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1 Introduction

The roots of polynomials are interesting mathematical objects. The fundamental
theorem of algebra says that given a0, . . . , an ∈ C, there exist r1, . . . , rn ∈ C unique up
to permutation such that

a0 + a1z + · · ·+ an−1z
n−1 + zn = (z − r1)(z − r2) · · · (z − rn).

In other words, the roots of a complex polynomial are uniquely determined by its
coefficients. While it is easy to find the coefficients of a polynomial given its roots,
finding the roots from coefficients is a much harder problem.

In this paper we investigate a related problem: analyzing the distribution of the
roots of a polynomial with random coefficients. Our results center around the following
phenomenon: for high degree random polynomials, the distribution a random root is
close to that of the uniform distribution on the unit circle.

We begin, in Section 2, by looking at some simple arguments that hint at why
the unit circle concentration behavior is true. In Section 3, we hypothesize and prove
that when our random polynomials have coefficients which are chosen from circularly
symmetric distributions, the joint root distribution is angularly uniform. In Section 4,
we build up some deterministic bounds on the roots of a general polynomial through
the use of a polynomial’s companion matrix, preparing us to prove our central result.

Finally, in Section 5, we give a proof of our central result: the distribution of a
random root is close to that of a uniform distribution on the unit circle. We prove
this in the case of a complex polynomial of the form A0 + · · · + An−1z

n−1 + zn where
A0, . . . , An−1 are i.i.d. complex random variables. We find that under weak conditions
on the coefficient distribution, as n → ∞, a random root is near the unit circle.
Furthermore, if the Ai are all bounded by a constant, then the arguments of a random
root approaches the uniform distribution.

To conclude, we also propose several conjectures in Section 6, motivated by numerical
evidence, regarding further properties of the distributions of roots.
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1.1 Probability Notation

We use P(A) to denote the probability of an event A. We use E[X] to denote the
expectation of a random variable X. Random variables are generally denoted using
capital letters.

2 Building some intuition

In this section we build up some intuition using simple arguments as to why we
expect high degree polynomials to have roots that lie near the unit circle.

2.1 Roots of random binomials of high degree

We will investigate the simple case where the random polynomial is in the form
zn +A, where A is a random variable, and find that the distribution of the magnitude
of the roots concentrates around 1 as the degree goes to infinity. Specifically, we will
look at the probability distribution of the roots of the random polynomial zn + A as
n→∞ where A is any random variable that takes on the value 0 with probability zero.

[This result follows primarily from the fact that for any positive a, limn→∞ a
n =∞

if a > 1 and limn→∞ a
n =∞ if a < 1.]

Note that if A is represented in complex exponential form |A|eiArg(A) the roots of
zn + A are ξi = |A|1/neiArg(A)i/n, i = 0, . . . , n. Then the magnitude of each root is
|A|1/n. Now write for each n, ε, write En,ε to denote the event that 1− ε ≤ |ξi| ≤ 1 + ε
i = 1, . . . , n for the polynomial zn + A. Then, our current goal is to show that for all
ε > 0

lim
n→∞

P(En,ε) = 1. (2.1)

Now, for a given a < 1 the probability that the magnitude of the roots will be less than
a is P(|ξi| < a) = P(|A|1/n < a) = P(|A| < an). Since limn→∞ a

n = 0, then

lim
n→∞

P(|A| < an) = 0.

Similarly, for b > 1, the probability that the magnitude of the roots will be greater than
b is P(|ξi| > b) = P(|A|1/n > b) = 1−P(|A| < bn) and since limn→∞ b

n =∞,

lim
n→∞

1−P(|A| < bn) = 1− 1 = 0.

