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Abstract

We explain the use of Feynman diagrams to do perturbation theory in quantum

mechanics. Feynman diagrams are a valuable tool for organizing and under-

standing calculations. We first work several examples for the 1-dimensional

harmonic oscillator, and then proceed to justify our calculations.

1 Introduction

In this paper we introduce the terminology of Feynman diagrams. We first give several

examples of the application of Feynman diagrams to perturbative quantum mechanics

on the harmonic oscillator. We then explain the interaction picture of quantum

mechanics, and Wick’s Theorem, culminating in a justification for the Feynman rules

used in our examples.

Throughout this paper, we will simplify equations by using the conventions c =

h̄ = m = 1. One can always add these three factors back into equations at the end of

a calculation, since they have linearly independent units, and leaving them out vastly

simplifies notation.

Feynman diagrams are useful tools for

• Systematically calculating values associated to scattering processes that can

occur in several different ways.

• Algorithmically constructing the exact integrals giving the kth order term of a

perturbation series.

• Extracting classical intuition about what event(s) each term of a perturbation

series for a complicated interaction represents.
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2 Examples with Feynman Rules

We will start with the example of an anharmonic oscillator with Hamiltonian

H =
p2

2
+

ω2x2

2
+

λx3

6

and compute first-order correction in the perturbation series of 〈Ω| x(0)3 |Ω〉, where

|Ω〉 is the ground state of the perturbed Hamiltonian (we write x(0)3 rather than x3

because the time associated with these operators is important).

We will do this by constructing certain Feynman diagrams for this problem. A

diagram is very similar to a graph: it consists of a set of vertices and connecting lines

(edges). There are two types of vertices in these diagrams – internal and external ver-

tices. Internal vertices in this case have three lines, corresponding to the perturbation

x3, and are labeled by a parameter t; each internal vertex has a different parameter.

External vertices have a single line, and correspond to the x’s in the expectation

we’re computing. External vertices are labeled by the time the x’s are evaluated at.

A diagram is constructed when the lines are connected together in pairs to form edges

of a graph, with no stray lines leaving.

The general procedure is to first figure out which diagrams are relevant to the

problem being solved, and then use some Feynman rules to calculate a value for each

diagram. The values are then added together, with certain weights, to evaluate the

desired expectation. This process may seem a bit arbitrary, but in the second half of

the paper we give a natural explanation as to where these diagrams come from. As

we go through examples, the Feynman rules describing how to calculate will become

apparent; but we will also summarize them in the next section.

For our example problem, we are computing the first-order term of the perturba-

tion, so we have one internal vertex, labeled with time t. We also have 3 external

vertices, each labeled with time 0, since we’re computing 〈Ω|x(0)3 |Ω〉. The topolog-

ically distinct possibilities are shown below, since the only information relevant to

the calculation of the value of a Feynman diagram is the topological structure of the

diagram.

0

0

0

0

0
0

t
t and
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In our figures, we denote vertices by black dots, and the edges (called propagators)

by lines. We can assign weights to the diagrams, which can be computed as the

number of ways the diagram can be constructed, divided 3! (this factor comes from

the symmetry of permuting the three edges out of an internal vertex). This gives rise

to an equation of the form

〈Ω|x3 |Ω〉 =
(

6
6

)0

0

0
0

0

0

(

9
6

)

t
t

+ +O(λ2)

Now, we assign a value to each diagram, based on the vertices it possesses and

the edges connecting the pairs, using the following Feynman rules.

= external vertex = 1

t

t

t

t′

= internal vertex = −iλ
∫

dt

= propagator = D(t, t′) = 1
2ω

e−iω|t−t′|

So, in this example, the diagrams take on the values shown below.

