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Abstract

This paper shows that efficient dynamic algorithms for many problems with a source-sink
structure give rise to efficient static algorithms for the all-pairs version of the problem. In the
case of the s-t minimum cut problem, this technique gives a strong hardness relation between
dynamically maintaining the s-t minimum cut in a weighted graph and computing the Gomory-
Hu tree.

1 Introduction

Given an efficient, partially dynamic (incremental or decremental) algorithm for the weighted single-
source shortest paths problem, Roditty and Zwick [RZ04a] showed that one can construct an
efficient algorithm for the static weighted all-pairs shortest paths problem. Combined with an
Ω(mn) lower bound for the static all-pairs shortest paths problem for path comparison algorithms
[KKP93], this provides a lower bound on the runtime of any partially dynamic single-source shortest
paths structure based on classic path comparison algorithms such as Dijkstra’s algorithm.

In this paper, we show that Roditty and Zwick’s result is in fact part of a more general phe-
nomenon. We present an analogue for the dynamic s-t minimum cut problem, relating the hardness
of the weighted dynamic s-t minimum cut problem to the hardness of computing the Gomory-Hu
tree, a structure that compactly encodes the all-pairs minimum cut.

The Gomory-Hu tree has a node for each vertex in an undirected graph G, and each edge in
the tree corresponds to a minimum cut separating the corresponding pair of vertices of G. The
Gomory-Hu tree has the property that the minimum cut between vertices s and t in G is the cut
corresponding to the minimum weight edge along the path from s to t in the Gomory-Hu tree.

The algorithm of Gomory and Hu computes the Gomory-Hu tree using a subroutine for the
s-t minimum cut problem n − 1 times; the computations are done on graphs similar to the graph
G, but with some vertices combined into supernodes [GH61]. Gusfield showed that the recursive
mincuts can in fact be computed using n − 1 s-t minimum cuts on the original graph and O(n2)
additional computation [Gus90].

For unweighted graphs, an Õ(mn) algorithm for constructing Gomory-Hu trees has been recently
discovered, far faster than using Ω(n) s-t minimum cuts [BHKP07]. However, all known algorithms
for computing the Gomory-Hu tree in a weighted graph make Ω(n) calls to an algorithm for the s-t
minimum cut problem (which is, is turn, an s-t max flow algorithm). Thus, improved algorithms
for constructing a Gomory-Hu tree in a weighted graph have been corollaries of more efficient
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algorithms for the maximum flow problem. An important open question is whether one can compute
the Gomory-Hu tree more efficiently than making Θ(n) calls to an s-t maximum flow algorithm in
the weighted case.

In this paper, we prove that modulo a minor technical condition, one of two interesting things
must happen. Either there are more efficient algorithms solving the Gomory-Hu problem than
computing n s-t minimum cuts (resolving a question that has been open for nearly 50 years), or
there are no algorithms for dynamically maintaining the s-t minimum cut in a weighted graph
that are more efficient than the obvious algorithm of recomputing the cut from scratch on each
query. We achieve this with an explicit hardness relation showing that the problem of dynamically
maintaining the s-t minimum cut is at least as hard as the problem of computing the Gomory-Hu
tree. We prove a similar hardness relation for partially dynamic algorithms maintaining the s-t
minimum cut, but only for directed graphs.

Given that the problem of computing the Gomory-Hu tree more efficiently has remained open
for so long, we believe the more likely possibility is that dynamically maintaining the s-t minimum
cut (and consequently, the s-t max flow) is hard. Our work leaves open the possibility of efficient
algorithms for dynamically maintaining the all-pairs s-t minimum cut of a weighted graph, in
analogy to the shortest paths case.

This paper describes several similar hardness results for dynamic algorithms solving other prob-
lems with a source-sink structure, including the minimum cost maxflow problem, effective resistance
in a graph, and the shortest edge-disjoint round trip problem.

Throughout this paper, we will assume that all graphs are weighted graphs (unless explicitly
described as unweighted) and all weights are non-negative. On a graph with n vertices and m
edges, we will for simplicity assume that n = O(m), as is the case in a connected graph.

