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1 Introduction

The roots of polynomials are interesting mathematical objects. The fundamental
theorem of algebra says that given aq,...,a, € C, there exist r1,...,r, € C unique up
to permutation such that

ag+arz+ -t a, 12"+ 2" = (2 —r)(z—19) (2 — 1)

In other words, the roots of a complex polynomial are uniquely determined by its
coefficients. While it is easy to find the coefficients of a polynomial given its roots,
finding the roots from coefficients is a much harder problem.

In this paper we investigate a related problem: analyzing the distribution of the
roots of a polynomial with random coefficients. Our results center around the following
phenomenon: for high degree random polynomials, the distribution a random root is
close to that of the uniform distribution on the unit circle.

We begin, in Section 2, by looking at some simple arguments that hint at why
the unit circle concentration behavior is true. In Section 3, we hypothesize and prove
that when our random polynomials have coefficients which are chosen from circularly
symmetric distributions, the joint root distribution is angularly uniform. In Section 4,
we build up some deterministic bounds on the roots of a general polynomial through
the use of a polynomial’s companion matrix, preparing us to prove our central result.

Finally, in Section 5, we give a proof of our central result: the distribution of a
random root is close to that of a uniform distribution on the unit circle. We prove
this in the case of a complex polynomial of the form Ay + --- + A,_12" ! + 2" where
Ag, ..., A,_1 are i.i.d. complex random variables. We find that under weak conditions
on the coefficient distribution, as n — oo, a random root is near the unit circle.
Furthermore, if the A; are all bounded by a constant, then the arguments of a random
root approaches the uniform distribution.

To conclude, we also propose several conjectures in Section 6, motivated by numerical
evidence, regarding further properties of the distributions of roots.



1.1 Probability Notation

We use P(A) to denote the probability of an event A. We use E[X] to denote the
expectation of a random variable X. Random variables are generally denoted using
capital letters.

2 Building some intuition

In this section we build up some intuition using simple arguments as to why we
expect high degree polynomials to have roots that lie near the unit circle.

2.1 Roots of random binomials of high degree

We will investigate the simple case where the random polynomial is in the form
2™ 4+ A, where A is a random variable, and find that the distribution of the magnitude
of the roots concentrates around 1 as the degree goes to infinity. Specifically, we will
look at the probability distribution of the roots of the random polynomial 2" 4+ A as
n — oo where A is any random variable that takes on the value 0 with probability zero.

[This result follows primarily from the fact that for any positive a, lim, o, a" = 00
if a > 1 and lim,,_,» a™ = 00 if a < 1.]

Note that if A is represented in complex exponential form |A|e*A8(4) the roots of

2" 4 A are & = |A|Y/retAe(Ai/m i — 0 ... n. Then the magnitude of each root is
|A|*/™. Now write for each n, €, write E, . to denote the event that 1 —e < |&| <14«
¢t =1,...,n for the polynomial 2z + A. Then, our current goal is to show that for all
e>0

nh_)rrgo P(E,.) =1. (2.1)

Now, for a given a < 1 the probability that the magnitude of the roots will be less than
ais P(|&] < a) = P(|A]Y™ < a) = P(|]A| < a™). Since lim,,_,», a” = 0, then

lim P(|4| < a") = 0.
n—oo

Similarly, for b > 1, the probability that the magnitude of the roots will be greater than
bis P(|&] > b) = P(|A]Y™ > b) =1 — P(JA| < b") and since lim,,_,,, b" = oo,

lim 1—P(JA| <b")=1—1=0.

n—oo
Then, P(E, ) = 1 - P(EC) > 1— (P(I&] < 1—¢) + P(|&] > 1 +¢)), so that

li_)m P(E,.) > li_>m 1-=P(&] <1—=e)+P(|&]| >1+€)) =1,
and therefore,
lim P(E,.) = 1.

