ll (lc· 
1'1- V8a -3:3.8i% 0(;;{, -1 0.8:l(J.., 

l ":Ja- 1·3b -80.88% -80.50% -28.!)0% 

FJ- V3b -8i.:35(1(, -80.!)0(/c, -:3!).81 <y., 

Table 4.3: Performance Profile, test sceuario 1 

4.3.2 Bytes vs messages 

Although t.he use of shared memory for interprocess conumtuicat.ion already JHOYide 

us with some performance improvement. it. was discovered that. \H~ can do much better 

t.ha.n this by not only reducing the number of bytes being sent between threads, but 

also t.he number of IPC messages. This sectiou examines the result of t. wo slight .ly 

diffe rent va.riat.ions of version LJ's men10ry sharing techniques: ,.·ersion l ':la which 

reduces the IPC' bytes, and version 1"-Jb which reduces t.he nmnber of IPC Jnessages 

as well. But in order to understand the causes and benefits of this tlt'sigu decision. 

\VI" must first exami.tw the system's interprocess communication activities . 

The original IPC in Jl!atissc was done by processes sending requests and rPceiY

ing data via. socket-s. In JUati.<Jsf. the requests and data are sent back and fort It in 

mcssagcs. Each 11HS8agc contains a [OJD,Slot,\'alue] triplet. T he OlD is the ob

ject 's unique ID, and the Slot-Value pair is part of the object's content . An obju·t is 

represeiJI.ed by a set. of triplets with the same OlD (see figure 2-0). 

Typically, the Editor would send to the Workshop a data request for an [OlD,Slotj, 

or send a. notification regarding a particular [OID.Slot..Value] that has been modifkd . 

The \Vorkshop. upon receiving either the request. or the notification, performs the 

n~cPssary search and update fun ctions, respecti\'ely, and then semls the eut ire objPcl 

back to the Editor. Depending on the nature of the request and notifications, tens of 

messages and t.housa.nds of bytes are sent back and forth between the processes for 

each request. or notiflca t.ion. 

Versions Vi and l ':J of Matisse use the ahon" method of iuterprocess communi-
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Change JP(' byfe8 Change !PC msgs Chongc ('Plr Tim r 
1 T J.-.-+ l :i -1.8717· o<l(, -G.001h· 
vt~ l':Ja -40.86% 0% l r; 'J:-\f/\, - •). •. t. (' 

Vi~ V:Ja -41.97% 0% -l7.ll !7[, 
·-· 

VS'a~ l r:Jb -8!).2:3% -8 2.~J!)% -:w.-14% 
.. . 

1'1---t l'.]b -91.-!21
/(· -82.%?(. -TLO!i1X· 

Table '1.4: Perfonnance Profile. test sceua.rio 2 

cation. Version V3a, however, eliminates most of the byte t.rausfer by aUowiug the 

Workshop to only send back the small messages containing the fixed lengt.h [OID.Slot] 

pairs of data. while making the Editor perform the lookup and copy of la.rgf' l 'aluc 

data fields direct.l.Y from the Workshop's rnemory. As illustrated by Table 4.1 and 

Table 4.2, the amount. of data being sent across socket.s is reduced by one-t hird. 

boosting oYerall system performance by 16%. Consider the fact that. 40% of Ycrsiou 

l ' l's overhead is IPC. a reduction of 1!).8% total system time is equh·aleut. t.o ro ugltly 

:J!J.G% reduction of the original IPC on~rhead. knm\'ing that all other activities remain 

unchanged. 

However. we can do much better in Version l '.Jb by reducing not only the LHllnl>t'r 

of IPC mPssages being Sf'nt behveen the two threads, but also the unmber of IPC' 

messages in transit. In this version, the Workshop only sends one message, containing 

a single [OlD]. to the Editor for each object that is modified. The Editor thus has a 

grPater rPsponsibilit.y to look up the Slot and Value attributes of the df's ired object. 