2 Hardness for Dynamic Single-Source Shortest Paths

In this section, we present Roditty and Zwick’s result about the hardness of a partially dynamic
single-source shortest path algorithm [RZ04a], to provide appropriate context for our related results.

Let A be an incremental algorithm (one supporting insertions but not necessarily deletions) for
the single-source shortest paths problem. Let initA(m, n) be the initialization time, queryA(m, n)
be the amortized query time, and updateA(m, n) be the amortized update time for A on a graph
with n vertices and m edges. We assume all these time functions are monotonic and that they are
bounded by a polynomial in the two inputs.

Theorem 1 [RZ04a] Given an algorithm A for the incremental (or decremental) directed (or undi-
rected) single-source shortest path problem, one can solve the static all-pairs shortest paths problem
on a graph of n vertices and m edges, using O(n2 · queryA(m, n) + n · updateA(m, n) + initA(m, n))
time.

Proof: We consider an incremental algorithm first. Pick W > n · maxweight(E). Suppose V =
{1, 2, . . . , n}. Construct a graph G′ with vertices V ∪ {0}, and with edge set E, and initialize the
incremental algorithm on it with source 0. Now, for j = n, . . . , 2, 1, do the following. First, create
a new edge (0, j) of weight jW . Then, query the distances from 0 to i for all i. We claim that this
distance is exactly jW +DG(j, i). A path which uses the edge (0, j) will have this distance. A path
which does not use this edge must use some (0, k) for k > j, but the distance for edge (0, k) is at least
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(j +1)W > jW +DG(j, i), by the definition of W . If i is unreachable from j, this will be detected,
since then the distance returned will be at least (j+1)W . Over the n vertices, we obtain the all-pairs
shortest paths in G using O(n2 ·queryA(m+n, n+1)+n·updateA(m+n, n+1)+initA(m+n, n+1)).
We obtain the stated bounds by using that A is bounded by a polynomial and n = O(m) .

The decremental version can be found by time-reversing the construction. Obviously, this result
also extends to a fully dynamic algorithm. �

Notice that the argument is correct for both directed and undirected graphs, but that it does
not immediately extend to the unweighted case. Roditty and Zwick also present reductions of the
unweighted case to boolean matrix multiplication [RZ04a], but we will not discuss those results
here. The best known algorithms for all-pairs shortest paths in weighted directed or undirected
graphs have runtimes that are Ω(mn). In fact, Karger et al. showed that any path-comparison
algorithm, using edge weights only to compare path weights, for the static all-pairs shortest paths
problem has a runtime that is Ω(mn) [KKP93].

Thus, without finding a faster path-comparison algorithm for the static all-pairs shortest paths
problem, we cannot hope to do better than an O(m) amortized total update and query time for a
partially dynamic single-source shortest paths algorithm, without spending a large amount of time
initializing the structure. Running Dijkstra’s algorithm from scratch takes O(m + n log n) time if
a Fibonacci heap is used, which is almost tight. It is thus unsurprising that recent progress in
dynamic shortest paths algorithms has focused on the all-pairs shortest paths problem.

Faster algorithms for all-pairs shortest paths are known outside the path comparison model;
for dense graphs, where m = Θ(n2), Fredman’s [Fre76] insight for efficiently computing min-plus
matrix products, an analogue of matrix multiplication useful for finding shortest paths, gave the
first subcubic algorithm for dense graphs. Chan [Cha07] further improved the min-plus matrix mul-
tiplication and achieved a bound of O(n3 log3 log n/ log2 n) for the all-pairs shortest paths problem.
Using a hierarchy-based approach to partition the single-source shortest paths problem into in-
dependent subproblems, Pettie [Pet04] achieved an O(mn + n2 log log n) all-pairs shortest paths
algorithm. However, no polynomially subcubic algorithms for all-pairs shortest paths are known
[Cha07].