n—oo



Note that this reasoning can be applied to binomials in the form 2™ + Az™, where
m is fixed and n > m. Simply factoring out 2z gives the form z™(z"~™ + A) and as
n — oo, n —m — oo as well, and in the limit, the m zero roots contributed by the 2™
factor are dominated by the n — m roots contributed by the 2"~ + A, meaning that
as n — oo, the proportion of roots contributed by z"~™ + A approaches 1. Note that
in this case, it is not true that 1 — e < [§] < 1 + € since some roots of z™(z"~™ + A)
are zero. However, as n — oo, for a root £ selected uniformly at random, with high
probability it will hold that 1 —e < |[£] < 1 4 €. As a final generalization, note that
this can be applied to polynomials in the form 2" + Az™", where the degree m,, of
the non-leading term Az™» changes with n. In this case, the reasoning goes through if
m, = o(n).

2.2 Convergence of expectation of roots in log space

Here we will prove that the expected value of the logarithm of a root randomly
selected from a random n-th degree polynomial approaches zero as n approaches infinity
given a that the expectation of the logarithm of the magnitude of the constant coefficient
is finite.

Specifically, let P(z) = Ay + -+ + A, 12" ! + 2" be a random polynomial where
A; are i.i.d and R; be the n roots of this polynomial. Let R be the random variable
defined by uniformly selecting one of Ry, ..., R,. Now we will show that if Elog|Ay| is
finite, then

Jim Eflog(|R])] = 0. (2.2

Note that Eflog(|R[)] = + > E[log(|R;|)]. The fact that Ay = [] R; implies log(| A|) =
>-log(|R;|) = nlog(|R|). Then E[log(|R|)] = 1E[log(|Ao|)]. Therefore, if Eflog(|Ao|)]
has a finite value, then log(|R|) converges to zero.

Note that this does not rely on any coefficients other than Ay, so this result holds
with arbitrary A; for ¢ > 0. Furthermore, this can be generalized to coefficients whose
distribution changes with n. Specifically, if A(()") is the constant coefficient associated
with the n-th degree polynomial, then Elog ]A(()n)| = o(n) is a sufficient condition for
the result to hold.

3 Circularly symmetric coefficients yield angularly
uniform roots

From the cases analyzed earlier, we have gained some intuition about why the roots
of random high degree polynomials have magnitudes close to 1. We now shift gears
and look at the behavior of the argument of the roots. First, we formalize the random
variables. We will use Arg(z) to denote the argument of complex z, which takes values
in [0, 27).



Definition 3.1. Let Aq, ..., A,_1 be complex-valued random variables. We denote by

Ry, ..., R, the complex-valued random variables that satisfy
Ag+ Az 4+ A 2"+ 2" = (- R (2 — Ry), (3.1)
(IR1l, Arg(Ry)) = -+ = (|Rn|, Arg(Ry)), (32)

where (3.2) is specified using the lexicographic order of RxR and Arg : C — [0,27). We
denote by R the random variable that is a uniform random choice of one of Ry, ..., R,.

For example, the lexicographic ordering of the R; is defined such that complex
number 1+ i = (v/2,%) would be ordered after complex number i = (1, 3).

3.1 Numerical results

We ran three simulations for polynomials of degree n = 10 and n = 25 where the
A; are i.i.d. complex Gaussians with mean 0. For n = 10, we sampled from complex
Gaussians of both standard deviation 1 and 4. For n = 100, we sampled from complex
Gaussians with standard deviation 1 only. For each of the three simulations, we sampled
5000 random polynomials. For each sampled polynomial, we numerically computed the
roots via the polynomial solver in the numpy package in Python. In Figure 3.1 we plot,
for both both values of n, the roots in the complex plane as a heatmap, as well as
arguments of the roots as a binned histogram.

From our simulations, we suspect that a the roots of random polynomials with A;
as complex Gaussians with mean 0 have arguments which are uniformly distributed in
[0,27). We prove a stronger version of this claim below.

3.2 Proof of angular uniformity of joint root distribution

Recall first the definition of circular symmetry in the complex numbers.