In contrast. to version l'.Ja. where there were still tens of [OID.Slot] messages sent 

(same OlD. but different. Slots ) for each modified object.. Yersion l ':]b has only O.IH' 

tllf'ssage sent for each modified objed. Here. \\'e reduced both the IPC bytes and 

uwssages (over sor;(, from F 3H) and obtained significant irnprowmeHts. Since JllOS f. 

of the lPC messages are smalL and t he cost of sending mE'ssages up to a cert a in 

size is constant, the benefit is not fully realized if we just. reduced the IPC bytes. 

For example, in our s.ystem. the cost is the same for messages up t.o 81\ bytes in 

size, so it. is not w ry bendicial to send just small da ta packets. This explains why 



the large reduct ion in IP C byte transport in version l"3a did not yield comparable 

performance impron~ment. In test scenario 1 where the communication act ivit.ies 

involve ma.n.r small messages, a reduction of 80.88% of IPC' bytes and 80.00% of IPC 

messages reduced the overall CPF time by 28.50(/( .. On the other halH.L in Uw test 

scenario 2 where the conuuuuicat.ion pat. teru is comprised of fe\\·er but larger 11wssa.gcs. 

a comparable reduction of 8G.2:J<J(, of JPC bytes aud 82.~)!)<1(, of IPC messages led 1.o a. 

much smaller reduction of 20.44% on'raU CPU time. 

The performance data in Table :3 and Table -1 show that. in vers.1on I ":Jb. we 

have reduced the byte traffic by as much as 85% and C'PtT time by 28<1(, on'r Yersion 

I '.:la. Comparing this perfonnance " ·ith the original wrsion 1·1. \H' have achiew~d 

approximately clO% reduction in CPl_T time in ruuuing our set of test. cnses. This 

rf'duct.ion means we have Yirt. ually eliminated the original system overheatl n'lat cd 

to IP(: of 40(/(,. Obviously. there is st. ill a trickle of I P C' messages presen (. in the 

system since we have not. completely abandoned the practice. but the perfonuaiiCf' 

improvement resulting from any secondary effects han:• covered this cost. IH addition. 

the performance gained from these secondary effects also covc>red the cost. iucurred 

from the shared-memory read/,n-ite protocol. 



Chapter 5 

Conclusion 

5.1 Summary 

As st.at.ed in chapter 1. this project did not attempt to prescribe the proper dcn' l

opment of new applications for a multithreaded plntfonn, but: rather our gon l was to 

establish a useful framework for future users to accomplish successful migration of ex

isting applications in order to obtain better performance with minimal efforts. It was 

our projection aud successful fincliug that existing singletlaeaded a pplications with 

a major overhead of message-based iut.erprocess commuuicatiou can benefit. greatly 

from the light-weight. threads and the shared-memory int.erprocess communication 

mechanism offered by a multithreaded ern·ironment. 

'Ve also introduced Mafi88f in the first chapter as the target of our expe riment 

and discussed the reasons wh.Y it is a suitable candidate: its high overhead of nJ.essage

based IPC' and the fact. that the processes can be llWrged without any loss of func

tionality. To the end user. the re-architeded Jfafi.-:;.-:;e looks and Lwhan•s just likf' lbt> 

former one, only fas ter and more responsin?. 

Chapter 2 discussed the system architecture of Mafi88f: in detail. It also ide ntified 

the subsystems to be ported and illustrated the coordination between them. The 

cltapt.er focused especially on the similar internal data. representation of each cotnpo

tlent and the conunuuication pattern that was the main target of the n:•-archit.ectun•. 

By providing some details about. the operation and coordination Inodel of Mati88( 's 



components - the \Vorkshop and t.he Editor processes - t.his chapt.E'r provided Uw 

readers wit.h t.he background informa.tion needed to understand the a.rclritcctural r<:'

clcsign discussed in chapter 3 . 