Then, P(En,ε) = 1−P(EC
n,ε) ≥ 1− (P(|ξi| < 1− ε) + P(|ξi| > 1 + ε)), so that

lim
n→∞

P(En,ε) ≥ lim
n→∞

(1− (P(|ξi| < 1− ε) + P(|ξi| > 1 + ε))) = 1,

and therefore,
lim
n→∞

P(En,ε) = 1.
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Note that this reasoning can be applied to binomials in the form zn + Azm, where
m is fixed and n > m. Simply factoring out zm gives the form zm(zn−m + A) and as
n→∞, n−m→∞ as well, and in the limit, the m zero roots contributed by the zm

factor are dominated by the n −m roots contributed by the zn−m + A, meaning that
as n → ∞, the proportion of roots contributed by zn−m + A approaches 1. Note that
in this case, it is not true that 1 − ε ≤ |ξi| ≤ 1 + ε since some roots of zm(zn−m + A)
are zero. However, as n → ∞, for a root ξ selected uniformly at random, with high
probability it will hold that 1 − ε ≤ |ξ| ≤ 1 + ε. As a final generalization, note that
this can be applied to polynomials in the form zn + Azmn , where the degree mn of
the non-leading term Azmn changes with n. In this case, the reasoning goes through if
mn = o(n).

2.2 Convergence of expectation of roots in log space

Here we will prove that the expected value of the logarithm of a root randomly
selected from a random n-th degree polynomial approaches zero as n approaches infinity
given a that the expectation of the logarithm of the magnitude of the constant coefficient
is finite.

Specifically, let P (z) = A0 + · · · + An−1z
n−1 + zn be a random polynomial where

Ai are i.i.d and Ri be the n roots of this polynomial. Let R be the random variable
defined by uniformly selecting one of R1, . . . , Rn. Now we will show that if E log |A0| is
finite, then

lim
n→∞

E[log(|R|)] = 0. (2.2)

Note that E[log(|R|)] = 1
n

∑
E[log(|Ri|)]. The fact thatA0 =

∏
Ri implies log(|A0|) =∑

log(|Ri|) = n log(|R|). Then E[log(|R|)] = 1
n
E[log(|A0|)]. Therefore, if E[log(|A0|)]

has a finite value, then log(|R|) converges to zero.
Note that this does not rely on any coefficients other than A0, so this result holds

with arbitrary Ai for i > 0. Furthermore, this can be generalized to coefficients whose
distribution changes with n. Specifically, if A

(n)
0 is the constant coefficient associated

with the n-th degree polynomial, then E log |A(n)
0 | = o(n) is a sufficient condition for

the result to hold.

3 Circularly symmetric coefficients yield angularly

uniform roots

From the cases analyzed earlier, we have gained some intuition about why the roots
of random high degree polynomials have magnitudes close to 1. We now shift gears
and look at the behavior of the argument of the roots. First, we formalize the random
variables. We will use Arg(z) to denote the argument of complex z, which takes values
in [0, 2π).
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Definition 3.1. Let A0, . . . , An−1 be complex-valued random variables. We denote by
R1, . . . , Rn the complex-valued random variables that satisfy

A0 + A1z + · · ·+ An−1z
n−1 + zn = (z −R1) · · · (z −Rn), (3.1)

(|R1|,Arg(R1)) ≥ · · · ≥ (|Rn|,Arg(R1)), (3.2)

where (3.2) is specified using the lexicographic order of R×R and Arg : C→ [0, 2π). We
denote by R the random variable that is a uniform random choice of one of R1, . . . , Rn.

For example, the lexicographic ordering of the Ri is defined such that complex
number 1 + i = (

√
2, π

4
) would be ordered after complex number i = (1, π

2
).

3.1 Numerical results

We ran three simulations for polynomials of degree n = 10 and n = 25 where the
Ai are i.i.d. complex Gaussians with mean 0. For n = 10, we sampled from complex
Gaussians of both standard deviation 1 and 4. For n = 100, we sampled from complex
Gaussians with standard deviation 1 only. For each of the three simulations, we sampled
5000 random polynomials. For each sampled polynomial, we numerically computed the
roots via the polynomial solver in the numpy package in Python. In Figure 3.1 we plot,
for both both values of n, the roots in the complex plane as a heatmap, as well as
arguments of the roots as a binned histogram.

From our simulations, we suspect that a the roots of random polynomials with Ai
as complex Gaussians with mean 0 have arguments which are uniformly distributed in
[0, 2π). We prove a stronger version of this claim below.

3.2 Proof of angular uniformity of joint root distribution

Recall first the definition of circular symmetry in the complex numbers.

Definition 3.2. A distribution D in the complex numbers is circularly symmetric if D
is identical under rotation about point 0. That is, D = eiφD for any angle φ,

We now show that the distribution of the arguments of the roots are circularly
symmetric for all circularly symmetric Ai, as opposed to the more specific case of
Gaussian Ai as in the simulation.