Definition 3.2. A distribution D in the complex numbers is circularly symmetric if D
is identical under rotation about point 0. That is, D = e'*D for any angle ¢,

We now show that the distribution of the arguments of the roots are circularly
symmetric for all circularly symmetric A;, as opposed to the more specific case of
Gaussian A; as in the simulation.

Theorem 3.3. Let Ay, ..., A, be independent circularly symmetric distribution. Then,
the polynomial p(z) = Ag+ A1z + ...+ A,_12"1 + 2" has joint root distribution R (as
defined in 3.1) which is also circularly symmetric.

Proof. Consider the random polynomial ¢(z) = By + B1z + ...+ B,_12""! + 2™ whose
joint root distribution is e”’R for any ¢. From Vieta’s formulas, we see that the B,
must be defined as follows:



Heatmap of roots with n=10, stdev=1 Distribution of root arguments with n=10, stdev=1
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Figure 3.1: Heatmap and histogram of the roots and the arguments of the roots. In
the heatmaps, yellow colors denote high concentrations of roots, while purple colors
denote lower concentrations. It appears that for complex Gaussian A; with mean 0,
neither the standard deviation of the A; nor the degree n of the polynomial matter -
the arguments of the roots remain uniformly distributed over [0, 27) regardless.

B; = ei¢("_j)Aj.

However, as all A; are circularly symmetric, we have that B; = A; for all j. We
know that there is a unique mapping from a polynomial’s coefficients to its roots. Thus,
because the coefficients of p(z) and ¢(z) are sampled from the same distribution, we
expect the joint root distribution e!’R for any ¢ to be identical to R, the joint root
distribution for p(z). By definition, then, the joint root distribution R is circularly
symmetric. [



We now show that all distributions over the complex numbers which are circularly
symmetric must also be angularly uniform. That is, the distribution of the arguments
of each of the points in the distribution is uniform over [0, 27).

Corollary 3.3.1. The joint root distributions R of polynomials chosen from circularly
symmetric A; are not only circularly symmetric but also angularly uniform.

Proof. We show that any complex distribution R which is circularly symmetric must
be angularly uniform as well. Divide the distribution R into ¢ sections 51, ..., .S,, each
spanning an arc of 1/¢ radians around 0, such that none of the S; overlap. Then the
measure of each of these sections is equivalent. That is,

P(Re S;)) =P(ReS))

for all 7 and j, as R is circularly symmetric. Then, P(R € S;) = % for all 4. Let S, be
the union of p of the non-overlapping S;. We must also have, then, that P(R € S)) = 75’.
That is, P(R € 5) is simply the measure of S for any set S with rational measure.

It is well-known that a distribution R which is defined as such for all rational sets
S must also be defined for all irrational sets 7' as simply the measure of S by taking
the limit of the rational sets near the irrational set 7. R must be angularly uniform,
then, as its measure on any subset of angles is simply the measure of the subset. O

We have shown now that the joint root distribution of the polynomials with coefficients
chosen from circularly symmetric distributions must be angularly uniform.

4 Deterministic results on the singular values of
companion matrices

Before proceeding further, we derive an important inequality involving the roots of
a polynomial and its coefficients. This inequality will be used later on to show that the
roots of a random high degree polynomial concentrate about the unit circle. We begin
by defining for complex polynomial p(z) its companion matriz C as follows.

Definition 4.1 (Companion Matrix). The companion matriz C' to a polynomial
p(z) =ag+arz+ - a2+ 2"

1s the n X n matriz

00 - 0 —ao
1 0 - 0 —Qaq

=101 -0 —a|. (4.1)
_0 0 1 —a,1




The companion matrix of a polynomial p(z) has the property that its characteristic
polynomial is precisely the original polynomial p(z). Thus, the eigenvalues of C are
the roots of p(z). This is a very powerful transformation of the polynomial. We begin
to showcase the power of the companion matrix by deriving a simple bound on the
magnitudes of its eigenvalues.

