
The Origin of Jupiter’s Obliquity

Rola Dbouk and Jack Wisdom
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; rdbouk@mit.edu

Received 2023 July 19; revised 2023 September 11; accepted 2023 September 13; published 2023 October 5

Abstract

The origin of the 3°.12 obliquity of Jupiter’s spin axis to its orbit normal is unknown. Improved estimates of
Jupiter’s moment of inertia rule out a previously proposed explanation involving a resonance with the precession of
the inclined orbit of Uranus. We find that a nonadiabatic crossing of the resonance between Jupiter’s spin
precession and the −f5+ f6+ g6 mode could have tilted Jupiter to its present-day obliquity starting from a 0°
primordial obliquity. This places constraints on the migration rates of the satellites Ganymede and Callisto.

Unified Astronomy Thesaurus concepts: Jupiter (873); Spin-orbit resonances (2296)

1. Introduction

“If the planets grew smoothly and continuously by accreting
small bodies and gas from an isolated flat disk, then their
obliquities should be zero” (Tremaine 1991). The 3°.12 obliquity
of Jupiter, despite being small, requires an explanation.

The unexpectedly rapid migration of Titan (Lainey et al.
2009) led to new scenarios for the formation of the large 26°.7
obliquity of Saturn (Saillenfest et al. 2021a; Wisdom et al.
2022), which involve a secular spin–orbit resonance with the
precession of Neptune’s inclined orbit. Indeed, the rapid
migration of Titan rules out all explanations of the large
obliquity of Saturn that involve processes in the early solar
system. In the scenario of Saillenfest et al. (2021a), the Saturn
system is still in the Neptune resonance; and in the scenario of
Wisdom et al. (2022), the system is close to but not in the
resonance. The latter conclusion was based on new determina-
tions of the moment of inertia of Saturn, based on interior
models constrained by Cassini gravity determinations. The
moments of inertia found in Wisdom et al. (2022) used very
different methods, but were found to be in remarkable
agreement with one another. They are supported by more
recent independent determinations (Mankovich et al. 2023).
The determination by Jacobson (2022) has larger estimated
uncertainties, but is also compatible. As pointed out by Ward &
Hamilton (2004), if the system is in the secular spin–orbit
resonance, then the libration amplitude is nonzero, of order 31°.
This in turn implies that the primordial obliquity of Saturn is
nonzero, of order 4°. For the primordial obliquity to have been
zero, one must appeal to additional phenomena, such as later
impacts, to excite the libration amplitude. In the scenario of
Saillenfest et al. (2021a), the nonzero libration amplitude also
implies that the primordial obliquity of Saturn was nonzero. On
the other hand, the scenario of Wisdom et al. (2022) is
compatible with zero primordial obliquity.

What then is the origin of Jupiter’s obliquity? It is natural to
look for an analogous explanation of Jupiter’s obliquity involving
secular spin–orbit resonances with zero primordial obliquity.
Nesvorný (2018) rules out past resonances with Neptune in the
early solar system. Ward & Canup (2006) proposed that a near
resonance between the precession of Jupiter’s spin axis and the

nodal precession of the inclined orbit of Uranus could partially
explain the obliquity of Jupiter. For this to be the case, they
deduced that Jupiter’s normalized moment of inertia,
λ=C/(MR2), was close to 0.236, where C is the polar moment
of inertia, M is the mass, and R is the fiducial equatorial radius of
71,492 km. Based on measured gravitational moments of Jupiter as
determined by Juno, Militzer & Hubbard (2023) have determined
that the normalized moment of inertia is 0.26393± 0.00001. Using
the consistent level curve (CLC) method of Wisdom (1996) to fit
the Juno gravitational moments, we find a normalized moment of
inertia of 0.263932, in remarkable agreement with Militzer &
Hubbard (2023; see Appendix A). These values are much larger
than the value proposed by Ward & Canup (2006), so their
proposed explanation of the obliquity of Jupiter is ruled out. Here
we explore the possibility that a different secular spin–orbit
resonance excited all or part of Jupiter’s obliquity.