Theorem 3.3. Let A1, . . . , An be independent circularly symmetric distribution. Then,
the polynomial p(z) = A0 +A1z + . . .+An−1z

n−1 + zn has joint root distribution R (as
defined in 3.1) which is also circularly symmetric.

Proof. Consider the random polynomial q(z) = B0 +B1z + . . .+Bn−1z
n−1 + zn whose

joint root distribution is eiφR for any φ. From Vieta’s formulas, we see that the Bj

must be defined as follows:
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Figure 3.1: Heatmap and histogram of the roots and the arguments of the roots. In
the heatmaps, yellow colors denote high concentrations of roots, while purple colors
denote lower concentrations. It appears that for complex Gaussian Ai with mean 0,
neither the standard deviation of the Ai nor the degree n of the polynomial matter -
the arguments of the roots remain uniformly distributed over [0, 2π) regardless.

Bj = eiφ(n−j)Aj.

However, as all Aj are circularly symmetric, we have that Bj = Aj for all j. We
know that there is a unique mapping from a polynomial’s coefficients to its roots. Thus,
because the coefficients of p(z) and q(z) are sampled from the same distribution, we
expect the joint root distribution eiφR for any φ to be identical to R, the joint root
distribution for p(z). By definition, then, the joint root distribution R is circularly
symmetric.
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We now show that all distributions over the complex numbers which are circularly
symmetric must also be angularly uniform. That is, the distribution of the arguments
of each of the points in the distribution is uniform over [0, 2π).

Corollary 3.3.1. The joint root distributions R of polynomials chosen from circularly
symmetric Ai are not only circularly symmetric but also angularly uniform.

Proof. We show that any complex distribution R which is circularly symmetric must
be angularly uniform as well. Divide the distribution R into q sections S1, . . . , Sq, each
spanning an arc of 1/q radians around 0, such that none of the Si overlap. Then the
measure of each of these sections is equivalent. That is,

P(R ∈ Si) = P(R ∈ Sj)

for all i and j, as R is circularly symmetric. Then, P(R ∈ Si) = 1
q

for all i. Let S ′p be

the union of p of the non-overlapping Si. We must also have, then, that P(R ∈ S ′p) = p
q
.

That is, P(R ∈ S) is simply the measure of S for any set S with rational measure.
It is well-known that a distribution R which is defined as such for all rational sets

S must also be defined for all irrational sets T as simply the measure of S by taking
the limit of the rational sets near the irrational set T . R must be angularly uniform,
then, as its measure on any subset of angles is simply the measure of the subset.

We have shown now that the joint root distribution of the polynomials with coefficients
chosen from circularly symmetric distributions must be angularly uniform.

4 Deterministic results on the singular values of

companion matrices

Before proceeding further, we derive an important inequality involving the roots of
a polynomial and its coefficients. This inequality will be used later on to show that the
roots of a random high degree polynomial concentrate about the unit circle. We begin
by defining for complex polynomial p(z) its companion matrix C as follows.

Definition 4.1 (Companion Matrix). The companion matrix C to a polynomial

p(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn

is the n× n matrix

C =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

 . (4.1)
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The companion matrix of a polynomial p(z) has the property that its characteristic
polynomial is precisely the original polynomial p(z). Thus, the eigenvalues of C are
the roots of p(z). This is a very powerful transformation of the polynomial. We begin
to showcase the power of the companion matrix by deriving a simple bound on the
magnitudes of its eigenvalues.

Lemma 4.2. The maximum magnitude of the eigenvalues ri is bounded as follows:

max
i
|ri| ≤ 1 + max

i
|ai|.

Proof. Consider any eigenvector v = (v1, . . . , vn)T of the companion matrix C, scaled
such that maxi |vi| = 1. We then have, for all i ∈ [1, n]:

|(Cv)i| =
n∑
j=1

|Cijvj| ≤
n∑
j=1

|Cij| ≤ 1 + max
i
|ai|.

We know the left-hand side, by definition, is equal to |(rjv)i| = |rj||vi| for some j. We
can then write

|rj| ≤
1 + maxi |ai|

maxi |vi|
.

Observing that maxi |vi| = 1 gives the desired inequality.

