
CDIL 2.0

Introduction

CDIL is a small library for 68K, PPC, and x86 applications that need to communicate with
Newton OS devices. Operations are provided via a C API. The data exchanged is free-form. That
is, the CDIL does not impose any sort of data format, nor does it imply any high- or application-
level protocols. All it provides is a stream-based communications API for sending data to and
receiving data from a Newton OS device. This API turns around and works with transport specific
APIs (such as ADSP, TCP/IP, and MNP) to transfer the data.

CDIL concepts

The CDIL uses the concept of a stream-based communications pipe. A pipe can be thought of as a
channel through which data is sent. A pipe between two entities (one on the desktop, one on the
Newton OS device) is established, used for communications, and then torn down.

The connection is established using a client/server model. The desktop application using the CDIL
can be thought of as the server. Its job is to create a pipe and put it into “listening” mode. Once in
this mode, the pipe will listen for a connection request from a Newton OS device. Because the
desktop device is in the mode of servicing a request from a Newton OS device, it is considered the
“server”, while the Newton OS device is considered the “client”. Once the desktop application is
informed that there is a Newton OS device requesting a connection, it can accept the connection,
thus establishing a two-way path of communications.

Once the connection is established, the desktop application writes bytes into the pipe, which are
then transmitted to the Newton OS device. Similarly, bytes sent from the Newton OS device to the
desktop are read from the pipe by the desktop application.

Once all data has been exchanged, the desktop and Newton OS devices agree to disconnect via
whatever high-level protocol the two are using. Next, the desktop application typically waits for
the connection to be broken. The Newton OS application then breaks the connection. The desktop
application detects that the connection has been broken, and then closes the connection on its side.
At that point, both sides are fully disconnected.

Examples

Using the CDIL is very simple: initialize the library (usually at the start of your application), create
a pipe for the desired transport (serial, AppleTalk, TCP, etc.), open a connection on that pipe, read
data from and write data to that pipe, close the connection, and close the library (usually at the end
of your application).

A working example (sans error checking) is shown below:

Preliminary documentation 1 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

CD_Handle pipe;
CD_State state;
long count;
char dataBuffer[256];

CD_Startup(); // Initialize the library
CD_CreateADSP(&pipe, NULL, NULL); // Create a connection object
CD_StartListening(pipe); // Have that object listen for a

// connection from a Newton OS
// device

while (CD_GetState(pipe) == kCD_Listening)// Wait for a connect request
{

// If you are displaying a dialog box telling the user to
// initiate a connection from a Newton OS device, you could
// also check for clicks on a Cancel button here.

}

if (CD_GetState(pipe) == kCD_ConnectPending)
{

CD_Accept(pipe); // Accept the connect request

MyGetDataToSend(dataBuffer);

CD_Write(dataBuffer, sizeof(dataBuffer), kCD_DefaultTimeout);

// This step is optional. We'd execute it if we wanted to
// ensure that there were 100 bytes available before calling
// CD_Read, which would otherwise block.
//

do {
 CD_Idle(pipe);
 CD_BytesAvailable(pipe, &count);

} while (count < 100);

CD_Read(dataBuffer, 100, kCD_DefaultTimeout);
// Assumes we expect 100 bytes back

CD_Disconnect(pipe); // Break the connection.
}

CD_Dispose(pipe); // Delete the pipe object

CD_Shutdown(); // Close the library

Preliminary documentation 2 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

Data Types and Values

CD_Handle

In order to establish a connection and communicate through it, a client must first call the
appropriate CDIL function to create a “pipe”. This pipe is of type CD_Handle. The pipe is
passed as the first parameter to most of the rest of the CDIL functions. It is an opaque data
type; there are no user-accessible field in it.

typedef enum CD_State
{

kCD_Uninitialized,
kCD_Disconnected,
kCD_Listening,
kCD_ConnectPending,
kCD_Connected,
kCD_DisconnectPending

} CD_State;

An enumerated set of values indicating the pipe’s current state. You can get the pipe’s state by
calling CD_GetState at any time. The values have the following meanings:

kCD_Uninitialized A NIL CD_Handle was passed to CD_GetState.

kCD_Disconnected The pipe was just created, or has had CD_Disconnect called on
it.

kCD_Listening The pipe has just had CD_StartListening called on it.

kCD_ConnectPending The pipe has had CD_StartListening called on it and the
Newton OS device has indicated its interest in connecting, but
the desktop client has not yet called CD_Accept.

kCD_Connected The pipe has had CD_Accept called on it and is now fully
connected. The pipe can now be used in CD_Read and CD_Write
calls.

kCD_DisconnectPending The CDIL has detected that the other end of the pipe has closed.
The pipe can no longer be used for communications and should
have CD_Disconnect called on it.

kCD_DefaultTimeout
kCD_NoTimeout

Some CDIL functions take timeout values, specified in seconds. You can either specify a
custom timeout value, or you can use either kCD_DefaultTimeout or kCD_NoTimeout to
specify standard timeout values. Currently, the default timeout value is 30 seconds.