While Roditty and Zwick’s result was about the Single-Source Shortest Paths problem, this
problem is really a source-sink problem disguised by the fact that efficient algorithms for the s-t
shortest path problem, like Dijkstra’s algorithm, do so by solving the single-source shortest paths
problem.

3 Minimum Cuts

We will now discuss our analogous result for the s-t minimum cut problem. Given a fully dynamic
algorithm A for the s-t minimum cut problem on directed or undirected graphs, with amortized
query time queryA(m, n), amortized update time updateA(m, n), and initialization time initA(m, n),
we give an efficient algorithm for constructing the Gomory-Hu tree on an undirected graph G. In
Section 3.1, we show the same result for partially dynamic algorithms, but only in the case of an
s-t min cut algorithm that works on directed graphs (a property that known algorithms, based on
max flows, possess). We assume all these time functions are monotonic and that they are bounded
by a polynomial in the two inputs.

Our data structure should support updates of adding or deleting an edge, along with adding
or deleting a vertex other than s and t which has no edges attached to it. We will define the s-t
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minimum cut query so that it returns the set defining one side of the cut, rather than simply the
value of the cut or the edges cut. Our choice of convention here makes it clear that Gusfield’s
algorithm requires only O(n2) additional processing (a claim Gusfield does not make, since the
O(n2) time is almost certainly dominated by the O(n) minimum cut calls, but which is clear from
the pseudocode from page 10 of [Gus90]).

Theorem 2 If A is a fully dynamic algorithm for the s-t mincut problem on an undirected (or
directed) graph, then with O(n · queryA(m, n)+n ·updateA(m, n)+ initA(m, n)+n2) time, one can
compute the Gomory-Hu tree for an undirected graph G with n vertices and m edges.

Proof: Let W be a number larger than the sum of all the edge weights in G. We construct a
graph G′ with two extra vertices, S and T , which have no edges attached to them. We first show
how to compute the static s-t minimum cut in the graph G. We do updates adding edges (S, s)
and (t, T ) each of weight W to G′, and query the mincut. Since the edges we added have weight
greater than that of any cut in G, the min cut in G′ does not cut either of the two new edges.
Thus, it must be an s-t minimum cut in the original graph G. We then restore our graph to the
original graph G′ by doing updates to remove the two edges we added. This process allows us to
query the s-t minimum cut for any vertices s and t in G using only O(1) queries and O(1) updates
to our initialized data structure.

We can now use this procedure as the s-t minimum cut subroutine required for Gusfield’s
algorithm [Gus90]. Gusfield’s algorithm computes the Gomory-Hu tree using O(n) calls to the
s-t minimum cut query subroutine we just described and O(n2) additional time. This computes
the Gomory-Hu tree using only O(n2 + n · updateA(m + 2n, n + 2) + n · queryA(m + 2n, n + 2) +
initA(m+2n, n+2)) = O(n2 +n ·updateA(m, n)+n · queryA(m, n)+ initA(m, n)) time, using that
A is bounded by a polynomial and that n = O(m). �

Corollary 3 If A is a fully dynamic algorithm for the s-t mincut problem, then with O(n·queryA(m, n)+
n ·updateA(m, n)+ initA(m, n)+n2) time, one can compute the all-pairs minimum cut of an undi-
rected graph G with n vertices and m edges.

Proof: It suffices to show how to compute the all-pairs minimum cut from the Gomory-Hu tree
in O(n2) time. Using the Gomory-Hu tree’s property, we can find all the minimum cuts from a
source s in an O(n) time traversal of the tree. Repeating this for each vertex as the source, one can
compute the all-pairs minimum cut using only O(n2) time beyond the time required to compute
the Gomory-Hu tree. �

We have just shown that in a strong sense, it is as hard to efficiently maintain the dynamic
s-t minimum cut as it is to compute the Gomory-Hu tree. We now prove the following surprising
theorem, which equates the hardness of dynamically maintaining s-t minimum cuts to the hardness
of computing them in the static case, if current techniques for constructing Gomory-Hu trees from
s-t minimum cuts are optimal.