Knowing the strength of this transformation, we now proceed to further bound the
eigenvalues of C and thus the roots of p(z) using the singular values of C. We recall
what the singular values of a matrix are.

Definition 4.3 (Singular Values). The n singular values si of a square n×n matrix M ,
are the square-roots of the eigenvalues of M∗M , where M∗ is the conjugate transpose
of M . The singular values are all non-negative real numbers and we order them as
s1 ≥ s2 ≥ · · · ≥ sn.

The singular values of a companion matrix C are characterized by the following
lemma.

Lemma 4.4. Let C be the companion matrix to complex polynomial

p(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn

Let si be the singular values of C. We have that

s1 =

√
(1 + |a0|)2 +

∑n−1
i=1 |ai|2 +

√
(1− |a0|)2 +

∑n−1
i=1 |ai|2

2
,

s2 = s3 = · · · = sn−1 = 1,

sn =
|a0|
s1
.
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Proof. Consider C∗C:

C∗C =


1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1
−ā1 −ā2 · · · −ān−1

∑n
i=1 |ai|2

 . (4.2)

The first n− 1 columns of C∗C − I have zeros everywhere except the last row. So
C∗C − I has at most 2 independent columns, a rank of at most 2, and thus, by the
rank-nullity theorem[1], a null-space of size at least n − 2. Now, we recall the well-
known result that the algebraic multiplicity of an eigenvalue λ is lower-bounded by the
geometric multiplicity of the same eigenvalue λ. In our case, the geometric multiplicity
of λ = 1 is at least n− 2, so the algebraic multiplicity of λ = 1 in C∗C must be at least
n− 2. Ignoring the ordering of the si for now, we have s2 = · · · = sn−1 = 1.

Now recall that the eigenvalues of a matrix multiply to the determinant of the
matrix. We can see that |detC| = |a0|. Since detM∗ = detM . We then have

n∏
i=1

s2i = s21s
2
n = detC∗C = |a0|2.

Furthermore, recall that the eigenvalues of a matrix sum to the trace of the matrix:

n∑
i=1

s2i = s21 + (n− 2) + s2n = Tr(C∗C) = (n− 1) +
n∑
i=0

|ai|2.

Solving these two equations gives the desired values for s1 and sn.

We now cite a result which bounds the eigenvalues of a matrix with its singular
values.

Lemma 4.5 (Weyl’s Majorant Inequality [2, Thm 3.1.13]). Let ϕ : R→ R be a convex
function and let A ∈ Cn×n be a nonsingular matrix with eigenvalues λ1, . . . , λn and
singular values s1, . . . , sn. Then

n∑
i=1

ϕ(log |λi|) ≤
n∑
i=1

ϕ(log si).

We proceed to bound the eigenvalues of C, and thus the roots of p(z), using our
characterization of the singular values as well as Weyl’s Majorant Inequality.

Lemma 4.6. Let r1, . . . , rn be the roots of polynomial

p(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn, a0 6= 0.

Then
n∑
i=1

log2 |ri| ≤ 2 log2 |a0|+ 3 log2

(
1 +

n−1∑
i=0

|ai|

)
. (4.3)
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Proof. Let C be the companion matrix to p(z) and let s1, . . . , sn be the singular values
of C, ordered as in Lemma 4.4. Since a0 6= 0, C is nonsingular. This lets us apply
Lemma 4.5 with the convex function ϕ(x) = x2. Since the eigenvalues of C are the
roots of p(z), we obtain the inequality

n∑
i=1

log2 |ri| ≤
n∑
i=1

log2 si.

By Lemma 4.4 we have that

1 ≤ s1 ≤

√√√√(1 + |a0|)2 +
n−1∑
i=1

|ai|2 ≤ 1 +
n−1∑
i=0

|ai|,

s2 = s3 = · · · = sn−1 = 1,

sn =
|a0|
s1
.

This means

n∑
i=1

log2 |ri| ≤
n∑
i=1

log2 si

≤ log2 s1 + log2 |a0|
s1

= log2 s1 + (log |a0| − log s1)
2

≤ 2 log2 |a0|+ 3 log2 s1

≤ 2 log2 |a0|+ 3 log2

(
1 +

n−1∑
i=0

|ai|

)
.