2. Other Possible Resonances

Secular spin–orbit resonances occur when the frequency of
the precession of the spin axis matches the frequency of a term
in the precession of the orbit. As the obliquity of Jupiter
remains unexplained by the Uranus resonance, we were led to
consider alternate resonances that could explain Jupiter’s
nonzero obliquity.
For a planet with satellites in a fixed circular orbit, the

frequency of precession of the spin axis is cosa ( ), where ò is
the obliquity of the spin axis to the orbit normal and α is the
precession constant
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where nJ is the mean motion of Jupiter, ω is the angular
frequency of Jupiter’s rotation, J2 is the second gravitational
moment of Jupiter, and q and l approximate the contributions of
the Galilean satellites to J2 and λ, respectively, according to
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where the subscript j refers to the jth satellite, mj is its mass, aj
is its semimajor axis, and nj is its mean motion (Ward 1975;
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French et al. 1993; Saillenfest et al. 2021b). The angle i Lj is the
inclination of the Laplace plane to the planetary equator
(Tremaine et al. 2009); the normal to the Laplace plane is the
direction about which the normal to the satellite orbit precesses.
The magnitude of i Lj depends on the planetary oblateness and
obliquity, and the semimajor axes involved. The corresponding
period of the planet’s spin axis precession is
P 2 cosp a= ( ( )). For Jupiter, the precession constant is
dominated by the contributions to q from Ganymede and
Callisto. Our estimate of the present-day period of the Jovian
spin axis precession is P= 5.306× 105 yr.

Applegate et al. (1986) reported a period of 432,749.7 yr for
the Uranus mode g7. The current system is not close enough to
the Uranus resonance to explain the obliquity of Jupiter, as
proposed in Ward & Canup (2006). The precession frequency
of Jupiter is too low. The outward migration of the satellites
increases q, which in turn increases α, based on Equations (1)
and (2). The Uranus resonance was not encountered in the past,
but may be encountered in the future (Saillenfest et al. 2020).

The secular evolution of Jupiter’s orbit can be expressed as a
sum of terms (Applegate et al. 1986):
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where I is the orbital inclination of Jupiter with respect to the
invariable plane, Ω is the longitude of ascending node of its
orbit, t is the time, βj is the amplitude of the term, γj is its
angular frequency, and δj is a phase. The largest terms in the
motion of Jupiter are listed in Table 1.

We see that other possible resonances may have been
encountered in the past. The most recent term encountered in
the past is identified as the mode combination −f5+ f6+ g6 with
a period of 553,194.4 yr. We denote by β the amplitude of this
term (removing the index). The amplitude of the −f5+ f6+ g6
term is β= 10−4.76= 1.74× 10−5 radians. The next most recent
term in the past is f5− f7+ g7 with a period of 7,031,698.7 yr.
The amplitude of this term is β= 10−4.96= 1.10× 10−5 radians.
Table 1 includes all terms listed in Applegate et al. (1986) larger
than this amplitude. We have confirmed that the addition of the
small term f5− f6+ g7 does not affect our conclusions, justifying
the cutoff at this term.

There are two possible outcomes of the resonance passage. If
the change in α is slow enough, the system would have been
captured in the resonance and the obliquity of Jupiter would be
large, which is incompatible with the present low-obliquity
nonresonant state. However, if α changes quickly enough, the

system would not be captured and the resonance would be
crossed. The obliquity will change during the crossing.
A measure of the strength of the resonance is given by the

obliquity θ0 that would have been acquired if the resonance was
passed adiabatically in the direction for which capture is not
allowed. This is
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where β≈ I/2 is the amplitude of the contribution (Ward &
Hamilton 2004). We anticipate that for evolution in the
direction for which capture is possible, but which is too rapid
for capture to occur, the obliquity that is acquired will be of
order θ0. For the −f5+ f6+ g6 resonance, this gives θ0 of 4°.6,
which is comparable to Jupiter’s obliquity. This expectation is
confirmed by our simulations (see Figure 1).