t

t

0

0

0

0

0

0

= −iλ
∫

D(t, 0)3dt = −iλ
8ω3

∫

e−i3ω|t|dt

= −iλ
∫

D(0, 0)D(t, 0)D(t, t)dt =
∫

( iλ
8ω3 )e

−iω|t|dt

Unfortunately, the integrals we use here are a bit complicated. The limits of

integration are from −∞(1 − iε) to ∞(1 − iε) (think of this as integrating along a

line slightly tilted off the x-axis in the complex plane). We need those iε’s because

without them, the integrals would not converge. However, the result of this integral is

in fact independent of ε, so we can omit ε from our notation. Every integral we write

down in this paper will have those limits of integration, unless limits are otherwise

explicitly given. With a bit of complex analysis (see [4]), one can derive the following

results:
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Theorem 1 For ω > 0,

lim
T→(1−iε)∞

∫ T

−T

dte−iω|t| =
2

iω

To aid in the calculation of higher order examples, we use the following theorem,

which can be proven using Theorem 1

Theorem 2 If a, b, c are positive real numbers such that the sum of any two of them

is positive, we have that under the same limits as in Theorem 1

∫

ds

∫

dte−ia|s|e−ib|t|e−ic|s−t|dsdt =
−2

(a + b)(b + c)
+

−2

(a + b)(a + c)
+

−2

(a + c)(b + c)

We can now evaluate the integrals in our example to obtain

〈Ω|x(0)3 |Ω〉 =
6

6

−iλ

8ω3

2

3iω
+

9

6

−iλ

8ω3

2

iω
+O(λ2) =

−λ

8ω4
(
2

3
+3)+O(λ2) =

−11λ

24ω4
+O(λ2)

(1)

The reader can check that one would get the same answer using standard time-

independent perturbation theory. Let’s do another example. To compute the first-

order correction to the expectation of x(0) in the perturbed ground state, we do the

same calculation, but with only one external vertex. So, we consider all possible

diagrams containing one degree-3 internal vertex and one degree-1 external vertex.

The only possibility is for the internal vertex to be connected to the external vertex,

with the remaining two edges connected back to itself. This diagram occurs in three

possible ways, and we still have the weighting factor of 1
3!

from the internal vertex, so

this diagram has weight 3
6

= 1
2
. We can then compute

0

t = −iλ
∫

D(t, 0)D(t, t)dt =
∫

(−iλ
4ω2 )e−iω|t|dt = −iλ

wω2

2
iω

= −λ
2ω3

which implies that (remembering the weight of 1
2

on this diagram)

〈Ω| x(0) |Ω〉 =
1

2

−λ

2ω3
+ O(λ2) =

−λ

4ω3
+ O(λ2) (2)

as one would obtain using standard time-independent perturbation theory.

Now, suppose we were instead computing the expectation of x2 to first-order. In

this case we’d have one degree-3 internal vertex and two degree-1 external vertices.

On inspecting the situation, the reader should notice that it is impossible to connect

these vertices together, since the total degree of any graph is even, but these have a
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total degree that is odd. Thus, the first-order term in the perturbation series is 0. Let

us proceed to compute the second-order term in this series as well. We now have two

degree-3 internal vertices (labeled by times s and t) and two degree-1 external vertices,

both labeled by time 0. The possible topologically distinct diagrams are shown below.

00

00

0

00

00

0

t

t

t

t

ts

s

s

s

s

= D1 = −λ2
∫

dsdtD(s, t)3D(0, 0)

= D2 = −λ2
∫

dsdtD(s, t)D(s, s)D(t, t)D(0, 0)

= D3 = −λ2
∫

dsdtD(s, 0)2D(s, t)D(t, t)

= D4 = −λ2
∫

dsdtD(s, t)2D(0, t)D(0, s)

= D5 = −λ2
∫

dsdtD(s, 0)D(s, s)D(t, 0)D(t, t)

The values for diagrams composed of two subdiagrams we’ve seen before (up to

topological equivalence) can be calculated immediately by multiplying the previous

results. For example, the diagram D5 above has value

D5 =

(

−λ

2ω3

)2

=
λ2

4ω6

Using Theorem 2 we can calculate

D3 = − λ2

∫

ds

∫

dtD(s, 0)2D(s, t)D(t, t) (3)

= − λ2 1

(2ω)4

∫

ds

∫

dte−i2ω|s|e−iω|s−t| (4)

=
−λ2

16ω4

(

−2

2ω2
+

−2

6ω2
+

−2

3ω2

)

=
λ2

8ω6
(5)

Similarly, the fourth diagram evaluates to

D4 = −λ2

∫

dsdtD(s, t)2D(s, 0)D(t, 0) =
−λ2

16ω4

(

−2

6ω2
+

−2

6ω2
+

−2

9ω2

)

=
λ2

18ω6

The first two diagrams are a bit more difficult to calculate. One will notice that

Theorem 2 does not apply for calculating these diagrams. In fact, the integrals

involved are not even bounded. They key property of these diagrams is that they

have connected components that contain no external vertices. These diagrams are
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called vacuum bubbles in quantum field theory. This seems disastrous – how can we

do anything useful with these quantities that fundamentally diverge?