Preliminary documentation 3 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

Function Reference

DIL_Error CD_Startup(void);

Initializes the CDIL. This call makes sure that any low-level transport layers (e.g., ADSP,
TCP/IP, MNP) are available and properly initialized. If none are available or none can be
initilaized, this function returns kCD_ServiceNotAvailable.

This function is usually called once at the start of your program. However, you can call it as
many times as you want as long as you call CD_Shutdown an equal number of times.

DIL_Error CD_Shutdown(void);

Deinitializes and closes any transport layers opened and initialized in CD_Startup.

This function must be called once for every time you called CD_Startup. Usually, you just call
it once at the end of your program. However, you can call it as many times as you want, as
long as you don’t call it more times that you’ve called CD_Startup.

DIL_Error CD_HasADSP();
DIL_Error CD_HasCTB(const char* toolName);
DIL_Error CD_HasMNPSerial();
DIL_Error CD_HasTCP();

These functions return a value indicating whether or not the particular service is available. They
provide an indication of whether or not the corresponding CD_Create… function will return
successfully. These functions can be used when preparing your preferences dialog for display.
If the CDIL on your platform is coded to support a service, and a service is available (that is,
any underlying libraries can be loaded and/or initialized), its CD_Has… function returns
kDIL_NoError.

DIL_Error CD_GetSerialPortName(long index, char* buffer, long* bufLen);

Returns a user-displayable string containing the name of a selectable serial port. Examples for
the Macintosh would be “Printer Port”, “Modem Port”, and “Printer-Modem Port”. Examples
for Windows would be “COM1:”, “COM2:”, “COM3:”, … well, you get the idea.

index is a zero-based value indicating the port for which you want a string. buffer is a block
of *bufLen bytes of memory reserved by the caller. If buffer is not NULL,
CD_GetSerialPortName will transfer *bufLen bytes into buffer. Regardless of the value of
buffer, it will set *bufLen to the number of bytes required to hold the entire string (including
a NULL terminator). If *bufLen is not large enough, then CD_GetSerialPortName will return
kCD_BufferTooSmall. If index becomes too large, then CD_GetSerialPortName will return

Preliminary documentation 4 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

kCD_IndexOutOfRange and the contents of buffer will be unchanged.

DIL_Error CD_CreateADSP(CD_Handle*, const char* name, const char* type);

Creates an ADSP-based communications pipe. The address of the variable to recieve the
created pipe is passed as the first parameter. The name of the ADSP connection is passed as the
second parameter. This string is what appears in the Chooser list on the Newton OS device. If
you pass NULL for this parameter, the CDIL will use a default name based on your desktop
computer’s preferences (for instance, on a Macintosh, it will use the strings specified in the
File Sharing control panel). The connection type is passed as the third parameter. This is
searched for by the Chooser on the Newton OS device. If you pass NULL for this parameter,
the CDIL will use the type specified by the Connection/Dock application.

DIL_Error CD_CreateCTB(CD_Handle*, const char* toolName, const char*
 configString);

Creates a CommToolbox-based communications pipe. The name of the tool is passed in
toolName. The tool-dependent configuration string is passed in configString.

DIL_Error CD_CreateMNPSerial(CD_Handle*, long port, long baud);

Creates a serial communications pipe based on the MNP protocol. MNP is a packet-based
protocol that ensures delivery of your data using compression and error correction. The
address of the variable to recieve the created pipe is passed as the first parameter. The serial
port to use is passed as the second parameter.

The baud rate at which you which to communicate is passed as the third parameter. This value
is expressed in terms of bytes per second. Currently, the set of possible values are:

Windows:

110 4800 56000
300 9600 57600
600 14400 115200

1200 19200 128000
2400 38400 256000

Macintosh:

110 2400 19200
300 4800 38400

1200 9600 57600

Note: Not all of these baud rates are compatible with current Newton OS devices. They merely
represent what is possible on the desktop platform.