3. Resonance Model

Since we anticipate that the resonance crossing is not
adiabatic, we investigate the crossing with an approximate
resonance model that captures the dynamics. The time-
averaged Hamiltonian describing the spin axis evolution is
(Peale 1969; Touma & Wisdom 1993; Wisdom 2006)

H MR e
1

2
cos 1 , 52 2 2 3 2lwa= - -( ) ( ) ( )

where e is Jupiter’s orbital eccentricity. The inclination and node
of Jupiter are given by Equation (3). The Hamiltonian is expressed
in canonical coordinates that define the orientation relative to an
inertial reference. We use the nonsingular canonical coordinates of
Wisdom (2006). The equations of motion are Hamilton’s
equations. These equations are numerically integrated.
The resonance occurs when Jupiter’s spin precession frequency

and the frequency of the mode −f5+ f6+ g6 are close. We
examine the passage through the resonance with zero initial
obliquity by varying the precession constant α linearly, with the
rate a. Figure 1 shows the obliquity of Jupiter at the end of a set of
simulations as a function of a. For 3 10 rad yr16 2a < ´ - - , the
system is captured by the resonance and the final obliquity is
large; for larger a, capture does not occur and the resulting
obliquities are lower. For these calculations, we only included the
resonance term in Equation (3), ignoring rapidly oscillating terms.
The black horizontal line is θ0, the obliquity obtained on reverse
adiabatic passage, which we suggested should be comparable to
the excitation for nonadiabatic forward passage. The purple curve
is the predicted nonadiabatic obliquity in the limit of large a,
which is (Ward et al. 1976; Ward & Hamilton 2004)

2 2 . 6q g b p a ∣ ∣( ) ( )

Notice that the actual nonadiabatic obliquity is larger than
Equation (6) and that Equation (6) is invalid if a is small
enough that capture occurs. For larger a (not shown),
Equation (6) becomes more accurate. We investigated the
resonance passage with β larger and smaller by a factor of 10.
In each case, we found that θ0 was a good estimate of the
obliquity obtained for nonadiabatic crossing of the resonance;
the largest obliquity obtained for nonadiabatic crossing of the
resonance was approximately 2θ0. Further, we found that
Equation (6) again underestimated the obliquity near the
transition point, but was accurate for large a. The red

Table 1
Largest Terms in the Inclination/Precession Motion of Jupiter

Identity T (yr) γ (rad day−1) log10 b( ) δ (rad)

g8 1872103 −9.18882 × 10−9 −3.24 0.4105
f5 − f7 + g7 703168.7 −2.44641 × 10−8 −4.96 0.7307
−f5 + f6 + g6 553194.4 −3.10965 × 10−8 −4.76 0.7751
g7 432749.7 −3.97514 × 10−8 −3.32 2.4470
g6 49217.01 −3.49522 × 10−7 −2.50 5.3644
f5 − f6 + g7 48027.74 −3.58177 × 10−7 −4.63 3.8941
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horizontal line is the 3°.2 mean obliquity of Jupiter at present
(see Appendix B). We see that the obliquity of Jupiter can be
explained by this nonadiabatic passage. This allows us to
estimate a at the time of resonance passage. We find

4.4 10 rad yr16 2a » ´ - - . The uncertainty is of order
0.1× 10−16 rad yr−2. If we were to presume this was constant,
in order to get an order of magnitude estimate of the time of
resonance passage, we find that Jupiter’s obliquity was excited
roughly 1.4 billion years ago.

4. Constraints on Satellite Evolution

We have determined the rate of change of the precession
constant that is required to explain the obliquity of Jupiter. The
precession constant increases with time as the satellites migrate
outward due to the q and l terms (Equation (2)). The migration
rates must be fast enough to avoid capture in the resonance, but
slow enough that Jupiter’s obliquity is obtained, so this places a
constraint on the migration rates of the satellites.

The past migration of the satellites is uncertain. A rapid
migration of the Saturnian satellites has been reported (Lainey
et al. 2020). This rapid migration is consistent with the
resonance-locking hypothesis (Fuller et al. 2016). The migra-
tion rates of Io, Europa, and Ganymede have been reported by
Lainey et al. (2009). These rates have also been interpreted in
terms of the resonance-locking hypothesis in several studies
(Downey et al. 2020; Lari et al. 2023). An alternate explanation
of the rapid migration of the Jovian and Saturnian satellites has
been given by Terquem (2023).