With this upper-bound on the second moments of the logs of the roots of general
polynomials, we may now approach analyzing the distribution of roots for general
random polynomials.

5 Roots of random high degree polynomials

We begin our analysis of the roots of random high degree polynomials by proving
Theorem 5.2, which gives sufficient conditions for when a random root of a random high
degree polynomial has magnitude close to 1. We will then prove Theorem 5.3, which
gives sufficient conditions for when a random root of a random high degree polynomial
has a uniform angle distribution.
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5.1 Roots tend to the unit circle

We now give a proof of the phenomenon that roots of random high degree polynomials
tend to have magnitude close to 1. We shall do so in the case of i.i.d. coefficients, but
the proof can be extended to the non i.i.d. case as well. The main (and really only)
ingredient in our proof is the inequality derived in Lemma 4.2.

In our proof we will make use of the notion of convergence in probability, which we
now define.

Definition 5.1 (Convergence in Probability). Let Xn be a sequence of complex random
variables. We say that Xn converges to a random variable X in probability, written as
Xn

p−→ X, when for all ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0. (5.1)

We are ready to state and prove our result.

Theorem 5.2. Let A0, A1, . . . be a sequence of i.i.d. complex random variables with
finite expectations that satisfy P(Ai = 0) = 0. Let Rn be a random root of the polynomial

pn(z) = A0 + A1z + · · ·+ An−1z
n−1 + zn.

Then |Rn|
p−→ 1.

Proof. We shall show the equivalent statement that log |Rn|
p−→ 0.

Let Rn,1, . . . , Rn,n denote the roots of pn(z) and denote

Λ =
1

n

n∑
i=1

log2 |Rn,i|.

Λ is the empirical second moment of the discrete uniform distribution over log |Rn,1|,
. . ., log |Rn,n|. We shall show that Λ

p−→ 0, which will imply that log |Rn|
p−→ 0.

Lemma 4.6 tells us that

Λ ≤ 1

n
log2 |A0|+

1

n
log2

(
1 +

n−1∑
i=0

|Ai|

)
. (5.2)

Now

lim
n→∞

1

n
E

[
log2

(
1 +

n−1∑
i=0

|Ai|

)]

≤ lim
n→∞

1

n
E

[
log2

(
e+

n−1∑
i=0

|Ai|

)]

≤ lim
n→∞

1

n
log2

(
e+

n−1∑
i=0

E [|Ai|]

)
(Jensen’s inequality)

≤ lim
n→∞

log2 (e+ nE [|A0|])
n

= 0,
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so we have that
1

n
log2

(
1 +

n−1∑
i=0

|Ai|

)
p−→ 0. (5.3)

Moreover, since P(A0 = 0) = 0, we also have that

1

n
log2 |A0|

p−→ 0. (5.4)

Since Λ is non-negative, equations (5.2), (5.3), and (5.4) tell us that Λ
p−→ 0.

5.2 Angular uniformity of roots

We have shown that under a mild moment conditions for the coefficients, the
magnitude of the roots of a random polynomial tends to be close to 1. We shall now show
that under much stronger moment conditions on the coefficients (e.g. i.i.d. coefficients
with finite support) the argument of the random root of a random polynomial tends to
be uniformly distributed in [0, 2π).

Theorem 5.3. Let A0, A1, . . . be a sequence of i.i.d. complex random variables which
have finite moments of all orders and satisfy P(Ai = 0) = 0. Let Rn be a random root
of the polynomial

pn(z) = A0 + A1z + · · ·+ An−1z
n−1 + zn.

If for every positive integer w, it holds that

lim
n→∞

E [|Rw
n |] = 1, (5.5)

then for any 0 ≤ a ≤ b < 2π, we have

lim
n→∞

P (Arg(Rn) ∈ [a, b]) =
b− a
2π

. (5.6)

In other words, Arg(Rn) converges in distribution to the uniform distribution on [0, 2π).