Lemma 4.2. The maximum magnitude of the eigenvalues r; is bounded as follows:

max|ri] < 1+ max|a].
3 T

Proof. Consider any eigenvector v = (vy,...,v,)! of the companion matrix C, scaled
such that max; |v;| = 1. We then have, for all i € [1, n]:

(Cv)il =D [Cyvs] < |Cy < 1+ max |a,|.
=1 j=1

We know the left-hand side, by definition, is equal to |(r;v);| = |r;||vi| for some j. We
can then write

Observing that max; |v;| = 1 gives the desired inequality. O

Knowing the strength of this transformation, we now proceed to further bound the
eigenvalues of C' and thus the roots of p(z) using the singular values of C. We recall
what the singular values of a matrix are.

Definition 4.3 (Singular Values). The n singular values s; of a square n xn matriz M,
are the square-roots of the eigenvalues of M*M, where M* is the conjugate transpose
of M. The singular values are all non-negative real numbers and we order them as
5128220 2 Sn.

The singular values of a companion matrix C' are characterized by the following
lemma.

Lemma 4.4. Let C' be the companion matriz to complex polynomial
p(z) =ag+arz+ - A ap_12" 2"

Let s; be the singular values of C'. We have that

VOt laol + S a2 43/ Jaol)? + 0
S1 = )

2
Sg =83 =+ =5,1 =1,
_’@0!

n



Proof. Consider C*C".

1 o - 0 —ay
1 ... 0 —ay
crC=| : : (4.2)
0 o --- 1 — Q1
a1 =Gy —Gpe1 Do |l

The first n — 1 columns of C*C' — [ have zeros everywhere except the last row. So
C*C — I has at most 2 independent columns, a rank of at most 2, and thus, by the
rank-nullity theorem|[!], a null-space of size at least n — 2. Now, we recall the well-
known result that the algebraic multiplicity of an eigenvalue A is lower-bounded by the
geometric multiplicity of the same eigenvalue A. In our case, the geometric multiplicity
of A =1 is at least n — 2, so the algebraic multiplicity of A =1 in C*C must be at least
n — 2. Ignoring the ordering of the s; for now, we have sy =--- =5, 1 = 1.

Now recall that the eigenvalues of a matrix multiply to the determinant of the
matrix. We can see that |det C'| = |ag|. Since det M* = det M. We then have

n

n
H 57 = 5352 = det C*C = |ag|*.
i=1

Furthermore, recall that the eigenvalues of a matrix sum to the trace of the matrix:

n

Zs? =si+(n—2)+s=Tr(C*C)=(n—1) + Z |ag)?.
i=1 i=0
Solving these two equations gives the desired values for s; and s,. O

We now cite a result which bounds the eigenvalues of a matrix with its singular
values.

Lemma 4.5 (Weyl’s Majorant Inequality [2, Thm 3.1.13]). Let ¢ : R — R be a convex
function and let A € C™*™ be a nonsingular matriz with eigenvalues Ay, ..., \, and
singular values sy, ...,S,. Then

> ellog |Xi) <) pllog si).
=1 1=1

We proceed to bound the eigenvalues of C, and thus the roots of p(z), using our
characterization of the singular values as well as Weyl’s Majorant Inequality.

Lemma 4.6. Let rq,...,r, be the roots of polynomial
p(z) =ag+arz+- -+ a,_ 12"+ 2", ag # 0.
Then

n n—1
> “log®|ri| < 2log® |ag| + 3log® <1+Z|ai|). (4.3)
i=0

i=1



Proof. Let C' be the companion matrix to p(z) and let sy,..., s, be the singular values
of C, ordered as in Lemma 4.4. Since ay # 0, C' is nonsingular. This lets us apply
Lemma 4.5 with the convex function p(z) = z?. Since the eigenvalues of C' are the

roots of p(z), we obtain the inequality

ilog2 Iri| < ilog2 Si.
i=1 i=1

By Lemma 4.4 we have that

n—1 n—1
1< s <[ fao)2 + 3 Jail <143 Jal,
=1 =0

Sg =83 =" =81 =1,

This means

D log?fri| <Y log®s;
=1 =1
CLO|

< log? 51 + log? .
1

= log® 51 + (log |ao| — log 51)*
< 2log? |ag| + 3log? 51

n—1
< 21og? |ag| + 3log? <1+Z|ai|>. O
=0

With this upper-bound on the second moments of the logs of the roots of general
polynomials, we may now approach analyzing the distribution of roots for general
random polynomials.