Preliminary documentation 5 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error CD_CreateTCP(CD_Handle*, long port);

Creates an TCP-based communications pipe. The address of the variable to recieve the created
pipe is passed as the first parameter. The TCP port to use is passed as the second parameter. If
you pass zero for this parameter, the CDIL will use the port number used by the
Connection/Dock application.

DIL_Error CD_Dispose(CD_Handle);

Disposes of a communications pipe created by CreateADSP, CreateSerial, or CreateTCP. After
this call, the reference to the pipe is invalid and should no longer be used.

The pipe passed to CD_Dispose can be in any state. If appropriate, the pipe will be
disconnected or will remove itself from a listening state before it is deleted.

DIL_Error CD_Disconnect(CD_Handle);

Returns the specified pipe to a kCD_Disconnected state. If the pipe is listening, it will stop
listening. If the pipe is connected, it will be disconnected. In all cases, the state of the pipe after
making this call is kCD_Disconnected. Additionally, any internally buffered data is flushed
and can no longer be read with CD_Read.

DIL_Error CD_StartListening(CD_Handle);

Causes a pipe to start listening for a connection request from a Newton OS device. Only pipes
in the kCD_Disconnected state should be passed to CD_StartListening. After the successful
completion of this call, the pipe will be in the kCD_Listening state.

DIL_Error CD_Accept(CD_Handle);

Causes a pipe to accept a pending connection. Only pipes in the kCD_ConnectPending state
should be passed to CD_Accept. After the successful completion of this call, the pipe will be
fully connected, its state will be kCD_Connected, and it can be used to exchange data with a
Newton OS application.

DIL_Error CD_Read(CD_Handle, void* p, long count);

Read bytes from a pipe. count number of bytes are read from the pipe and written to the
memory location specified by p.

Note that a pipe need not be connected in order for bytes to be read from it. It is possible for a
pipe to have buffered data received from a Newton OS device before the connection was
broken. As long as the pipe’s state is kCD_Connected or kCD_DisconnectPending, clients of
the CDIL are still able to retrieve these bytes.

Preliminary documentation 6 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error CD_BytesAvailable(CD_Handle, long* count);

Returns the number of bytes available for reading from the pipe. Read requests for more bytes
than are available run the risk of blocking, as additional bytes need to be read from the Newton
OS device.

Note that a pipe need not be connected in order for bytes to be read from it. It is possible for a
pipe to have buffered data received from a Newton OS device before the connection was
broken. As long as the pipe’s state is kCD_Connected or kCD_DisconnectPending, clients of
the CDIL are still able to retrieve these bytes.

DIL_Error CD_Write(CD_Handle, const void* p, long count, long timeout);

Sends the given bytes to the Newton OS device. Only pipes in the kCD_Connected state can
send data.

DIL_Error CD_FlushOutput(CD_Handle);

To increase performance, the CDIL buffers all outgoing data. This data remains in the desktop
computer until it is explicitly or implicitly sent to the Newton OS device. To explicitly send the
buffered data, call CD_FlushOutput. Otherwise, the data will be implicitly sent on the next call
to CD_Idle, CD_Read, CD_Disconnect, or CD_BytesAvailable.

DIL_Error CD_Idle(CD_Handle);

This function should be called periodically to allow the CDIL to service any open connections.
Typically, this mean detecting changes in the pipe’s state and buffering any data received from
the Newton OS device. Failure to call CD_Idle frequently may result in loss of incoming data.

How frequently you should call this depends on the amount of data to be transferred and how
often it is transferred, and needs to be determined by experimentation. If you’re losing data,
you can try calling CD_Idle more frequently. On the other hand, if you call CD_Idle more than
necessary, it can slow your application.

CD_State CD_GetState(CD_Handle);

Updates and returns the state of the pipe. Note that in some cases, the returned value reflect the
state of the pipe only at the instant in which you made the call. There is no guarantee that two
calls to CD_GetState made one right after the other will return the same value. In particular,
the state can always change from kCD_Listening to kCD_ConnectPending or
kCD_DisconnectPending, or from kCD_Connected to kCD_DisconnectPending.