Proof. To show that equation (5.6) holds for all 0 ≤ a ≤ b < 2π, we will prove the
equivalent statement that

lim
n→∞

E [f (Arg(Rn))] =

∫ 2π

0

f(x) dx (5.7)

for all continuous functions f : [0, 2π]→ R with f(0) = f(2π).
By Fejer’s theorem, for any continuous function f : [0, 2π]→ R with f(0) = f(2π),

there exists a sequence of functions fm : [0, 2π] → R that converges uniformly to f
where

fm(x) =

∫ 2π

0

f(x) dx+
∑

−m≤w≤m, p 6=0

cn,ke
iwx
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for some constants cn,k. We shall show that for any positive integer w,

lim
n→∞

E [exp (iwArg (Rn))] = 0, (5.8)

which implies that

lim
n→∞

E [fm (Arg(Rn))] =

∫ 2π

0

f(x) dx

for all m. This means

lim sup
n→∞

E [f (Arg(Rn))] ≤ lim sup
n→∞

E [fm (Arg(Rn)) + ‖f − fm‖∞]

=

∫ 2π

0

f(x) dx+ ‖f − fm‖∞,

lim inf
n→∞

E [f (Arg(Rn))] ≤ lim sup
n→∞

E [fm (Arg(Rn))− ‖f − fm‖∞]

=

∫ 2π

0

f(x) dx− ‖f − fm‖∞,

which, upon taking the limit as m→∞, yields equation (5.7).
Thus it remains to show equation (5.8) holds for positive w. To do so we make

use of Newton’s identities. Letting Rn,1, . . . , Rn,n denote the roots of pn(z), Newton’s
identities tell us that we can write

n∑
i=1

Rp
n,i = Np(An−1, ..., An−p), (5.9)

where Np is a fixed polynomial (not varying in n) in p unknowns and An−p is taken to
be zero when n < p.

Since theAi have moments of all orders and are i.i.d., the expected value of expression
(5.9) is constant for n ≥ p. Moreover, by Proposition 4.2 the expected value of each
individual Rp

n,k is also finite. Thus,

lim
n→∞

E [Rp
n] = lim

n→∞

1

n

n∑
i=1

E
[
Rp
n,i

]
= lim

n→∞

1

n
E

[
n∑
i=1

Rp
n,i

]
= 0. (5.10)

We may now show equation (5.8) as follows:

lim
n→∞

E [exp (ipArg (Rn))]

= lim
n→∞

E [Rp
n + (1− |Rn|p) exp (ipArg (Rn))]

= lim
n→∞

E [Rp
n] + lim

n→∞
E [(1− |Rn|p) exp (ipArg (Rn))] ((5.10), (5.5))

= 0.

It turns out the condition in equation (5.5) holds when the coefficients have finite
support.
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Corollary 5.3.1. Let A0, A1, . . . be a sequence of i.i.d. complex random variables with
finite support that satisfy P(Ai = 0) = 0. Let Rn be a random root of the polynomial

pn(z) = A0 + A1z + · · ·+ An−1z
n−1 + zn.

Then, as n → ∞, the sequence of random variables Arg(Rn) converges in distribution
to the uniform distribution on [0, 2π).

Proof. Since the Ai are finitely supported, there is some bound B such that P(|A| <
B) = 1. By Lemma 4.2, for w ≥ 1, the random variable P(|Rw

n | < 1+Bw) = 1, so |Rw
n | is

also finitely supported. By Theorem 5.2, |Rw
n |

p−→ 1, but since |Rw
n | is finitely supported

but this means E[|Rw
n |]→ 1. The corollary then follows from Theorem 5.3.

6 Conjectures from numerical simulations

6.1 Approximately uniform distribution of roots for a
randomly-selected polynomial

One property we thought that the random polynomials might have is a uniform
spread of roots, i.e. the roots of a randomly-chosen polynomial should not exhibit
significant clustering with high probability as n → ∞. Since in the limit n → ∞ the
magnitude of the roots approaches 1, the arguments of the roots are the important
factor when considering their closeness. Therefore, we will formulate clustering of the
roots in the limit in terms of the arguments of the roots.

To make this conjecture precise, for an n-th degree polynomial p and closed interval
I = [a, b] ⊂ [0, 2π], denote the number of roots of p whose argument is in I by

#(p, I). We can consider the the quantity c(p, I) = #(p,I)/(b−a)
n/2π

as a measure of the
“concentration” of the arguments of the roots of p inside the interval I; it measures
how big the actual number of roots whose arguments are in I is compared to the number
that would be expected if the roots were distributed in a perfectly uniform manner. We
can now formulate our conjecture.

