# Helen N. Schwerdt

Research Associate, Ph.D. Candidate School of Electrical, Computer, and Energy Engineering Arizona State University Tempe, AZ 85287-5706 Email: hschwerd@asu.edu

### **EDUCATION**

| Ph.D. (in progress, expected May 2014) | Electrical Engineering<br>Arizona State University (Tempe, AZ)                  |
|----------------------------------------|---------------------------------------------------------------------------------|
| M.S.E. (May 2009)                      | Electrical and Computer Engineering<br>Johns Hopkins University (Baltimore, MD) |
| B.S. (May 2008)                        | Biomedical Engineering<br>Johns Hopkins University (Baltimore, MD)              |

### **RESEARCH INTERESTS**

My broad research interests are in microelectromechanical systems (MEMS), nonlinear microwave devices, wireless implantable devices, bioelectronics, and instrumentation for neurological applications. I am also interested in applying wireless modulation and/or interrogation schemes towards more clinically relevant applications including neuromodulation, drug delivery (ie. blood brain barrier), etc.

#### **RESEARCH EXPERIENCE**

Doctoral Aug. 2009 – Present Research Associate

MEMS for Biomedical Applications Lab Advisor: Prof. Junseok Chae Arizona State University (Tempe, AZ)

# P.h.D. Research -

# Wireless fully passive neurorecording microsystem using backscattering methods

Development of a highly unique and novel neurorecording microsystem that operates through entirely passive nonlinear mixing operations to record and wirelessly backscatter targeted neuropotential signals without the need for any formal power source. Design involved simulating antenna characteristics in stratified tissue media using FEM (HFSS) along with hybrid simulation using harmonic balance analysis (ADS) for nonlinear passive mixer performance. Fabrication was done in a class 100 cleanroom using standard microfabrication techniques – photolithography, etching (RIE, DRIE, plasma, and chemical wet etching), and deposition (PECVD, sputtering, and evaporation). Tests revealed the microsystem's ability to record neuropotentials (in phantom and with real frog nerves) with amplitudes as low as few mV.

*Wireless passive multichannel neurorecorder using multi-modal interrogation techniques* Devising a new technique that would conserve the beneficial properties of a fully passive circuit while allowing multiple recording channels. The idea was to integrate photo- sensitive and selective channels on the circuit and use light interrogation for activating multiple channels while preserving a similar nonlinear passive mixing and recording phenomena on individual channels.

*Miniature hydrogel check valve for hydrocephalus treatment* 

Creating an implantable valve for alternative shunt treatment of hydrocephalus using hydrogel swelling mechanisms to effectively seal valve under low or negative pressure environments.

Masters May 2008 – May 2009 Research Assistant

Computational Sensory-Motor Systems Lab Advisor: Prof. Ralph Etienne-Cummings Johns Hopkins University (Baltimore, MD)

M.S.E. Thesis – Development of a color detection glove for assisting the blind. This project involved design and construction of hardware and electronics integrating optical sensor circuits, PC communication interfaces, and manually assembled tactile actuator arrays.

| Predoctoral          |                                                   |
|----------------------|---------------------------------------------------|
| Jan. 2006 – May 2009 | Biomedical Instrumentation & Neuroengineering Lab |
| Research Assistant   | Advisor: Prof. Nitish V. Thakor                   |
|                      | Johns Hopkins University (Baltimore, MD)          |

The research topic, wireless acquisition of neuropotentials, involved design/assembly of printed circuit boards (PCBs), programming wireless acquisition system on PC, and testing and characterization of wireless transmission of neurorecording circuits.

| June 2006 – Aug. 2006          | Mechanical Engineering and Applied Mechanics Lab |
|--------------------------------|--------------------------------------------------|
| Research Assistant             | Advisor: Prof. Haim H. Bau                       |
| NSF Summer Research Fellowship | University of Pennsylvania (Philadelphia, PA)    |

Development of a magnetic microfluidic valve/pump using hybrid ferrofluid-wax materials.

#### **TEACHING EXPERIENCE**

Fall 2012 / 2013EEE 445/591 – Microwaves (Senior / Graduate Level Course)Teaching Assistant

Course lab topics included network analyzer operation, S-parameters, waveguides, stub tuning and matching circuits, resonators, hybrids and couplers, and software design and simulation (HFSS and ADS). Responsibilities also included creating lab manuals and new lab material.