It turns out that we’ve thus far been ignoring an important detail when doing

these Feynman diagram calculations. The ground state |Ω〉 we’ve been using in these

calculations is not actually normalized. However, the first order correction to its

normalization is 0, so it has not been a problem in our first order calculations. We

can in fact use the Feynman diagram technique to expand the expectation of 1 in

the ground state, as shown below. For simplicity, we only show the diagrams, not

their weights, but we construct these from having no external vertices and m internal

vertices for the order λm terms. The fact that there are no diagrams with only one

internal vertex confirms our claim that the first-order correction is 0.

e−

〈Ω|Ω〉 = 1+ ++++ + · · ·

You may notice that we did not record the times attached to the various vertices.

Since internal vertices always have distinct times attached to them, and the value of

that time is then integrated over, many authors leave out the time data for internal

vertices. Similarly, because in this paper we will focus only on expectations of powers

of x(0), all the external vertices can be assumed to be labeled by 0, as well. These

techniques are valid for x(t) for arbitrary times t, but the answers are much messier.

It turns out that the vacuum bubbles we find when calculating 〈Ω| x2 |Ω〉 exactly

cancel the vacuum bubbles in the normalization factor in the denominator, to all

orders. In particular, if we were to include the vacuum bubbles, our series would

actually calculate 〈Ω|x2|Ω〉
〈Ω|Ω〉 × 〈Ω|Ω〉, and we’d have to divide by 〈Ω|Ω〉 in order to

normalize it. The diagrams containing vacuum bubbles arise from the product of

the higher-order terms of the series for 〈Ω|Ω〉 times lower-order terms of the series

we actually want to compute. This can be seen in our example by noting that the

0th-order term in this expectation is given by the diagram with a single propagator

connecting two external vertices, and each of the vacuum bubbles in our example

multiplies that 0th-order term. Thus, we can in fact ignore all diagrams containing

vacuum bubbles, and get a correct value for the expectation in the true ground state.

We now complete the calculation. The weighting factors for each of the remaining

diagrams once again equals the number of ways it could be produced, divided by

the internal vertex symmetries of 2! × (3!)2 = 72 (3! for the edges on each of the

two vertices, and an additional 2! because we can permute the vertices themselves).
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The diagrams D3 and D4 can each occur in 36 ways, while D5 can occur in 18 ways.

The other two diagrams we can ignore because they have vacuum bubbles. Thus the

weights are 36
72

, 36
72

, and 18
72

. We can now compute that

〈Ω| x2 |Ω〉 =
1

2ω
+

1

2

λ2

8ω6
+

1

2

λ2

18ω6
+

1

4

λ2

4ω6
+ O(λ3) =

1

2ω
+

11λ2

72ω6
+ O(λ3) (6)

Our estimate is in fact correct to order λ3 as well, because for the same parity

reason that the term of order λ equals 0, the term of order λ3 equals 0.

We can also use Feynman rules with other Hamiltonians. Suppose that we instead

had a perturbation of the form

H =
p2

2
+

ω2x2

2
+

λx4

4!
(7)

In this setting, we use the same Feynman rules as before, except that the internal

vertices each have degree 4. The diagrams relevant to the computation of 〈Ω| x(0)2 |Ω〉

up to first order are shown below. We omit the vacuum bubbles, since we know that

they will not contribute.

