
The Complexity of the Permanent and Related
Problems

Tim Abbott and Alex Schwendner

May 9, 2007

Contents

1 The Permanent 2
1.1 Variations on the Determinant . 2
1.2 Graph Interpretation . 3

1.2.1 #(Hamiltonian Cycle) . 3

2 Main Proof Structure and Lemmas 3
2.1 Reduction to 3-CNF . 3
2.2 Main Lemma . 4

3 Graph Construction 4
3.1 Tracks & Interchanges . 4
3.2 Junctions . 5
3.3 Comments on the Junctions . 6

4 #P Hardness with entries in {0, 1} 7
4.1 #P Hardness mod some small prime 7
4.2 #P Hardness with entries in {0, 1, . . . , r = O(n log n)} 7
4.3 Transformation {0, 1, . . . , r − 1} → {0, 1} 7

5 Hardness of Variants 9
5.1 UP hardness mod all k 6= 2k . 9
5.2 Low Rank Matrices . 9
5.3 Approximating the Permanent . 9

1

6 Conclusion 10

1 The Permanent

In this paper, we discuss and present a proof of Valiant’s result that the problem of
computing the permanent of matrix with integer entries is #P-complete [Val79]. We
proceed to discuss a number of related results to try to understand why computing the
permanent is hard. The results discussed in this paper, unless specifically attributed
otherwise, are due to Valiant.

1.1 Variations on the Determinant

This section presents an elementary result that we did not find in any published
work. The result that computing the permanent is hard may seem surprising, given
that the determinant is easily computed in polynomial time. But considering that
the determinant is defined as a sum of n! terms, perhaps the surprise is instead
that the determinant is easy. The key difference between these important problems
arises from the fact that there are no interesting operations that one can perform on
a matrix that in general preserve the permanent. The determinant’s sign function
coefficient is precisely what one needs for adding a multiple of one row to another
to preserve the determinant. Since this is the key operation used in the polynomial
time algorithm for computing the determinant, one might then suspect that other
functions that are defined similarly to the determinant would also be hard. Such a
function would be of the form ∑

σ∈Sn

n∏
i=1

f(σ)Ai,σ(i)

for some function f : Sn → C×, the multiplicative subgroup of C. The permanent
and determinant correspond to the function f(σ) = 1 and f(σ) = sign(σ). Because
Sn is a finite group, all elements of the image of Sn under a group homomorphism f
must have finite multiplicative order. Thus, the homomorphism in fact maps Sn into
ΦN , the Nth roots of unity, for some N . Since An is a simple group for all n ≥ 5, it
is the unique proper normal subgroup of Sn for n ≥ 5. Thus, sign and the identity
are the only homomorphisms from Sn into C×. Consequently, the permanent and
the determinant are the only functions from matrices into C that can be defined this
way.

2

1.2 Graph Interpretation

The permanent has an interesting interpretation when we think of the matrix as the
adjacency matrix of a weighted directed graph. Each of the n! terms in the sum
defining the permanent corresponds to a permutation. Since any permutation can
be written as a union of disjoint cycles, in our graph representation this corresponds
to a union of directed cycles covering all the vertices of the graph. The term in the
permanent from this permutation and is equal to the product of the weights of the
edge in the cycles.

Thus, if the matrix were a {0, 1} matrix, then the permanent of the matrix counts
the number of ways to partition the graph into a union of directed cycles. Valiant
proved in his seminal 1979 paper that computing the permanent is #P-complete,
even in this seemingly simpler case [Val79].

1.2.1 #(Hamiltonian Cycle)

The hardness of the permanent for {0, 1} matrices may be more intuitive if one con-
siders that the NP-complete problem Hamiltonian Cycle is the problem of finding a
single cycle that covers all the vertices of a graph. Thus, computing the permanent
of a {0, 1} matrix is similar to the #P-complete problem of counting the number of
Hamiltonian Cycles in a graph. The difference between #(Hamiltonian Cycle) and
the permanent of an unweighted graph’s adjacency matrix is that the sum defining
the permanent includes terms for all n! permutations, whereas that for #(Hamilto-
nian Cycle) sums over only the (n− 1)! n-cycles.