Theorem 4 For any fully dynamic algorithm A maintaining the s-t minimum cut, one of the
following must hold:

1. The initialization time for A must be ω(n · T (m, n)), where T (m, n) = queryA(m, n) +
updateA(m, n) is the larger of the update time for A and the query time for A.
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2. There are algorithms for computing the Gomory-Hu tree that are more efficient than O(n) s-t
minimum cuts.

3. A is no more efficient than computing the s-t minimum cut from scratch on each query.

Since most efficient data structures do not require more than n updates worth of time to
initialize, case 1 is a minor technical condition. Aside from this condition, this theorem implies
that any dynamic algorithm for the s-t minimum cut problem more efficient than recomputing from
scratch on each query gives rise to a new, more efficient kind of algorithm for the Gomory-Hu tree
problem.

Proof: Suppose that we are not in case 1, so that the initialization time does not dominate n
updates and n queries. Then the runtime of our Gomory-Hu tree algorithm becomes O(n2 + n ·
T (m, n)). Since a query on the data structure must return the actual nodes in the cut, we know
that T (m, n) = Ω(n). It follows that the running time of our Gomory-Hu algorithm is in fact
O(n · T (m, n)).

Suppose further that we are not in case 2. Let g(m, n) be the best running time for an algorithm
B computing the s-t minimum cut in a graph with n vertices and m edges. The complement of
case 2 implies that constructing a Gomory-Hu tree on a weighted graph with Ω(n) queries to B,
using Ω(n · g(m, n)) time, is optimal. It follows that T (m, n) = Ω(g(m, n)).

Now, since T (m, n) = queryA(m, n)+updateA(m, n) = Ω(g(m, n)), we conclude that either the
update time or the query time for A takes as long as computing the s-t minimum cut from scratch
using algorithm B. Thus, we could obtain a dynamic algorithm of the same efficiency as algorithm
A by using one of the following two strategies:

1. Run B on each update, caching the result. On queries, output the cached result.

2. Do nothing on updates, and run B upon each query, caching the result to handle several
consecutive queries.

The second of these strategies is strictly superior to the first, since it runs algorithm B once
for each time an update is followed by a query, while the first runs algorithm B on every update.
Thus algorithm A is no more efficient than strategy 2, and we must be in case 3. �

We can remove the technical condition on the initialization time for sparse graphs:

Corollary 5 For any fully dynamic algorithm A maintaining the s-t minimum cut on sparse graphs
(where m = Θ(n)), one of the following must hold:

1. There are algorithms for computing the Gomory-Hu tree on sparse graphs that are more
efficient than computing O(n) s-t minimum cuts.

2. On sparse graphs, A is no more efficient than computing the s-t minimum cut from scratch
on each query.
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Figure 1: Query 1 in the case of the incremental s-t minimum cut algorithm.

Proof: The argument is the same as for Theorem 4, replacing the initialization process with a
series of O(m + n) = O(n) updates to construct the input graph. �

Arikati et al. showed that one can efficiently compute the all-pairs minimum cut in sparse
graphs when a certain topological property is small [ACZ95], but in general there are no known
algorithms for computing the Gomory-Hu tree in sparse graphs more efficiently than n times the
best algorithms for max flow in sparse graphs.

We can similarly remove the technical condition on initialization times if we require the data
structure to support bulk updates, in which a single operation supports adding or deleting a vertex
along with all incident edges.

Corollary 6 For any fully dynamic algorithm A maintaining the s-t minimum cut and supporting
bulk updates, one of the following must hold:

1. There are algorithms for computing the Gomory-Hu tree that are more efficient than comput-
ing O(n) s-t minimum cuts.

2. A is no more efficient than computing the s-t minimum cut from scratch on each query.

Proof: Since one can construct an arbitrary n-vertex graph is only O(n) bulk updates, we replace
the initialization time with O(n) bulk updates. The result then follows from the proof of Theorem
4. �

3.1 Hardness of Partially Dynamic Minimum Cut Algorithms

We now present a similar reduction that works for partially dynamic (incremental or decremental)
algorithms. We will suppose the algorithm is incremental; the decremental version can be found
by time-reversing the incremental construction.