For definiteness, we adopt the resonance-locking expressions
for satellite evolution,

n t n t
t t

t
exp , 7now

now
⎜ ⎟
⎛
⎝

⎞
⎠

w w= + -
-

a
( ) ( ( ) ) ( )

where tnow is 4.5 Gyr and tα is the mode evolution timescale
(Fuller et al. 2016; Nimmo et al. 2018; Downey et al. 2020).
Approximate q values for Io, Europa, Ganymede, and

Callisto are 0.00082, 0.00112, 0.00864, and 0.01640, respec-
tively. The two largest contributions to q are from Ganymede
and Callisto because of their large masses and distances to
Jupiter. So we will restrict attention to them. A rapid migration
rate of Ganymede has been measured (Lainey et al. 2009). The
tidal evolution timescale t a atide = . For Ganymede, the
observed t G

tide is 9.6± 1.6 Gyr (Lainey et al. 2009). Fuller
et al. (2016) suggest t 20 GyrG

tide = at present. Callisto’s
migration has not yet been observed. Downey et al. (2020)
and Lari et al. (2023) studied possible histories of the Galilean
satellite resonances assuming a fast migration of Callisto, so we
will similarly include Callisto’s migration and give constraints
on its rate. We also consider a case where Callisto is not
evolving (t C

tide = ¥).
From ttide at present, we compute the mode evolution

timescale tα and hold it fixed. The two timescales are related by
(Downey et al. 2020)

t t n

1 2

3

1
1 . 8

tide

⎛
⎝

⎞
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w
= -

a
( )

For a given t G
tide, we compute tG

a . Note that tα could be
somewhat different for each satellite because each satellite
could be resonantly locked to different interior structures
(Downey et al. 2020). We use the resonance model (Section 3)
to determine tC

a , the mode timescale for Callisto, so that the
resonance is crossed (at time tc) with the rate required to
explain the obliquity of Jupiter. The present tidal evolution
timescale for Callisto, t C

tide, is then determined. For the case
where t C

tide = ¥, we determine the required tG
a and conse-

quently t G
tide. The current values of the migration rate a for

Figure 1. The obliquity, θ, obtained for different a, the rate of change of the precession constant (blue dots). The black horizontal line is the value of θ0. The purple
curve is Equation (6). The red horizontal line is the mean obliquity of Jupiter.
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Ganymede and Callisto are computed from ttide (Table 2). For
t G
tide near 20 Gyr, tG

a and tC
a are similar.

Downey et al. (2020) suggest a tidal timescale for Callisto of
2.7 Gyr, which is lower than the values we found that explain the
obliquity of Jupiter. Such a high rate of migration would not
have allowed Jupiter’s obliquity to develop by this mechanism.
By artificially choosing t G

tide = ¥, we deduce an upper limit on
the migration rate of Callisto of 15.7 cm yr−1. This corresponds
to a lower limit on the Q of Jupiter at Callisto’s frequency of
about 8 (for k2 = 0.379), which is potentially measurable by
future missions, such as the JUICE mission (Dirkx et al. 2017).
If Callisto is not involved in a resonance lock, then aC would be
small. Terquem (2023) also predicts a small aC of order
0.01 cm yr−1. The case where Callisto is not migrating provides
an upper limit on the migration rate of Ganymede, which we
deduce to be 12.8 cm yr−1.

Alternatively, we can consider a simplified model in which a
is constant and assume it is entirely due to the evolution of
Ganymede. In this case, we find an upper limit of 10.2 cm yr−1.
The measured value by Lainey et al. (2009) is
11.2± 1.9 cm yr−1, which is compatible with our determinations
of the upper limit. If there was a small primordial obliquity of
Jupiter, then our upper limits could be somewhat relaxed.

Figure 2 shows a sample evolution where the final obliquity
of Jupiter oscillates around the present mean value, shown as
the horizontal line red line. For this calculation, we included all
the terms in Table 1 and the resonance-locking expressions for
the evolution of the satellites. For these parameters, the system
is captured in the Uranus resonance about 2.5 Gyr in the future
and the obliquity of Jupiter then rises dramatically.
The late time of resonance crossing, only around 1.2 billion

years ago, is consistent with the fact that we have ignored the
initial phase in which the solar system frequencies are changing
and the change of the precession constant due to the early
contraction phase of Jupiter (Ward & Hamilton 2004).