2 Main Proof Structure and Lemmas

2.1 Reduction to 3-CNF

Cook’s Theorem provides a polynomial time reduction g mapping an arbitrary NP
TM M and an input x to a propositional formula ϕ in 3-conjunctive normal form such
that the there exists a satisfying assignment of ϕ if and only if there exists a valid
accepting computation history for M on x. It is easy to see that a minor modification
of Cook’s reduction will also provide a 3-CNF formula ϕ with the number of satisfying
assignments equal to the number of accepting computations of M on x. This implies
that the problem #3-SAT of computing the number of such satisfying assignments
of a 3-CNF formula ϕ is #P-hard. We shall provide a reduction from #3-SAT to
the permanent, thereby showing that the permanent is #P-hard. This reduction is
the content of Valiant’s main lemma.

3

2.2 Main Lemma

There is a function f computable in polynomial time mapping propositional formula
in conjunctive normal form to matrices with entries from {−1, 0, 1, 2, 3} such that

∀ϕ Perm (f (ϕ)) = 4t(ϕ) · s (ϕ)

where t (ϕ) denotes “twice the number of occurrences of literals in ϕ, minus the
number of clauses in ϕ”, and s (ϕ) is the number of assignments that satisfy ϕ.

Our approach in constructing this reduction is to use the graph interpretation of
the permanent discussed in Section 1.2. We shall construct a graph such that each
satisfying assignment of ϕ corresponds to a collection of cycle covers contributing
4t(ϕ) to the permanent.

3 Graph Construction

Write ϕ = C1∧C1∧· · ·∧Cl where Ci = (yi1 ∨ yi2 ∨ yi3) for literals yij ∈ {xk}∪{xk}.
We construct widgets to represent ϕ by constructing a track Tk for each variable xk

and an interchange Ri for each clause Ci. A track Tk and an interchange Ri will
connect if one of the literals yij in Ci is either xk or xk, and we shall connect them by
with the construction of a junction. Each junction is a small fixed four-node subgraph
which forces the track and the interchange to be connected correctly. Additionally,
each interchange will have several internal junctions, each with the same structure
as a junction.

Refer to Figure 1 for the structure of a track and an interchange as illustrated
with an example.

3.1 Tracks & Interchanges

Refer to Figure 1 to see the structure of a track and an interchange. If a variable
xk is true in some assignment, then this assignment corresponds to a cycle cover in
which the left path of the track is taken; it xk is false, then it corresponds to one in
which the right path is taken.

It is not difficult to verify that an assignment of variables satisfying a clause
corresponds to a valid path through an interchange, and that if all of the literals in
the clause are false, then no such valid path exists.

4

Figure 1: An example track T5 for the variable x5 and an interchange R3 for a clause
C3 = (x2 ∨ x5 ∨ x7). The dark ovals are junctions. [Figure copied from Valiant’s
paper.]

3.2 Junctions

The novel and key part of this construction is the structure of the junctions. The
junctions and internal junctions are identical four-node weighted subgraphs repre-

5

sented by the following 4× 4 matrix X:

X =

0 1 −1 −1
1 −1 1 1
0 1 1 2
0 1 3 0

Labeling the nodes of a junction 1, 2, 3, 4 — in the same order as the rows and
columns of X — each junction is connected to the rest of the graph at nodes 1 and 4
only. Let X(Γ; ∆) denote the matrix X with rows in Γ and columns in ∆ removed.
The matrix X has the following properties:

1. Perm X = 0

2. Perm X(1; 1) = 0

3. Perm X(4; 4) = 0

4. Perm X(1, 4; 1, 4) = 0

5. Perm X(1; 4) = Perm X(4; 1) = 4

These properties are essential to the construction, and ensure that the cycle covers
which enter each junction exactly once and leave at the opposite end contribute 4t(ϕ)

to the permanent, and the other cycle covers contribute zero. Property 1 implies that
each junction is both entered and left. Properties 2 and 3 imply that the junction is
entered and left at both ends. Property 4 implies that a cycle cover actually passes
through the junction, instead of two cycle covers touching each end. Lastly, property
5 means that a proper cycle cover which enters each junction exactly once and leaves
at the opposite end contributes 4t(ϕ) as desired.