Conjecture 6.1. If P(n)(z) = A
(n)
0 + · · · + A

(n)
n−1z

n−1 + zn is a random n-th degree

polynomial where the A
(n)
i are i.i.d Gaussian distributions with mean zero, for any

interval I ⊂ [0, 2π] and any ε > 0 we have that

lim
n→∞

P
(
|c(P (n), I)− 1| > ε

)
= 0. (6.1)

This can of course be conjectured for distributions other than Gaussian with mean
zero. However, numerical evidence was only computed for the case of Gaussian. For
a fixed interval width, random polynomials of increasing degree were generated, and
the arguments of their roots were computed. Then, the maximum concentration in any
interval of the given length was computed. As n increased, this maximum concentration
decreased, seeming to approach 1. The results of this simulation for polynomials with
complex Gaussian coefficients with variance 0.01 and interval length 0.1 are shown in
Figure 6.1.
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Figure 6.1: Maximum value of c(P, I) v.s. n

6.2 Repulsion of roots

Another conjectured property related to the distribution of roots of a given randomly-
selected polynomial is that the roots repel each other, that is the roots should tend to
“spread out” from each other. Note that this is not the same as saying that there tends
to be no clustering (for example roots of a polynomial p might be such that c(p, I) is
close to 1, but there are a few roots that are still very close together, or even equal).
The way we measure repulsion is in terms of the variance of the number of roots whose
arguments fall within a given subinterval I of [0, 2π].

The intuition for why this captures the idea of repulsion is that it measures a sort of
correlation between the roots. For example, suppose we are considering the distribution
of roots of a random n-th degree polynomial p for large n so that the magnitudes roots
are close to 1, and we are only interested in the distribution of arguments. Consider
the extreme case that the distribution of roots is such that all n roots are identical;
the roots would be in I with probability length(I)/2π and outside with probability
1− length(I)/2π. The variance of the number of roots in I is then Θ(n2). At the other
extreme, if the distribution of roots were such that the roots were always perfectly
uniformly spaced in their arguments, then for an interval there could only be either
bn ∗ length(I)/2πc or bn ∗ length(I)/2πc+ 1. The variance in this case is Θ(1). Finally,
if it were the case that the roots were independently uniformly distributed, then the
number of roots in I would be a binomial random variable with parameter length(I)/2π
which has Θ(n) variance. Hence, a variance of Θ(n2) would correspond to an maximum
“attraction” of roots, variance Θ(n) to an “independence” of roots, and variance Θ(1)
to a maximum “repulsion” of roots.

Now, if this variance were computed for a specific distribution of random coefficients,
its asymptotic behavior would give a measure of the amount of repulsion or attraction
between the roots of a randomly generated polynomial.

Numerical simulation suggests that the growth of the variance may be Θ(log n) or
Θ(nα) for α < 1, which can reasonably be considered to be much closer to Θ(1) than to
Θ(n). The graphs for the estimated variance for increasing n are shown in Figure 6.2
for both complex Gaussian coefficients with variance 0.01 and coefficients which are
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the uniform distribution on the two values {+1,−1}. The variances were estimated
by computing the roots of 50 random polynomials for select degrees, then finding the
variance of the resulting set.

Figure 6.2: Estimated variance of #(P (n), [0, 0.1]) v.s. n

6.3 Distribution of the magnitude of max root approaches
fixed distribution as n increases

As we were exploring the distribution of the roots of the random polynomial, we also
explored the distribution of just the maximum magnitude root. For these simulations,
we sampled 5000 polynomials of degrees n = 1, 3, and 10. The coefficients Ai were
sampled from complex Gaussians with mean 0 and standard deviation 1. For each
sampled polynomial, we numerically computed its roots, and plotted a histogram of
the root with the maximum magnitude, over all 5000 sampled polynomials, for each of
the three n.

Figure 6.3: Distribution of the magnitude of the root with maximum magnitude over
complex normal perturbed polynomials of degrees 1, 3, and 10, respectively.

Figure 6.3 suggests that the distribution of these maximum root magnitudes converge
to some fixed distribution as the degree n further increases to infinity. We did not run
any simulations for different coefficient distributions Ai; however, we suspect that the
Ai must at least remain i.i.d. for this conjecture to hold.
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