C'hapt(:'l' 3 presented the migration process taking the application from the siu

glet.hrea.ded T.TNIX environment to the multithreaded l\IACII endronment.. We dis

cussed the three phases of the migration process in great detail from the iuitial port 

to t:he merging of singlethreaded tasks to the replacement of message-based IPC with 

shared-memory IPC. Throughout the discussion. \ve enumerated the problems and 

difficuHies faced during each phase of the process. examin<"d their causes. and re

ported our solut.ious. The prohlf'lllS \YE' faced ranged from the well knowu thread 

8!Jnch·roni::o.tion problem to the more peculiar !11/ C:I'fC routines . It is hoped f . h<~t I ll(' 

reader will find this section useful in considering and attempt ing to perform fuhrre 

ports of applications from singlethreadcd to multithreaded environments . 

Chapter 4 reported the performance analysis and discussed om fiudingf\ . 'Ve pre

sented the techniques utilized to obtain the experimental data. especially our timiug 

1nea.snrement.s of the threads to account for both IPC' overlwad aud C'PlT cost.s. \V(' 

further described the testing scenarios and flnalyzed thE'ir opt"utt.ions nud resou rn· 

composition to identify the sources of costs and benefits in the performance analysis. 

And finally, this chapter attempts to summarize the whole process, to assf'ss our 

results. a nd t.o take a brief look ahead into the possible future extensions of the CUlTf'l\f. 

e>ff ort.. 

5.2 Discussion and future considerations 

5.2.1 Shared-metnory architecture 

In general. the result of the experiment matched our initial expectation . As reported 

in cha.pter 4, we Yirt ually eliminated the cost of message-based IPC' by replacing 

it with shared-memor_y IPC. Of course, the replacement of message-based IPC by 

shared-memory IPC' is not possible for existing applications undPr the traditional sin-
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glet.lueaded environment since singlethreaded processes cannot share memory. Even 

with operating systems providing interprocess shared memory mE:>chauisms sud1 as 

UNIX System V, shared memory ca.n only be done by explicitly allocating and man

agiug specific regions of memory. \Vi th a system likf:' Jfali.'38C "·hich has t \ro scpara.le 

LISP em·ironments. sharing LISP objects Yia an explicitly nutnaged region of melll

or_y \vould require implementing a garbage collector while not making use of the o1.ws 

a.lready available in each LISP em·ironment. This redundant work and poteu1.ially 

complicated process defea.ts the purpose of a. quick and inexpensive migration of ex

ist.illg application to t he new platform. 

Furthermore, we have formulated a rough guideline for the migration proc:-ess. By 

laying out the steps and identifying the potential problems associating \Yit h each step. 

we hope future migrations can be done quickly and painlessly. 

In the migration process. howeYer , not all componen ts of a multi-process applin•

tion need to be merged as concurrent threads. nor would we want to do so. Al1 hough 

migrating singlethreaded processes to concurrent t hreads within a nHdtitltn•aded l. a::d\ 

enables the threads t.o communicate cheaply Yin shared-memory. the tratk orr.· iR that 

we lose the generality of the original process model: losely-coupled processes cau be 

run simultaneously across different machines. On the other hand. tightly-couplf:'d 

threads sharing memory are restricted to the sam e machine. In effect , by portillg 

and merging processes as concurrent threads. the threads must now lw executed ou 

the same machine. whereas they could be run on different machines bdore. There

fore, candidates of this re-a.rchitecture process should be those that ha.Ye a largE' IPC 

oYerheacL and always reside on t he same machine. 1\lauy existing applications fit litis 

requirement , and are good candidatE's for migration. 

5.2.2 System threads vs user threads 

T he concept of merging singlethreaded process€'s to gain shared-memory conlmuni

cation capability can be applied to corout ine packages as " -ell. Such an approach 

does not require a migration to an opE'rating system \Yit.h multithreaded sup port.. but 

rather the merging of processes to user threads of a coroutine package. This merging 
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process is similar to that described in chapter 3. If the user already has a coroutine 

package t.bat. manages the sdt(~dul.ing of user threads. t.lw nwrge ow yield llf'rfonmwcP 

improvement b_y the resulting user threads lun·ing shared-memory lPC. 