+
(

12
24

)

+O(λ2) = 1
2ω

− iλ
∫

D(t, 0)2D(t, t)〈Ω| x2 |Ω〉 =

〈Ω|x2 |Ω〉 =
1

2ω
−

iλ

2

∫

dt

8ω3
e−i2ω|t|+O(λ2) =

1

2ω
−

iλ

16ω3

2

2iω
+O(λ2) =

1

2ω
−

λ

16ω4
+O(λ2)

Another interesting feature to notice is that we can detect from these rules that for

this Hamiltonian, 〈Ω|x(0) |Ω〉 has no nonzero terms in its perturbation series, since

there will always be an odd number of edges in every diagram. This observation is

confirmed by the fact that x is an odd function in an even potential, and thus must

have 0 expectation in the ground state!

Exercise. Use Feynman diagrams to demonstrate

〈Ω|x2 |Ω〉 =
1

2ω
−

λ

16ω4
+

35λ2

1536ω7
+ O(λ3). (8)

Only three new diagrams are involved. Check the answer using the perturbation

theory we learned in class, and see which technique you prefer.
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3 Feynman Rules for the Harmonic Oscillator

In this section we present a complete set of Feynman Rules for perturbations to the

Harmonic Oscillator, of the general form

H =
p2

2
+

ω2x2

2
+

λxk

k!

We wish to calculate the term of order λm in the expansion of

〈Ω|xn |Ω〉

The Feynman rules are as follows. We have m internal vertices, each with k edges,

labeled by times ti, i = 1 . . . m and with value −i
∫

λdti. We also have n external

vertices, each with a single edge of value 1. We connect these together in all possible

pairings of edges, and each propagator contributes a value D(t, t′), if the vertices

connected by it are labeled by t and t′ respectively. Note that since we’re using the

time-ordered product, the order of the arguments here is not important. The integral

for an internal vertex has the limits of integration from Theorem 1.

t′ttt

−iλ
∫ T

−T
dt1 D(t, t′)

All diagrams that contain vacuum bubbles are given weight 0. We weight each

diagram without any vacuum bubbles by the quantity 1
k!mm!

. This value represents

the symmetries inherent in the internal vertices, with a factor of m! for the symmetry

of permuting the vertices, and a factor of k!m for permuting the edges of each internal

vertex. In our examples, we saved work by considering all the classes of topologically

distinct diagrams, and computed a total weight for each by multiplying 1
k!mm!

by the

number of diagrams in the class.

These Feynman rules can be extended to handle more complicated systems with

two harmonic oscillators in coordinates x and y. For such a system we would have

two different types of edges, one corresponding to an x and the other to a y. We then

could use these techniques to represent perturbations of the form xayb with a vertex

with a x-edges and b y-edges. These techniques further generalize to the case where

there are several perturbative terms; there is then more than one type of internal
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vertex in the problem. One can see that for perturbations of the harmonic oscillator,

Feynman diagrams can be used in a quite general fashion.

The Feynman rules give a nice way to study complicated potentials that look

like the harmonic oscillator potential. Harmonic oscillators are ubiquitous because

they are solvable exactly, and many potentials are well approximated locally by a

quadratic. In quantum field theory, we often represent a complicated particle as a

superposition of harmonic oscillators. Since Feynman diagrams can be used to cal-

culate perturbations of harmonic oscillators, we can use them to calculate properties

of the elementary particle interactions that quantum field theory describes. For more

about this topic, take a course in quantum field theory.

4 Correlation Functions

Now that we have explained how to calculate with Feynman Diagrams, we will proceed

to explain why these calculations should be correct. In this section we introduce some

of the terminology that will be used through the rest of the paper. The objects in this

section are of particular importance when we work in the interaction picture, which

we will discuss in the next section.

Define the N -point correlation function as

〈x(tN)x(tN−1) · · ·x(t1)〉 (9)

You can think of this as measuring the correlation between the location of the particle

at each of the N moments in time. The quantities we’ve been computing throughout

this paper are constructed from these correlation functions, though it should not yet

be apparent.