5 Roots of random high degree polynomials

We begin our analysis of the roots of random high degree polynomials by proving
Theorem 5.2, which gives sufficient conditions for when a random root of a random high
degree polynomial has magnitude close to 1. We will then prove Theorem 5.3, which
gives sufficient conditions for when a random root of a random high degree polynomial
has a uniform angle distribution.



5.1 Roots tend to the unit circle

We now give a proof of the phenomenon that roots of random high degree polynomials
tend to have magnitude close to 1. We shall do so in the case of i.i.d. coefficients, but
the proof can be extended to the non ii.d. case as well. The main (and really only)
ingredient in our proof is the inequality derived in Lemma 4.2.

In our proof we will make use of the notion of convergence in probability, which we
now define.

Definition 5.1 (Convergence in Probability). Let X,, be a sequence of complex random
variables. We say that X,, converges to a random variable X in probability, written as
X, 25 X, when for all e > 0

lim P (|X,, — X|>¢) =0. (5.1)

n—o0

We are ready to state and prove our result.

Theorem 5.2. Let Ay, Ay, ... be a sequence of i.i.d. complex random variables with
finite expectations that satisfy P(A; = 0) = 0. Let R,, be a random root of the polynomial

pn(z) =Ag+ A2+ + An_lzn—l 42
Then |R,| =<+ 1.

Proof. We shall show the equivalent statement that log |R,| — 0.
Let R, .., Ry, denote the roots of p,(z) and denote

1n
A== log?|R,,|
n;og\ il

A is the empirical second moment of the discrete uniform distribution over log |R,, 1],

..., 10g |Rp.n|. We shall show that A - 0, which will imply that log |R,,| — 0.
Lemma 4.6 tells us that

n—1
1 1
A< =log?| Al + =1log? [ 1 Al 5.2
_nog|o|+nog<+;| |) (5.2)
Now
1 n—1
lim —E |log® [ 1 A;
Jm T Jlog ( +2| )
1 n—1
< lim — E |log® A;
< Jim S |lo (+Z' )
1 n—1
<1 + 2 4 , . .
_nhﬁnolc> nlog (e+;E[|AZ|]> (Jensen’s inequality)
log? E[|A
< i 1O (B[ A]) _
n—o00 n

10



so we have that )
1 -
—log” [ 1 Al | 0. 5.3
nog(+§j| |> 5.3
Moreover, since P(Ay = 0) = 0, we also have that
1
—log? | Ag| = 0. (5.4)
n

Since A is non-negative, equations (5.2), (5.3), and (5.4) tell us that A -2 0. O

5.2 Angular uniformity of roots

We have shown that under a mild moment conditions for the coefficients, the
magnitude of the roots of a random polynomial tends to be close to 1. We shall now show
that under much stronger moment conditions on the coefficients (e.g. i.i.d. coefficients
with finite support) the argument of the random root of a random polynomial tends to
be uniformly distributed in [0, 27).

Theorem 5.3. Let Ay, Ay, ... be a sequence of i.i.d. complex random variables which
have finite moments of all orders and satisfy P(A; = 0) = 0. Let R,, be a random root
of the polynomial

p(2) = Ag+ Arz+ -+ A2+ 2"

If for every positive integer w, it holds that

lim E[|RY|] =1, (5.5)

n—oo
then for any 0 < a < b < 27, we have

lim P (Arg(R,) € [a,b]) = b-a, (5.6)

n— 00 27

In other words, Arg(R,,) converges in distribution to the uniform distribution on [0,27).