Theorem 7 Given an incremental (or decremental) algorithm for the s-t minimum cut problem on
directed graphs, one can compute the Gomory-Hu tree (and thus solve the static all-pairs minimum
cut problem) on undirected graphs in O(n · updateA(m, n) + n · queryA(m, n) + initA(m, n) + n2)
time.
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Figure 2: Query 2. The first query is bypassed by edges from S to T1 and from S1 to T .

Proof: Using the same strategy as in the fully dynamic case, we need to show how to effectively
query the si-ti minimum cut n times. To do this, we work with an expanded graph with auxiliary
vertices Si and Ti for each si-ti mincut query i, a supersource S, and a supersink T . For query i
which is for the mincut from si to ti, we do the following:

1. Add edges (Si, si) and (ti, Ti) of weight 2nW , and edges (S, Si) and (Ti, T ) of weight W ,
where W > n · maxweight(E).

2. Query the minimum S-T cut.

3. Add bypass edges (Si, T ) and (S, Ti) of weight 2nW .

We claim that the minimum S-T cut thus computed gives the minimum si-ti cut for query i.
First, consider the cut of this graph that cuts the edges (S, Sj) and (Tj , T ), for j < i, and performs
a minimum cut between si, ti in graph G. This cut costs 2(i − 1)W + cut(si, ti) < (2i − 1)W .
Clearly, this is optimal among cuts that cut all the (S, Sj) and (Tj , T ) edges for j < i.

The minimum cut must cut every S-T path, including the S–Sj–T and S–Tj–T paths for j < i
created in step 3. The bypass edges (Sj , T ) and (S, Tj) for j < i, shown in figure 2, also have weight
at least 2nW > (2i − 1)W , so they cannot be in a minimum cut. Thus, all the edges (S, Sj) and
(Tj , T ) for j < i are forced to be cut in any minimum cut. Hence, a minimum cut of our graph
equals 2(i−1)W plus a cut between Si and Ti. Since the edges (Si, si) and (ti, Ti) each have weight
greater than (2n − 1)W , they can never be in a minimum cut. Consequently, any S-T minimum
cut must have weight 2(i − 1)W plus the weight of a si-ti minimum cut in G, as desired. The
corresponding minimum cut set must be the edges (S, Sj) and (Tj , T ) for j < i, along with an si-ti
minimum cut set for G. Notice that this construction is effective even if the si and ti are reused.

Thus, in finding the n s-t minimum cut queries we add 4n edges and use 3n + 2 vertices,
with O(n2) additional computation as before. Thus we compute the Gomory-Hu tree using O(n ·
updateA(m + 4n, 3n + 2) + n · queryA(m + 4n, 3n + 2) + initA(m + 4n, 3n + 2) + n2) = O(n ·
updateA(m, n) + n · queryA(m, n) + initA(m, n) + n2) time, as desired. �

We had to assume that the algorithm works for directed graphs, since our bypass mechanism
requires that it be impossible to traverse the (Si, si) in the reverse direction. However, the Gomory-
Hu tree algorithm that we get out of it only works for an undirected graph G. This is in fact
necessary because analogues for Gomory-Hu trees do not exist for directed graphs [Benc95].

Theorem 3.1 has implications for the partially dynamic s-t max flow problem. All known
algorithms for the weighted s-t minimum cut problem are based on algorithms for the max flow
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problem, which are effective on both directed and undirected graphs. It is easy to compute the
minimum cut set from the maximum flow. Thus, Theorem 3.1 implies a hardness relation between
the partially dynamic s-t max flow problem and the Gomory-Hu problem.