A special case of particular importance is the 2-point function, or propagator

〈x(t2)x(t1)〉 = 〈0|x(t2)x(t1) |0〉 (10)

We also will find it useful to consider the time-ordered product of operators

T (x(t1)x(t2)) =

{

x(t1)x(t2), t1 > t2

x(t2)x(t1), t2 > t1
(11)

Combining the last two constructions, we obtain the time-ordered propagator

D(t2, t1) = 〈0|x(t2)x(t1) |0〉 (12)
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The time-ordered propagator is the propagator that we have been computing with

when doing examples. The time-ordered property is important for preserving causal-

ity. By convention, we choose the first argument of the propagator to occur after the

second.

In our example of the harmonic oscillator, the time-ordered propagator can be

calculated explicitly:

D(t2, t1) = 〈0| x(t2)x(t1) |0〉 (13)

= 〈0|

{

(ae−iωt1 + a†eiωt1) 1√
2ω

(ae−iωt2 + a†eiωt2) 1√
2ω

, t1 > t2

(ae−iωt2 + a†eiωt2) 1√
2ω

(ae−iωt1 + a†eiωt1) 1√
2ω

, t2 > t1

}

|0〉 (14)

=

{

1
2ω

e−iωt1+iωt2 , t1 > t2
1
2ω

e−iωt2+iωt1 , t2 > t1

}

=
1

2ω
e−iω|t2−t1| (15)

In the third step we use that the aa† term is the only one that survives the ground

state expectation. The value we just computed is exactly the value we used for the

propagator in Section 2. Notice that this result is symmetric under swapping t2 and t1;

this arises because we took the time-ordered product. As you have already seen, the

time-ordered propagator appears in the Feynman rules for the Harmonic oscillator,

as the value attached to an “edge” in a Feynman diagram.

5 The Interaction Picture

The interaction picture of quantum mechanics is somewhere between the familiar

Schrödinger and Heisenberg pictures. The idea is to treat the main term of the

Hamiltonian as in the Heisenberg picture, with a constant wavefunction and time-

dependent operators, but to handle the small interacting or perturbative term of the

Hamiltonian in the style of the Schrödinger picture, where the wavefunction itself

moves. This allows us to isolate the effect of the interacting Hamiltonian from the

(presumable well-understood) base Hamiltonian. We will use the interaction picture

to produce a formula for expectations in the true ground state in terms of certain

expectations in the unperturbed ground state. While we will explain things in terms

of an abstract Hamiltonian, it may help to keep the harmonic oscillator in mind. Our

presentation here is based on [2], p. 83-87.

Suppose that we have a Hamiltonian of the form

H = H0 + H1 (16)
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where H0 is a time-independent Hamiltonian, and H1 is a perturbative interaction

term. Let |Ω〉 be the ground state of the interacting theory, and define the interacting

wavefunction

|ψ(t)〉I = eiH0t |ψ(t)〉S

Defining the interacting picture interacting Hamiltonian

HI(t) = eiH0tH1e
−iH0t

we find the differential equation

i
∂

∂t
|ψ(t)〉I = −H0 |ψ(t)〉I + ieiH0

∂

∂t
|ψ(t)〉S (17)

= eiH0t(−H0 + H) |ψ(t)〉S (18)

= eiH0tH1e
−iH0t |ψ(t)〉I = HI |ψ(t)〉I (19)

The solution can be presented as a power series for the interaction picture time-

evolution operator U(t, t0).

U(t, t0) = 1 + (−i)

∫ t

t0

dt1HI(t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) + · · · (20)

This expression can be checked by explicit differentiation; each term gives the previous

term, multiplied by −iHI(t). Note that we use the initial condition U(t0, t0) = 1, and

that each term is time-ordered. This may be simplified by using the time-ordering

operator. For example,

∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) =
1

2!

∫ t

t0

dt1

∫ t

t0

dt2T (HI(t1)HI(t2)) (21)

where now all the integrals have the same range. The factors of 1
n!

correct for the

overcounting. We may convert this to an exponential by pulling the time-ordering

operator out of the integrals:

U(t, t0) = 1+(−i)

∫ t

t0

dt1T (HI(t1))+
1

2
(−i)2

∫ t

t0

dt1

∫ t

t0

dt2T (HI(t1)HI(t2))+· · · (22)

U(t, t0) = T

(

exp

[

−i

∫ t

t0

dt′HI(t
′)

])

(23)