Proof. To show that equation (5.6) holds for all 0 < a < b < 27, we will prove the
equivalent statement that

27

lim E[f (Arg(Rn))] = [ f(z)dx (5.7)

n—oo 0

for all continuous functions f : [0,27] — R with f(0) = f(2).

By Fejer’s theorem, for any continuous function f : [0,27] — R with f(0) = f(27),
there exists a sequence of functions f,, : [0,27] — R that converges uniformly to f
where

fm(z) = i f(z)dx + Z cn,keim

0 —m<w<m, p£0

11



for some constants ¢, . We shall show that for any positive integer w,

lim E [exp (iw Arg (R,))] = 0, (5.8)
which implies that
2
fim Bl (Ara(R) = [ fle) dr
n—oo 0

for all m. This means

limsup E [f (Arg(Ry))] < limsup E [, (Arg(Rn)) + [[f = fmll]

n—00 n—00
2w

lim inf E [f (Arg(R,))] < limsup E [fin, (Arg(Rn)) = [[f = fmll]

n—00 n—o00
27

= [ fle)dz —||f = fille:
0
which, upon taking the limit as m — oo, yields equation (5.7).
Thus it remains to show equation (5.8) holds for positive w. To do so we make
use of Newton’s identities. Letting R, 1,..., R, denote the roots of p,(z), Newton’s
identities tell us that we can write

> R = Ny(Ant, o Auy), (5.9)
=1

where N, is a fixed polynomial (not varying in n) in p unknowns and A,,_, is taken to
be zero when n < p.

Since the A; have moments of all orders and are i.i.d., the expected value of expression
(5.9) is constant for n > p. Moreover, by Proposition 4.2 the expected value of each
individual R? & 1s also finite. Thus,

Jn B = JlfsonZE )=l DB R =0 (a0
We may now show equation (5.8) as follows:
lim E [exp (ip Arg (R,))]
= lim E[R] + (1 — |Ra[") exp (ip Arg (Ry))]
= lim B[R] + lim B[(1— [R[)exp (pArg (R))]  (5.10),(5.5))
=0. [

It turns out the condition in equation (5.5) holds when the coefficients have finite
support.

12



Corollary 5.3.1. Let Ay, Ay, ... be a sequence of i.i.d. complex random variables with
finite support that satisfy P(A; =0) = 0. Let R, be a random root of the polynomial

p(2) = Ag+ Arz+ -+ A2+ 2"

Then, as n — o0, the sequence of random variables Arg(R,) converges in distribution
to the uniform distribution on [0,2m).

Proof. Since the A; are finitely supported, there is some bound B such that P(]A| <
B) = 1. By Lemma 4.2, for w > 1, the random variable P(|RY| < 1+B") = 1, so |RY| is
also finitely supported. By Theorem 5.2, |R¥| -2+ 1, but since | R¥| is finitely supported
but this means E[|RY|] — 1. The corollary then follows from Theorem 5.3. O

6 Conjectures from numerical simulations

6.1 Approximately uniform distribution of roots for a
randomly-selected polynomial

One property we thought that the random polynomials might have is a uniform
spread of roots, i.e. the roots of a randomly-chosen polynomial should not exhibit
significant clustering with high probability as n — co. Since in the limit n — oo the
magnitude of the roots approaches 1, the arguments of the roots are the important
factor when considering their closeness. Therefore, we will formulate clustering of the
roots in the limit in terms of the arguments of the roots.

To make this conjecture precise, for an n-th degree polynomial p and closed interval

I = [a,b] C [0,27], denote the number of roots of p whose argument is in I by
#(p,I). We can consider the the quantity c(p,I) = W as a measure of the

“concentration” of the arguments of the roots of p inside the interval I; it measures
how big the actual number of roots whose arguments are in [ is compared to the number
that would be expected if the roots were distributed in a perfectly uniform manner. We
can now formulate our conjecture.