Preliminary documentation 7 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error CD_SetTimeout(CD_Handle, long timeoutInSeconds);

When the CDIL pipe is created, it is initialized with a default timeout period of 30 seconds.
This timeout period is used to control CD_Read and CD_Write calls (and, indirectly, any
flushing of outgoing data).

You can change this timeout period with CD_SetTimeout. "timeoutInSeconds" contains the
desired timeout period in seconds. Alternatively, you can specify one of the constants
kCD_DefaultTimeout (for the default timeout period of 30 seconds), or kCD_NoTimeout (for
no timeout period; that is, the call will wait indefinitely for the data to be read or written).

For CD_Read, if the requested number of bytes are not available after the timeout period, a
kCD_Timeout error will be returned and no bytes will be transferred.

For CD_Write, if no data can be sent after the timeout period, a kCD_Timeout error will be
returned.

Timeout values are specified on a per-pipe basis.

long CD_GetPlatformError(CD_Handle);

The CDIL is pretty much a front-end for platform-specific communications services. For
instance, on Windows, the CDIL uses the COM serial ports for MNP serial communications,
and WinSock for TCP/IP communications. On the Mac, the CDIL uses the Communications
Toolbox for MNP serial communications, the AppleTalk drivers for ADSP communications,
and Open Transport for TCP/IP communications.

These platform services provide a wide range of error codes. Rather then attempting to map
those error codes into a common set of error codes defined by the CDIL, the platform-specific
error codes are instead returned by CD_GetPlatformError. When a platform-specific
communications service encounters an error condition, the CDIL function that caused the error
returns kCD_PlatformError. If the CDIL client then needs to know the specifics of the error,
it can query CD_GetPlatformError for the actual error code.

Progression of States

kCD_Uninitialized
Meaning: This is the state returned when the CDIL is passed a NIL pipe.
Enter: There is nothing to do to enter this state.
Exit: You exit this state by calling a pipe-creation function, such as CD_CreateADSP,

CD_CreateSerial, or CD_CreateTCP. At that point, the pipe’s state becomes
kCD_Disconnected.

kCD_Disconnected
Meaning: This is the state returned for a pipe just after it has been created, or after it has been

passed to CD_Disconnect.
Enter: Create a pipe with CD_CreateADSP, CD_CreateSerial, or CD_CreateTCP, or call

Preliminary documentation 8 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

CD_Disconnect on an already existing pipe.
Exit: You exit this state by calling CD_StartListening. At that point, the pipe’s state

becomes kCD_Listening.

kCD_Listening
Meaning: This is the state of a pipe that is listening for a connection request from a Newton

OS device.
Enter: Call CD_StartListening on an already existing pipe. That pipe’s state should be

kCD_Disconnected.
Exit: You exit this state in one of three ways: (1) A Newton OS device signals that it is

interested in establishing a connection, in which case the pipe’s state changes to
kCD_ConnectPending; (2) a communications or network error occurs, in which
case the pipe’s state changes to kCD_Disconnected; (3) the CDIL client cancels the
listening operation by calling CD_Disconnect, in which case the pipe’s state
changes to kCD_Disconnected.

kCD_ConnectPending
Meaning: This is the state of a pipe that has recieved a connection request from a Newton OS

device.
Enter: The state of the pipe automatically changes from kCD_Listening to

kCD_ConnectPending when the CDIL detects a connection request from a Newton
OS device.

Exit: You exit this state in one of two ways: (1) Calling CD_Accept changes the pipe’s
state to kCD_Connected; (2) calling CD_Disconnect changes the pipe’s state
changes to kCD_Disconnected.

kCD_Connected
Meaning: The pipe is fully connected to a Newton OS device and can be used for data

exchange.
Enter: Call CD_Accept on a pipe whose state is kCD_ConnectPending.
Exit: You exit this state in one of three ways: (1) Calling CD_Disconnect changes the

pipe’s state to kCD_Disconnected; (2) if the Newton disconnects, the pipe’s state
changes to kCD_DisconnectPending; (3) if a communications or network error
occurs, the state changes to kCD_DisconnectPending.

kCD_DisconnectPending
Meaning: The connection has been broken on the other end. Either the Newton OS device as

disconnected, or a communications or network error has occurred. In this state, any
buffered data can still be retrieved. The buffered data will be flushed when you call
CD_Disconnect.

Enter: The state of the pipe automatically changes from kCD_Connected to
kCD_DisconnectPending when the CDIL detects the appropriate conditions.

Exit: You change the state from kCD_DisconnectPending to kCD_Disconnected by
calling CD_Disconnect.