Spring 2013EEE 341 – Engineering Electromagnetics (Junior Level Course)Teaching Assistant

Course lab topics included basic power measurements, standing wave ratio, waveguides, antennas, FDTD analysis using Matlab, and basic FEM simulation (HFSS).

#### AWARDS AND HONORS

| 2013 - present | NASA Student Ambassador                                                                          |                 |
|----------------|--------------------------------------------------------------------------------------------------|-----------------|
| 2013           | ASU Graduate College Summer Research Fellowship                                                  | \$6,000         |
| 2012 - 2013    | ABOR Doctoral Research Grant                                                                     | \$5,000         |
| 2012 - 2013    | ARCS Award                                                                                       | \$7,000         |
| 2012           | ASU Graduate College Travel Grant                                                                | \$350           |
| 2009 - 2012    | NASA Graduate Student Research Program (GSRP)<br>(Fellowship renewable up to 3 years cumulative) | \$26,000 / year |
| 2011           | ASU GPSA JumpStart Research Grant                                                                | \$500           |
| 2009           | ASU Ira A. Fulton Award                                                                          | \$5,000         |
|                |                                                                                                  |                 |

#### PUBLICATIONS

#### Journals

- \*\*H.N. Schwerdt, R. Bristol, and J. Chae, "Miniaturized Passive Hydrogel Check Valve for Hydrocephalus Treatment," *IEEE Transactions on Biomedical Engineering*, [available early access online—Nov. 2013].
- H.N. Schwerdt, F.A. Miranda, and J. Chae, "Analysis of Electromagnetic Fields Induced in Operation of a Wireless Fully Passive Backscattering Neurorecording Microsystem in Emulated Human Head Tissue," *IEEE Microwave Theory and Techniques*, vol. 61, no. 5, pp. 2170-2176, May 2013.
- H.N. Schwerdt, F.A. Miranda, and J. Chae, "A Fully Passive Wireless Backscattering Neuro-Recording Microsystem Embedded in Dispersive Human Head Phantom Medium," *IEEE Electron Device Letters*, vol. 33, no. 6, pp. 908-910, June 2012.
- H.N. Schwerdt, W. Xu, S. Shekhar, A. Abbaspour-Tamijani, B. Towe, F. Miranda, and J. Chae, "A Fully-Passive Wireless Microsystem for Recording of Neuropotentials using RF Backscattering Methods," *IEEE/ASME Journal of Microelectromechanical Systems*, vol. 20, no. 5, pp.1119-1130, Oct. 2011.

#### Refereed Conference Proceedings

- H.N. Schwerdt, J. Chae, and F.A. Miranda, "Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom," *IEEE International Symposium on Antennas and Propagation (APSURSI)*, pp. 1-2, Chicago, IL, July 2012.
- H.N. Schwerdt, R. Bristol, and J. Chae, "Hydrogel Check Valve with Non-Zero Cracking Pressure for Use as a Potential Alternative Hydrocephalus Treatment Method," In *IEEE Solid-State Sensors*, *Actuators, and Microsystems Workshop*, pp. 137-140, Hilton Head Island, SC, June 2012.
- H.N. Schwerdt, W. Xu, S. Shekhar, F. Miranda, and J. Chae, "Preliminary Thermal Characterization of a Fully-Passive Wireless Backscattering MEMS Neuro-Recorder," In *IEEE International Conference on Solid-State Sensors and Actuators (Transducers)*, pp. 1228-1231, Beijing, China, June 2011.

- H.N. Schwerdt, W. Xu, S. Shekhar, A. Abbaspour-Tamijani, B. Towe, and J. Chae, "A Fully-Passive Wireless Microfabricated Neuro-Recorder," In *IEEE Solid-State Sensors, Actuators, and Microsystems Workshop*, pp. 258-259, Hilton Head Island, SC, June 2010.
- H.N. Schwerdt, J. Tapson, and R. Etienne-Cummings, "A Color Detection Glove with Haptic Feedback for the Visually Disabled," In *IEEE Conference on Information Sciences and Systems (CISS)*, pp. 681-686, Baltimore, MD, May 2009.
- M. Mollazadeh, K. Murari, H.N. Schwerdt, X. Wang, N. Thakor, and G. Cauwenberghs, "Wireless Multichannel Acquisition of Neuropotentials," In *IEEE Biomedical Circuits and Systems Conference* (*BioCAS*), pp. 49-52, Baltimore, MD, Nov. 2008.