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My research objective is to develop robots that learn to plan and plan to learn. To build broadly

competent intelligent robots—ones that work in homes, factories, hospitals, restaurants, stores,

assisted living facilities, and disaster zones—we need planning and learning, and they need each other.

We need planning so that a robot given a command like “wipe down the inside of the refrigerator” can

reason about constraints in the moment: move the milk out of the way, but leave it in the fridge (so it

doesn’t spoil) and not on top of the eggs (they’ll crack).We need rapid, generalizing, abstract learning
so that the robot understands from one demonstration that a plunger can be used for plunging, and

also as an improvised tool for sweeping out-of-reach objects; and slower, specializing, low-level
learning to perfect skills like sweeping or concepts like “suction”. We need to integrate learning and

planning so that the robot can acquire new skills and concepts, compose them together with existing

ones, and collect experience to improve future decision-making. In this virtuous learning-planning

cycle, learning serves planning and planning serves learning (Figure 1).

Towards realizing this vision, my research considers learning and planning with abstractions using
techniques from task and motion planning (TAMP), program synthesis, reinforcement learning, and

neuro-symbolic learning. I developed the first unified system for learning abstractions for TAMP [1 --

best paper finalist at IROS 2021; 2-4], advanced the state-of-the-art for planning in very large

problems by learning to attend to relevant objects [5, 6 -- oral at CoRL 2020], solved even larger

problems by synthesizing programmatic policies from very few examples [7-10], and implemented a

virtuous cycle for abstraction learning [11, 12 -- oral at CoLLAs 2023]. A guiding principle in mywork

is that learning and planning should be pragmatic1: models should be trained to make good decisions

quickly. This commitment leads to a middle ground between “pure planning”, which makes good

decisions slowly, and “pure learning”, whichmakes bad decisions quickly when data is scarce.

The following sections describe my progress towards this middle ground andmy long-term vision for

pragmatic robot planning and learning. Directions that I plan to pursue next include: (1) generalizing
and transferring abstractions between radically different domains; (2) leveraging foundation models

for abstraction learning; (3) applying these techniques to caregiving robotics; and (4) democratizing

robot planning and learning through open-source software. These advances will lay the foundation

for a cognitive architecture that will power the broadly competent intelligent robots of tomorrow.

1 In the sense of William James (1906): “Our beliefs are really rules for action… to develop a thought’s meaning,
we need only determine what conduct it is fitted to produce: that conduct is for us its sole significance.”

Figure 1: Planning to learn. The robot decides what to practice (sweeping with a plunger) and how to practice it

(continuous parameters). It then uses planning to autonomously set up a scenewhere sweeping is possible.



Previous and CurrentWork

Learning Abstractions for Planning. When robots are embedded in everyday life, they will need to

make very long-term plans. One strategy for long-term planning is to decompose decision-making

into a high level (“what to do”) and a low level (“how to do it”)

(Figure 2). Reasoning at the high level requires state
abstractions, like “the cup is in the back of the cabinet”, and

action abstractions, like “push the cup to the back”. It also

requires a mechanism to ground abstract states in sensory

inputs and another mechanism to ground abstract actions in

motor actions. Traditionally, the state abstractions, action

abstractions, and grounding mechanisms are all designed by hand on a per-domain basis. This manual

design is time-consuming and difficult, even for domain-expert programmers.

Task and motion planning (TAMP) is a form of planning with abstractions that builds on decades of

progress in classical AI planning, which addresses “what to do”, and continuous optimization, which

addresses “how to do it”. In my PhD work, I developed the first unified system for learning all of the
abstractions and grounding mechanisms needed to do TAMP [1-4]. The abstractions are explicitly

learned to make good decisions quickly, and they often outperform human-designed abstractions in

terms of planning time and success rate.

A central challenge addressed by my work is that abstractions are necessarily lossy in complex

environments. For example, if the robot is holding a hammer, can it place it on a nearby table? Given

an abstract action Place(hammer, table) with a precondition Holding(hammer), the answer may

appear to be yes, but the real answer depends on the morphology and kinematics of the robot, the

geometry of the table and other objects, and the grasp of the hammer. It is tempting to learn

abstractions that are as lossless as possible, but this is often hopeless (e.g., wewould need a predicate

like HammerOnTableNotObstructingWrenchPlacement(hammer, table, wrench) to fully model

placing both objects on a small table—this would certainly not scale to complex environments with

many interacting objects). The pragmatic view suggests a different path forward: we should learn

abstractions that are explicitly optimized for efficient and effective planning. For example, in my

predicate learning work [3], I derived a surrogate objective that analytically approximates planning

time from demonstration data. I then borrowed techniques from program synthesis to learn

predicates that optimize this objective. The learned predicates are interpretable, but sometimes

surprising in their planning benefits. For example, in the classic blocks world domain, the planner

exploits the learned predicates to achieve a 30x time reduction over the standard encoding.

Learning To Accelerate Planning. Even with good abstractions, state-of-the-art planners are slow

when tasks feature hundreds of objects. This is especially limiting considering that the notion of an

“object” is flexible—another abstraction that the robot creates—and may include, for example, “the

back left leg of the chair”. To accelerate planning, I developed techniques that use graph neural

networks [5] and probabilistic graphical models [6] to learn to attend to relevant objects. In [6], the

robot learns to impose constraints on itself so that more objects can be ignored. For example, the

robot learns to top-grasp objects in clutter and re-grasp them before placing them onto a shelf. Such a

plan has more steps than if the robot carefully motion-planned around the clutter to side-grasp the

objects, but the overall planning time is substantially shorter, meeting our pragmatic objective.