Iu ordt:·r to speculate about the rdatiw performance of an application using user 

threads versus the performance of the same application using kernel threads. sonw 

background on threads scheduling is needed. First of alL as a scheduler picks a tbre<ul 

to run on a. processor in a. time-sharing fashion. each kernel thread gets a. time slice. 

U :::;er threads, ho\V<:>ver, multiplex within the process' single ti u JJ' slice. aU< I are not. 

seen by the system scheduler. 

Thus. with the scheduling issues illustrated. we would expect. lha.t. OJJ a. tight ly 

loaded system, the performance of an application using coroutine package (\rith user 

threads) would be comparable or faster than the performance of the same application 

running in a multithreaded environment (with system t hreads) . The reason for t.hiR .is 

that on a. lightly loaded system~ ideally with only one process and it.s user threads. tlw 

process can have much CPU time. And \Yithin this one time slice~ the user threads 

can slightly outperform light-weight kernel threads because they are lighter iu weight 

aud have t.he same ability to directly share memory. 

However, in a heavily loaded system. we would expect the coroutine implPIIH:'Il

t.at.ion to run slower since each system thread is a ca.ndida.te to be scheduk·d on a. 

processor. while the user threads are only recognized as one schedulable. TherPfore. 

when t hC're is competition among threads to run , a nwlti-sy~dem 1ltreadf·d applicfl 

t.ion .is given more opportunity to run. Another .important dif[('rE'.l.tce lwt,n:·en usC'r 

and kernel threads is that in a. mult.ithreaded multiprocessor environment, the sys

tem threads can potentially be scheduled on several processors . exploiting the rea l 

concurrency, while the user threads in a coroutine package can be scheduled a11d l'llll 

on only one processor a.t a. time. 

5.2.3 Multiprocessor implications 

A logical next step would be to rehost iUati88f onto a multithreaded, multiprocessor 

eu ,·ironment. running l\IA C'H. The migration to this type of en vironmeut. would r<'q u i rc 
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uo additional work beyond that. described. In a multiprocf'ssor MAC'II endromncnt, 

each thread is a. candidate for scheduling on any processor. If t.wo or more t. lm'Mis 

sharing memory a re run concurrently on different processors, the system t.rauspar

ent.ly mana.ges the shared memory addressed by the differeut CPUs. Gin'n that. 

t.lw operating system for the mult.iprocessor machiue is designf:'d aud implcmcrtt f:'d 

propC:'rly. then we would expect to see a mtdtithreaded application ruu faster ou a 

multiprocessor 1\IAC'II machine than on a uniprocessor 1\IACH rnachin(:' as a result of 

t.lw parallelism of the multiprocessor architecture. 

To better ta.ke advantage of multiprocessor machines. howeYer, this work ca.u be 

extended to break up the code into many threads. hence ''para.llelize" the application 

wheueYer possible. The numerous threads can then be run in parallel across t.lw pro

cessors. t.hereby effectively ut.ilizing t.he hardware resources. for example, in Jfafi.<~.<~c 

t.he \Vorkshop's garbage collector can be implemented as a separate t.l1rea.d. ,\ lso, 

object. updates or queries can be done iu parallel by forking a thread for each job. 

rather then simply doing them in serial. 

In conclusion, the primary purpose of the " ·ork presented in this thesis is t.o 

establish a. useful framework for the migration of existing singlet.hreaded applical.ions 

to a multithreaded endronment. Such applications can then undPrgo a rapid and 

simple re-architecture to replace the costly message-based interprocess co1mnunicatiou 

mechanism ·wi th shared-memory IPC. H is also an intention of this work to explore-, 

ident.i(v, and resolve the many common problems of the migration process. In doing 

so. it is hoped that future implementors will fiud this a. useful guide in targeting 

aud porting situilar syst.ems to multithreaded enYironments in order to achh:-,·e lwt fer 

perfonnauce with minimal cost and dfort. 
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