3.3 Comments on the Junctions

All of the edge weights in the tracks and interchanges are in {0, 1}. Only the junctions
have edge weights of 2, 3, or −1. It would seem desirable to remove the other edge
weights from our construction, especially since we would then not need to separately
prove that computing the permanent of {0, 1} matrices is #P-hard. However, if
we could directly reduce #3-SAT to the permanent of a {0, 1} matrix with some
reduction g such that every nonzero contribution to Perm g(ϕ) corresponded with a
distinct satisfying assignment of ϕ, then a uniquely satisfiable formula ϕ would have
Perm g(ϕ) = det g(ϕ) = 1. Since computing a determinant is easy, this would imply
that P = UP, which seems unlikely. In this proof, the junctions provide a factor of
4t(ϕ) in Perm f(ϕ) which prevents det f(ϕ) from computing a #P-hard problem.

6

4 #P Hardness with entries in {0, 1}
Valiant’s reduction that we have presented relied fundamentally on the use of neg-
ative edge weights. We will now prove Valiant’s corollary that while negative edge
weights are fundamental to Valiant’s initial reduction, they are not fundamental to
the complexity of the problem. Indeed, computing the permanent is #P-complete
even in the unweighted ({0, 1}) case.

4.1 #P Hardness mod some small prime

If M is an integer matrix with no entry of absolute value greater than c, then
|perm(M)| ≤ cnn!. Thus, to compute the permanent, it suffices to compute the
permanent modulo some integer larger than 2cnn!, since there is then only one inte-
ger satisfying both the congruence and the inequality.

Let p1, . . . , pt be the primes less than or equal to r = dn log n. Then if θ(x)
is Chebyshev’s theta function, by the Prime Number Theorem,

∏r
i=1 pi = 2θ(r) ≥

2d′r ≥ nndd′
> 2cnn! for a sufficiently large choice of the constant d. By the Chinese

Remainder Theorem, we can compute the permanent modulo
∏r

i=1 pi by computing
it modulo each prime pi. Since there are only polynomially many pi, this means that
computing the permanent of an input matrix M modulo input prime p < r = dn log n
is #P-hard.

4.2 #P Hardness with entries in {0, 1, . . . , r = O(n log n)}
The result we just proved readily allows us to reduce the problem of computing
the permanent to that for a matrix that does contain any negative numbers. For,
when computing the permanent of a matrix modulo p, one can replace each −1 with
p − 1 without affecting the result modulo p, and compute the permanent of this
new integer matrix with nonnegative entries, and reduce the result modulo p. It
follows that computing the permanent on a matrix with entries in {0, 1, . . . , p− 1} is
#P-hard. Since r ≥ p, it must be hard to compute the permanent of a matrix with
entries in {0, 1, . . . , r − 1}.

4.3 Transformation {0, 1, . . . , r − 1} → {0, 1}
In order to show that computing the permanent is hard for {0, 1} matrices, it remains
to show how to reduce an integer matrix whose entries fall in {0, 1, . . . , r − 1} to a
{0, 1} matrix without changing the value of the permanent.

7

Thinking of the permanent in the graph representation, we replace each edge
(x, y) of weight k > 1 with a subgraph that can be covered by cycles in k different
ways if (x, y) is used in the union of disjoint cycles, but in only one way otherwise.
See Figure 2 (the figure for k = 5 from Valiant’s paper). When (x, y) is used, the
distinct cycle coverings correspond to the various choices of self-loops to include;
while if it is not, the clockwise cycle is the only possible covering.

Every term in the sum defining the permanent either uses the edge (x, y) or does
not. Those terms that use the edge are correctly counted k times because of the k
difference choices for how to cycle cover the subgraph, while those that do not use
the edge are counted precisely once, as desired. Thus, we have replaced an edge of
weight k with O(k) new vertices connected by edges of weight 1, while preserving
the permanent of the corresponding matrix.