Figure 2: Planning with abstractions



When many objects are relevant, we need additional mechanisms to accelerate decision-making. One

strategy is to circumvent slow, deliberative abstract planning by learning
an abstract policy that quickly proposes actions [7-10]. These abstract

policies can be implemented as programs and learned using program

synthesis techniques. For example, in the “Reach for the Star” domain

(Figure 3), a general “build stairs and climb” program, with for-loops and

conditional statements, can be learned from 3 examples and generalized

to build arbitrarily large stairs [8]. I have shown how inductive logic

programming [7], Bayesian decision-tree learning [8], SAT solvers [9], and

large language models [10] can be leveraged to learn complex abstract policies involving >100
subprograms from 5 or fewer examples.

Planning to Learn. Abstract states, actions, and policies can and should be learned from very few

examples, but grounding the abstractions in sensory inputs and motor actions takes practice—active

learning in the real world. Furthermore, active learning requires planning: the robot needs to decide
what data to collect and how to collect it by planning ahead. I have considered planning-to-learn for

abstract action learning [11] and abstract state grounding [12]. In the latter work, my Master’s

student Amber Li and I considered a setting in which a teacher is situated with the robot in the

environment. The robot is permitted to ask the teacher about abstract state groundings in the

current environment (“Is On(fork, plate) true?”) and take actions to change the environment.

Importantly, since the robot can only query the teacher about the current state, it must plan to reach

states where “interesting” questions can be asked. In ongoing work at the Boston Dynamics AI

Institute, I am enabling a Spot robot to plan-to-learn (Figure 1). Given a set of imperfect skills, the

robot repeatedly chooses a skill and plans to practice it. The robot can collect data for hours without

intervention, re-planning to compensate for noise. Through practice, the robot learns to get better
at planning, which in turn supports planning to learn, completing a virtuous cycle.

Future Directions

The work described thus far represents the beginning of a long-term research program in pragmatic

robot planning and learning. The future directions that I will prioritize include:

Refactoring, Generalizing, and Transferring Learned
Abstractions. I want to enable robots to learn and

plan with very general versions of physical
abstractions: containers, trays, levers, stable

supports, dials, bridges, and many others. An

intelligent agent should be able to “create a stable

support”, for example, in 2D physics puzzles and
real-world scenarios (Figure 4). Kelsey Allen, the

co-creator of the Virtual Tools Game (left), applied

our programmatic policy learning approach [8] to the

benchmark and found promising initial results. But to create truly general abstractions that transfer
between radically different domains, like leveraging the concept of “stable support” to build a

makeshift staircase (right), we will need refactoring from the program synthesis literature, a direction

I am exploring in ongoing work with Prof. Sebastijan Dumancic at TUDelft.

Figure 3:Reach for the Star

Figure 4: Planning with a “stable support” abstraction



Learning and Planning with Foundation Models. Large language models (LLMs) and vision-language

models (VLMs) have multiple use cases in my research agenda. In the short term, I have already found

that LLMs can reliably translate natural language commands into symbolic goals for planning, and

that VLMs can be used for object detection with Spot (Figure 1). I have also proposed methods for

improving planning [14] and abstract policy learning [10] using LLMs. In the medium term, I want to

use both LLMs and VLMs to improve state and action abstraction learning. VLMs in particular have

some ability to ground natural language concepts like SuctionAttached(plunger, surface); we

should leverage this knowledge to bootstrap abstraction learning. In the long term, I would like to

explore natural language as a substrate for communicating betweenmany (many!) different modules

in a large, integrated cognitive architecture.

Assistive Robotics Applications. My mother passed away in January 2020 after battling a rare blood

disorder. In the last fewmonths of her life, her mobility and independence were significantly reduced,

which put an enormous strain on her mental health. This experience left me determined to direct my

work towards applications that would assist people in similar situations. From conversations with

robotic caregiving experts, I have come to understand that there is tremendous potential to leverage
planning, especially TAMP, in assistive applications. Instrumental activities of daily living (IADLs) like

cleaning, object retrieval and storage, andmeal preparation offer clear opportunities, but activities of

daily living (ADLs) like assistive feeding, dressing, and grooming also require decision making with

multiple levels of abstraction. While integrating minimally-intrusive robots into existing homes

should be our ultimate goal, we should also consider what can be achieved through physical design
coupled with robot planning. Drawers can be made actuatable; refrigerators can be equipped with

RFID readers; and planning can treat an entire smart home as one large robotic system.

Democratizing TAMP Learning. I am frequently approached by other researchers who want to use

TAMP learning in their projects. I domy best to help them get started, but it’s clear that the barrier to
entry for TAMP learning remains far too high. The field needs a leader to prioritize accessibility, and I
am well-positioned to be that leader. My PDDLGym [14] library, designed tomake task planningmore

accessible to people familiar with reinforcement learning (RL), is the most popular PDDL-language

repository on GitHub2. My 2021 survey paper with colleagues has quickly become the de facto

reference for TAMP [13]. I have organized three workshops at CoRL and RSS on TAMP learning and

related topics. Finally, my research on learning abstractions has long beenmotivated by the prospect

of making TAMP a drop-in replacement for reinforcement learning (RL). In the sameway that one can

run RL algorithms on environments that conform to a standard API, I want to enable people to pip

install tamp-learning and run our algorithmswith almost no setup.

Looking Further. My very long-term goal is to develop a full cognitive architecture for

general-purpose robots. Achieving this goal will require deep collaborations and a commitment to

cumulative and coherent research—the architecture components need to work well together.
Pragmatism will be a useful guiding principle throughout this multi-decade project. We want robots

that make good decisions quickly in homes, factories, hospitals, restaurants, stores, assisted living

facilities, and disaster zones, so we should train them that way.

2 Popularity based on repository star count as of October 2023.
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