This hardness result can be related back to the all-pairs max flow problem. Though no general
transformation is known for computing the maximum flow given the minimum cut set, by the
classic Max Flow–Min Cut Theorem [EFS56], the values are the same. Our result then implies that
a partially dynamic algorithm maintaining the s-t max flow can compute the Gomory-Hu tree, and
by the Max Flow–Min Cut Theorem, the static all-pairs maximum flow value, on an undirected
graph, using n updates, n queries, and O(n2) additional computation.

4 Other Problems with a Source-Sink Structure

The shortest path and minimum cut problems represent cases where an efficient dynamic algorithm
for a source-sink problem gives rise to an efficient algorithm for the all-pairs version of the problem.
In this section, we discuss a number of other source-sink problems, and show that for each of them,
a similar result holds.

4.1 Minimum Cost Maxflow

Suppose that edges in a graph G have capacities and costs per unit flow. Consider the minimum
cost maxflow problem of finding the maximal s-t flow in G that has the minimum cost among all
such maxflows. We will assume that all costs are non-negative.

Theorem 8 Given an algorithm A for the partially dynamic s-t min cost max flow problem, one
can solve the static all-pairs min cost max flow problem on a graph G of n vertices and m edges in
O(n2 · queryA(m, n) + n2 · updateA(m, n) + initA(m, n)) time.

Proof: We use the strategy from Theorem 7 to query for any pair (s, t), the s-t min cost max flow
in graph G. We simply need to replace 2nW with 2n2W in the capacities to support n2 queries,
and assign costs to the edges we add. We assign the bypass edges, (S, Si) edges and (Ti, T ) edges
cost 0. We assign the (Si, si) and (ti, Ti) edges cost 1. By the proof of Theorem 7, the cut induced
by the min cost max flow must be an si-ti cut in G along with the edges (S, Sj) and (Tj , T ) for
j < i. What remains to show is that saturating those edges at minimum cost gives a minimum
cost max flow from si to ti in G. The paths S–Sj–T and S–Tj–T have cost 0, while any other path
using the saturated (S, Sj) and (Tj , T ) edges must pass through an edge of cost 1. Thus, only the
flow corresponding to the ith query passes through vertices of G, resulting in a minimum cost max
flow from si to ti in G, as desired.

This process requires O(1) updates and O(1) queries. Repeating it for each pair (s, t) in the
graph yields the all-pairs min cost max flow in the graph. �

This result might seem weaker than the minimum cut or shortest paths case, since it requires
O(n2) updates and queries to A. However, it is not clear how to compute the all-pairs min cost
max flow in a graph without making O(n2) calls to an algorithm for the s-t min cost max flow
problem (or equivalently, the min cost circulation problem [GT89]). Thus, we have a hardness
relation between the partially dynamic s-t problem and the static all-pairs problem that may be
just as tight as in the cases that have been studied in detail.
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4.2 Resistance

Consider the problem of computing the effective resistance between two vertices s and t in a graph,
where each edge in the graph has a resistance equal to its weight. Notice that effective resistance
reduces to the shortest path distance in an acyclic graph. The effective resistance metric has been
proposed as an alternative to the shortest paths for applications related to reliability and chemical
bond strengths [DR93]. The resistance metric has been related to the lengths of random walks in
the graph [CRRST89]. This problem can be solved in polynomial time using determinants [BGX03].

Theorem 9 Given an algorithm A for the fully dynamic s-t resistance problem, one can solve the
static all-pairs resistance problem on a graph G of n vertices and m edges in O(n2 ·queryA(m, n)+
n2 · updateA(m, n) + initA(m, n)) time.

Proof: Augment the graph G with a supersource S and a supersink T , and initialize our dynamic
algorithm on it. To query the resistance between vertices s and t of G, add edges of weight W
between S and s, and between t and T , and query the algorithm. The resistance between s and t
in G can be computed by subtracting 2W from the value returned by the query. We then restore
the graph to its state before the query by deleting the edges that we added.

This process requires O(1) updates and O(1) queries. Repeating it for each pair (s, t) in the
graph yields the all-pairs resistance in the graph. �

As in the min cost max flow problem, O(n2) updates and queries to A are required. We do not
know of a more efficient way to compute the all-pairs effective resistance than to use an algorithm
for the s-t effective resistance O(n2) times.