Error Codes

Preliminary documentation 9 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

#define kDIL_NoError (0)
#define kDIL_ErrorBase (-98000)

#define kDIL_OutOfMemory (kDIL_ErrorBase - 1)
#define kDIL_InvalidParameter (kDIL_ErrorBase - 2)
#define kDIL_InternalError (kDIL_ErrorBase - 3)
#define kDIL_ErrorReadingFromPipe (kDIL_ErrorBase - 4)
#define kDIL_ErrorWritingToPipe (kDIL_ErrorBase - 5)
#define kDIL_InvalidHandle (kDIL_ErrorBase - 6)

#define kCD_ErrorBase (kDIL_ErrorBase - 200)

#define kCD_CDILNotInitialized (kCD_ErrorBase - 1)
#define kCD_ServiceNotSupported (kCD_ErrorBase - 2)
#define kCD_BadPipeState (kCD_ErrorBase - 3)
#define kCD_Timeout (kCD_ErrorBase - 4)
#define kCD_PipeDisconnected (kCD_ErrorBase - 5)
#define kCD_IndexOutOfRange (kCD_ErrorBase - 6)
#define kCD_BufferTooSmall (kCD_ErrorBase - 7)
#define kCD_PlatformError (kCD_ErrorBase - 8)

/* Windows-specific error codes */

#define kCD_TCPCantFindLibraryFns (kCD_ErrorBase - 20)
#define kCD_TCPInsufficientVersion (kCD_ErrorBase - 21)
#define kCD_TCPNoSockets (kCD_ErrorBase - 22)

CDIL 1.0 -> 2.0 Conversion Guide

kCDIL_Uninitialized This state previously identified a pipe that had been created but had
never been used. Now it identifies a NULL (non-created) pipe.

kCDIL_InvalidConnection This state no longer exists
kCDIL_Startup This state no longer exists
kCDIL_Listening This state is unchanged
kCDIL_ConnectPending This state is unchanged
kCDIL_Connected This state is unchanged
kCDIL_Busy This state no longer exists
kCDIL_Aborting This state no longer exists
kCDIL_Disconnected This state used to identify a pipe that used to be connected, but is no

longer. Now it identifies any unconnected pipe, even if it’s never
been used before.

kCDIL_Userstate This state no longer exists.

CommErr Replaced by DIL_Error

CDInitCDIL Renamed to CD_Startup

Preliminary documentation 10 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

CDDisposeCDIL Renamed to CD_Shutdown
CDCreateCDILObject Replaced by CD_Create… suite of functions
CDDisposeCDILObject Renamed to CD_Dispose

CDPipeInit Replaced by CD_Create… suite of functions

CDPipeDisconnect Renamed to CD_Disconnect
CDPipeListen Renamed to CD_StartListening. Function returns immediately;

there is no asynchronous operation, so the timeout,
completionHook, and refCon parameters have been removed.

CDPipeAccept Renamed to CD_Accept
CDPipeAbort Removed

CDPipeRead Renamed to CD_Read. The eom, swapSize, destEncoding,
completionHook, and refCon parameters represent functionality
that is no longer available and have been removed.

CDBytesInPipe Renamed to CD_BytesAvailable. Only the reporting of bytes in the
input buffer is supported, so the direction parameter has been
removed.

CDPipeWrite Renamed to CD_Write. The eom, swapSize, srcEncoding,
completionHook, and refCon parameters represent functionality
that is no longer available and have been removed.

CDIdle Renamed to CD_Idle.
CDGetPipeState Renamed to CD_GetState.
CDSetPipeState Removed. User states are no longer supported.
CDEncryptFunction Removed. Encryption is no longer supported at the CDIL level.
CDDecryptFunction Removed. Encryption is no longer supported at the CDIL level.

CDGetConfigStr Removed. Configuration parameters are no longer necessarily
specified via a configuration string.

CDGetPortStr Removed. Configuration parameters are no longer necessarily
specified via a configuration string.

CDGetTimeout Removed. Timeout values are no longer pipe state variables.
CDSetApplication Removed. The CDIL no longer needs the application’s

HINSTANCE handle.
CDFlush Removed. This functionality could not be guaranteed for all

transport services.
CDPad Removed. This functionality was not required at the CDIL level.
CDSetPadState Removed. This functionality was not required at the CDIL level.

Preliminary documentation 11 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