Why did we go through all this work to find the time evolution operator? The

goal here is to find the ground state of the interacting (perturbed) Hamiltonian, so
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that we can compute expectations in that state. It turns out that if we evolve the

original ground state from time −T to time t, we get something from which we can

obtain |Ω〉, as T → ∞. Let |nI〉 be the nth state of the interacting theory, with

|0I〉 = |Ω〉. Then the time evolution of |0〉 is

e−iHt |0〉 =
∞

∑

n

e−iEnt |nI〉 〈nI |0〉 (24)

e−iHt |0〉 = e−iE0t |Ω〉 〈Ω|0〉 +
∞

∑

n 6=0

e−iEnt |nI〉 〈nI |0〉 (25)

We’ve not yet used the fact that t is a real-valued variable, so we’ll tilt it into the

complex plane in order to isolate the ground state. To do this, we need to assume that

ground state in the interacting theory |Ω〉 is unique. We replace t by t(1 − iε), and

consider the limit as t → ∞ (so that terms of lower order in e−εt vanish, in particular

those with energy greater than E0). Our expression reduces to

e−iHt(1−iε) |0〉 = e−iE0t−E0εt |Ω〉 〈Ω|0〉+
∞

∑

n 6=0

e−iEnt−εEnt |nI〉 〈nI |0〉 → e−iE0t(1−iε) |Ω〉 〈Ω|0〉

(26)

We then can obtain the ground state itself as

|Ω〉 = lim
t→∞

(

eiE0t(1−iε)e−iHt(1−iε) |0〉

〈Ω|0〉

)

= lim
t→(1−iε)∞

(

eiE0te−iHt |0〉

〈Ω|0〉

)

(27)

Now, it suffices to find a way to calculate such limits. Note that Ω is not normalized;

in fact

〈Ω|Ω〉 = lim
t→(1−iε)∞

(

(| 〈0|Ω〉 |2e−iE02t
)−1

〈0|U(t, 0)U(0,−t) |0〉 (28)

With some straightforward algebra, we can then calculate the time-ordered propaga-

tor for t2 > t1

〈Ω|x(t2)x(t1) |Ω〉 = lim
t→(1−iε)∞

〈0|U(T, t2)x(t2)U(t2, t1)x(t1)U(t1,−T ) |0〉

〈0|U(T,−T ) |0〉
(29)

Notice that both sides of this equation are in time-order. Thus we can insert a

time-ordered product on both sides, and obtain the final result

〈Ω|T (x(t2)x(t1)) |Ω〉 = lim
t→(1−iε)∞

〈0|T
(

x(t2)x(t1) exp[−i
∫ T

−T
dtHI(t)]

)

|0〉

〈0|T
(

exp[
∫ T

−T
dtHI(t)]

)

|0〉
(30)
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This expression generalizes to higher correlation functions in the obvious way – simply

add extra x(ti) terms on both sides. Notice that in Equation (30) the RHS contains no

terms involving |Ω〉, only |0〉. This formula is an exact expression for the ground state

expectation. To do rth order perturbation theory, we must expand the exponential

as a power series, and only retain the terms whose degree in λ is at most r. In each

term of the power series, we will have a time-ordered correlation function. Wick’s

Theorem explains how to calculated these correlation functions.

6 Wick’s Theorem for the Harmonic Oscillator

Theorem 3 (Wick’s Theorem) Suppose that ti > ti−1, so that the left-hand side

product below is time-ordered. Then in a harmonic oscillator potential, we have

〈x(t2N)x(t2N−1) · · ·x(1)〉 =
∑

ik>jk,ik+1>ik

〈x(tiN )x(tjN
)〉 · · · 〈x(ti1)x(tj1)〉 (31)

where the expectations are taken in the (unperturbed) ground state.

Conceptually, it states that every 2n-point function is in fact the sum over all

possible pairings of the product of the n 2-point functions on the pairs. The ik > jk

condition ensures that all the 2-point functions are time-ordered. The ik+1 > ik

condition breaks the symmetry of the N ! possible orderings for the terms in each

product.