Because the effective resistance is a concept that depends on all paths from the source to the
sink, it does not seem possible to generalize this argument to partially dynamic algorithms without
at least extending the notion of resistance to directed edges (in the electrical model, one would
create directed resistances using super diodes). Supporting directed edges would substantially
change the structure of the problem.

4.3 Shortest Edge-Disjoint Round Trip

Consider the problem of finding the shortest loop passing through vertices s and t in an undirected
graph that does not use any edge twice. We will call this problem the shortest edge-disjoint round
trip problem.

This problem has an efficient s-t algorithm in the static case, as follows. First, run an s-t
shortest paths algorithm. Then, taking the edges to be pairs of directed edges, reverse all the edges
used in the path, and compute an s-t shortest path in the resulting graph. The end result is two
paths between s and t which share no edges in common, and with the minimal total cost. This
algorithm is equivalent to using shortest augmenting paths to find a minimum cost flow of 2 units
from s to t with unit capacity edges.

Theorem 10 Given an algorithm A for the incremental (or decremental) dynamic s-t shortest
edge-disjoint round trip problem, one can solve the static all-pairs shortest edge-disjoint round trip
problem on a graph G with n vertices and m edges in O(n2 · queryA(m, n) + n2 · updateA(m, n) +
initA(m, n)) time.

9



Proof: We use a supersource S and supersink T as before, and the technique of [RZ04a] to
supersede old queries with new ones. For i = n(n − 1), . . . , 2, 1, with the si and ti iterating over
all pairs of distinct vertices, we add double edges from S to si and from ti to Ti, each with weight
iW , where W > n · maxweight(E), and calculate the shortest edge-disjoint round trip between S
and T . The shortest edge-disjoint round trip between si and ti will be this result minus 4iW . �

The use of double edges is not fundamental to the argument, but simplifies the presentation.
This proof easily generalizes to the related problem of finding k ≥ 2 edge-disjoint paths from s to t
of minimum total weight in a directed or undirected graph, a measure of reliability. It generalizes
to several other graph shortest-path related reliability problems as well.

5 Conclusions and Open Problems

We have shown that efficient dynamic algorithms for many source-sink problems can be used to
efficiently solve the static all pairs version of those problems. In some cases, even partially dynamic
algorithms suffice. Each of these results provides a hardness relation between the dynamic version
of the source-sink problem and the static all-pairs problem.

While there is a strong commonality among these hardness results for dynamic s-t problems,
each argument is distinct from the others. They cannot easily be combined into a single common
proof, since the constructions for making a new s-t query and later to undo that action vary in
each case, and their properties vary as well. We have seen cases where the argument extends easily
to partially dynamic algorithms (shortest paths), cases where the result is weakened slightly when
extended to the partially dynamic case (minimum cuts), and cases where it seems to not extend at
all (resistance).

In the case of minimum cut, we have proven that unless there are techniques for computing
Gomory-Hu trees superior to those known, there can be no efficient algorithms for maintaining the
s-t minimum cut in a graph. Our hardness result for s-t minimum cut explains why there is almost
no work on the problem of dynamically maintaining the s-t minimum cut, in excellent analogy
with the case of shortest paths. However, while there has been a great deal of work on dynamic
algorithms for the all-pairs shortest paths problem, we are not aware of any work on dynamically
maintaining the all-pairs minimum cut or the Gomory-Hu tree in a weighted graph. Developing
efficient algorithms for dynamically maintaining the Gomory-Hu tree (or showing that they cannot
exist) would be a good direction for future investigation.

Another natural direction for further research is lower bounds for the Gomory-Hu problem for
weighted graphs. A lower bound for this problem would immediately imply a lower bound for
dynamically maintaining an s-t minimum cut. Another immediate consequence would be a lower
bound for partially dynamic algorithms maintaining an s-t max flow.
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