Conjecture 6.1. If Py)(z) = A(()n) + e+ Ag’i)lz"_l + 2" is a random n-th degree
polynomial where the Aﬁ.") are i.1.d Gaussian distributions with mean zero, for any
interval I C [0, 27] and any € > 0 we have that

: () 1y _ -
nll_)IIC}OP (Je(P™, 1) = 1] > €) = 0. (6.1)

This can of course be conjectured for distributions other than Gaussian with mean
zero. However, numerical evidence was only computed for the case of Gaussian. For
a fixed interval width, random polynomials of increasing degree were generated, and
the arguments of their roots were computed. Then, the mazimum concentration in any
interval of the given length was computed. As n increased, this maximum concentration
decreased, seeming to approach 1. The results of this simulation for polynomials with
complex Gaussian coefficients with variance 0.01 and interval length 0.1 are shown in
Figure 6.1.

13
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Figure 6.1: Maximum value of ¢(P,I) v.s. n

6.2 Repulsion of roots

Another conjectured property related to the distribution of roots of a given randomly-
selected polynomial is that the roots repel each other, that is the roots should tend to
“spread out” from each other. Note that this is not the same as saying that there tends
to be no clustering (for example roots of a polynomial p might be such that ¢(p, I) is
close to 1, but there are a few roots that are still very close together, or even equal).
The way we measure repulsion is in terms of the variance of the number of roots whose
arguments fall within a given subinterval I of [0, 27].

The intuition for why this captures the idea of repulsion is that it measures a sort of
correlation between the roots. For example, suppose we are considering the distribution
of roots of a random n-th degree polynomial p for large n so that the magnitudes roots
are close to 1, and we are only interested in the distribution of arguments. Consider
the extreme case that the distribution of roots is such that all n roots are identical;
the roots would be in I with probability length(7)/27 and outside with probability
1 —length(I)/2m. The variance of the number of roots in I is then ©(n?). At the other
extreme, if the distribution of roots were such that the roots were always perfectly
uniformly spaced in their arguments, then for an interval there could only be either
|nxlength(I)/27| or |nxlength(I)/2m| + 1. The variance in this case is ©(1). Finally,
if it were the case that the roots were independently uniformly distributed, then the
number of roots in / would be a binomial random variable with parameter length(/)/2m
which has ©(n) variance. Hence, a variance of ©(n?) would correspond to an maximum
“attraction” of roots, variance O(n) to an “independence” of roots, and variance ©(1)
to a maximum “repulsion” of roots.

Now, if this variance were computed for a specific distribution of random coefficients,
its asymptotic behavior would give a measure of the amount of repulsion or attraction
between the roots of a randomly generated polynomial.

Numerical simulation suggests that the growth of the variance may be ©(logn) or
©(n®) for a < 1, which can reasonably be considered to be much closer to ©(1) than to
O(n). The graphs for the estimated variance for increasing n are shown in Figure 6.2
for both complex Gaussian coefficients with variance 0.01 and coefficients which are
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the uniform distribution on the two values {41, —1}. The variances were estimated
by computing the roots of 50 random polynomials for select degrees, then finding the
variance of the resulting set.
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Figure 6.2: Estimated variance of #(P™[0,0.1]) v.s. n

6.3 Distribution of the magnitude of max root approaches
fixed distribution as n increases

As we were exploring the distribution of the roots of the random polynomial, we also
explored the distribution of just the maximum magnitude root. For these simulations,
we sampled 5000 polynomials of degrees n = 1, 3, and 10. The coefficients A; were

sampled from complex Gaussians with mean 0 and standard deviation 1.

For each

sampled polynomial, we numerically computed its roots, and plotted a histogram of
the root with the maximum magnitude, over all 5000 sampled polynomials, for each of

the three n.
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Figure 6.3: Distribution of the magnitude of the root with maximum magnitude over
complex normal perturbed polynomials of degrees 1, 3, and 10, respectively.

Figure 6.3 suggests that the distribution of these maximum root magnitudes converge
to some fixed distribution as the degree n further increases to infinity. We did not run

any simulations for different coefficient distributions A;; however, we suspect that the

A; must at least remain i.i.d. for this conjecture to hold.
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