Example. For N = 2, Wick’s Theorem states that

〈x(t4)x(t3)x(t2)x(t1)〉 = (32)

〈x(t4)x(t3)〉 × 〈x(t2)x(t1)〉 + 〈x(t4)x(t2)〉 × 〈x(t3)x(t1)〉 + 〈x(t4)x(t1)〉 × 〈x(t3)x(t2)〉

(33)

Wick’s Theorem is typically stated as a complicated operator identity. We believe

that the formulation presented here is much easier to understand and apply, as it

is typically the one that is used in practice. This version follows from the standard

version by noting the extra terms all have 0 ground state expectation. A proof of the

standard version can be found in a standard text on Quantum Field Theory, such as

[2] p. 88-90. The result can also be proven directly using a relatively straightforward

induction.

Wick’s Theorem is an extremely useful result for doing calculations. An immediate

consequence is that in order to calculate arbitrary time-ordered 2N -point functions,
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it suffices to be able to calculate the time-ordered propagator. The (2N + 1)-point

function is always 0 in this situation, since we have an odd number of a and a†

operators on each term. Thus we can in fact calculate any n-point function given

only the values of the time-ordered propagators. As we will see in the next section

Wick’s Theorem gives rise to the Feynman diagram formalism.

7 Why Feynman Diagrams Work

When we combine Wick’s Theorem together with the result we derived using the

interaction picture, we can justify the Feynman rules we provided in section 3. We

have a Hamiltonian of the form H = p2

2
+ w2x2

2
+ λxk

k!
. By Equation (30), if we wish

to compute the expectation of xn, we use

〈Ω| x(0)n |Ω〉 = lim
T→(1−iε)∞

〈0|T
(

x(0)n exp[−i
∫ T

−T
dtHI(t)]

)

|0〉

〈0|T
(

exp[
∫ T

−T
dtHI(t)]

)

|0〉
(34)

Let us calculate the numerator (as we’ve said before, the denominator will cancel

with the vacuum bubbles in the numerator. For a proof, see [2], p. 95-99). These

integrals have the same limits of integration as those we’ve used in our Feynman rules

previously. Thus, we’re going to drop the limit, and write our integrals without limits

of integration, to simplify notation. To do perturbation theory, we can expand the

exponential as a power series

〈0|T

(

x(0)n exp[−i

∫

dtHI(t)]

)

|0〉 = (35)

〈0|T

(

x(0)n

[

1 +
−iλ

k!

∫

dtx(t)k +
1

2!

(−iλ)2

k!2

∫

dsdtx(t)kx(s)k + · · ·

])

|0〉 (36)

In general, the mth order term of the series is of the form

〈0|T

(

1

m!

(−iλ)m

k!m

∫

dt1 . . . dtmx(t1)
k · · ·x(tm)kx(0)n

)

|0〉 (37)

This can be rearranged to read

1

m!

(−iλ)m

k!m

∫

dt1 . . . dtm 〈0|T
(

x(t1)
k · · ·x(tm)kx(0)n

)

|0〉 (38)

We now apply Wick’s Theorem. Wick’s Theorem says that in order to compute

that time-ordered product, we need to pair together the x(ti)’s and x(0)’s in all
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possible ways, and sum over the resulting pairings. We represent diagramatically

an x(ti)
k by an internal vertex of degree k, and each x(0) by a an external vertex

of degree 1. The value attached a Wick pairing of two vertices at times t and t′ is

exactly the time-ordered propagator D(t, t′) – we represent this diagramatically as an

edge. Since Wick’s Theorem sums over all possible pairings, we have to sum over all

possible diagrams that can be constructed by pairing the edges from these vertices.

In practice, of course, we sum over the topologically distinct diagrams and then count

how many times each occurs.

An internal vertex from x(ti)
k can be assigned the value −iλ

∫

dti. Giving external

vertices value 1, the only remaining factor we haven’t accounted for is the scalar 1
m!

1
k!m

.

The integer in this denominator is exactly the number of ways to permute the internal

vertices (m!) and their edges (k! for each vertex), the weighting factor we discussed

in Section 3.

In summary, we’ve presented the formalism of Feynman diagrams for perturba-

tions of the 1-dimensional harmonic oscillator, and explained enough of their theory

to remove some of the mystery as to why these diagrams work.
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