This transformation blows up the size of the matrix by a factor linear in the
maximum entry in the matrix, which for our reduced case is at most r. Since
r = O(dn log n), this transformation increases the matrix dimension to at most
O(n2 log n), while preserving the permanent. Thus, computing the permanent of
a {0, 1} matrix is #P-hard. Since computing the permanent of a {0, 1} matrix is
clearly in #P, we have shown the following theorem: Computing the permanent of
a {0, 1} matrix is #P-complete.

Figure 2: An example of the de-weighting transformation for k=5. If the from x to
y is used, there are exactly k ways to cycle cover the new subgraph, giving effective
weight k. If it is not used, there is only one way. [Figure copied from Valiant’s
paper.]

8

5 Hardness of Variants

5.1 UP hardness mod all k 6= 2k

Suppose that k 6= 2k. Define the class Modk P to be the class of decision problems
solvable by an NP machine such that the number of accepting paths is divisible by
k if and only if the answer is ’no’. Then the problem is computing the permanent
modulo k is Modk P -complete (this follows immediately from the #P-completeness of
computing the permanent). It seems to be an open problem as to whether Modk P
is as hard as #P [Bei91], [KM97]. This is interesting to contrast with the earlier
result that computing the permanent modulo a prime less than O(n log n) is #P-
hard (which does not tell us anything about the problem modulo any particular
prime).

5.2 Low Rank Matrices

Many problems associated with matrices are simpler when the rank of the matrices
involved is low. The determinant of a matrix of constant rank can be computed in
constant time (since the answer is 0 for any n greater than that constant), while
algorithms for the determinant in general require de-weighting time. As a less triv-
ial example, the complexity of computing a Nash equilibrium in a general 2-player
matrix game is known to be PPAD-complete [CD06]. However, when the payoff
matrices have constant rank, there is a polynomial-time algorithm for computing a
Nash equilibrium [LMM]. A similar result is true for computing the permanent of
a matrix. There is a polynomial-time algorithm for computing the permanent for
matrices of constant rank (but whose running time is exponential in the rank of the
matrix) [Bar96].

5.3 Approximating the Permanent

In 2004, a FPRAS for the permanent was found for the case where all the entries
in the matrix are nonnegative [JSV01]. This algorithms presents a certain sense in
which the difficulty of computing the permanent may depend on the complexity of
the numbers of the matrix: negative entries make it more difficult to approximate
the permanent with good relative precision.

9

6 Conclusion

Our project focused on understanding why it is that the permanent is a hard problem.

References

[Val79] L. G. Valiant, The complexity of computing the permanent, Theoretical
Computer Science, Volume 8, Issue 2, 1979, Pages 189-201.

[JSV01] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with non-negative entries. ACM Sym-
posium on the Theory of Computation 2001, pages 712-721.

[Bei91] R. Beigel. Relativized counting classes: relations among thresholds, parity
and mods. Journal of Computer and System Sciences, 42(1):76–96, 1991.

[KM97] Grigory P. Kogan, Johann A. Makowsky. Computing Permanents over Fields
of Characteristic 3: Where and Why it Becomes Difficult. IEEE Symposium on
Foundations of Computer Science 1997.

[CD06] Chen, X. and Deng, X. 2006. Settling the Complexity of Two-Player Nash
Equilibrium. In Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS ’06) - Volume 00 (October 21 - 24, 2006).
IEEE Computer Society, Washington, DC, 261-272.

[LMM] Richard J. Lipton, Evangelos Markakis, Aranyak Mehta. Playing Large
Games Using Simple Strategies. Proceedings of the 4th ACM conference on
Electronic commerce, p.36-41, June 09-12, 2003, San Diego, CA, USA

[Bar96] Barvinok, Alexander: Two Algorithmic Results for the Traveling Salesman
Problem. Mathematics of Operations Research; February 1996, Vol. 21 Issue 1,
p65-84, 20p

10