5. Conclusion

The obliquity of Jupiter could have been established by a
nonadiabatic crossing of the resonance between Jupiter’s spin
precession and the mode −f5+ f6+ g6. The rate of change of
the precession constant, a, must be ≈4.4× 10−16 rad yr−2 at
the time of crossing to explain the present-day obliquity. With
rapidly migrating satellites, such an a occurs well after any
early phase of planetary instability. We find upper limits on the
migration rates of Ganymede and Callisto that explain the
obliquity of Jupiter by this mechanism. If we use the
resonance-locking model to determine the migration rates of
the satellites, we find an upper limit on Ganymede’s migration
of 12.8 cm yr−1 and an upper limit on Callisto’s migration of
15.7 cm yr−1. Assuming a constant a model, we find an upper
limit on Ganymede’s migration of 10.2 cm yr−1.
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Figure 2. Sample evolution of nonadiabatic resonance crossing leaving Jupiter’s obliquity oscillating around the average value (red horizontal line). The vertical
dashed line shows the time at which α is equal to the frequency of the −f5 + f6 + g6 mode. The parameters of this evolution are from the second line of Table 2.

Table 2
The Migration Parameters for Ganymede and Callisto Required for the

Resonance Crossing in the Four Cases Studied

t G
tide (Gyr) t C

tide (Gyr) aG (cm yr−1) aC (cm yr−1)

38.4 ∞ 12.8 0
9.6 128.9 11.2 1.5
20.0 25.0 5.4 7.6
∞ 12.0 0 15.7

Note. In each case, the crossing time tc is around 3.3 Gyr.
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Appendix A
Moment of Inertia of Jupiter

A discussion of prior estimates of the moment of inertia of
Jupiter is given by Militzer & Hubbard (2023).

Wisdom (1996) developed the CLC method and used it to
find an interior model of Jupiter that fit the gravitational
moments as determined by Voyager. The reported normalized
moment of inertia for Jupiter was 0.2640. But this value was
rounded for the table; the actual value that was found in 1996
was 0.26397.

We have updated the model to fit the gravitational
moments of Jupiter determined by Juno (Durante et al.
2020; Militzer & Hubbard 2023; see Table A1). The rotation
parameter is qrot= 0.08919543238. The input value of the q0
parameter (called q in Wisdom 1996) for the CLC method is
q0= 0.083246414497210167. The fit value of qrot is
0.08919623036. We used 15-point Chebychev interpolation
for the radial functions and extended the solution to degree 6.
The fit values of the coefficients in the equation of state
are: ζ1= 1.8556180032843457, ζ2= 0.10341538866205373,
and ζ3= 0.07346385930289676. The small discrepancy in
J6 is likely due to differential rotation (Militzer &
Hubbard 2023).

The normalized moment of inertia for the updated CLC
model is 0.263932, in remarkable agreement with the value
0.26393± 0.00001 determined by Militzer & Hubbard (2023).
The CLC method uses an abstract polynomial equation of state,
with coefficients chosen to match the observed gravitational
moments; the model of Militzer & Hubbard (2023) uses the
CMS method and a physics-based equation of state to fit the

gravitational moments. Evidently, the gravitational moments
provide a tight constraint on the moment of inertia.

Appendix B
Mean Obliquity of Jupiter

The current obliquity of Jupiter to its orbit is 3°.1 (Ward &
Canup 2006), but what is more important is the mean obliquity
over million year timescales. The mean obliquity of Jupiter
depends on its moment of inertia. With the refined estimate of
the moment of inertia of Jupiter, we can now compute the mean
obliquity to the invariable plane using full numerical integra-
tions. We use the numerical model of Wisdom et al. (2022),
with parameters and orbits derived from Folkner & Park
(2018). We include the four Galilean satellites, the four outer
planets, and the Sun. We integrate Jupiter as a rigid body.
Figure B1 shows the evolution of Jupiter’s obliquity 65Myr
into the future. The obliquity evolution shown in Figure B1 is
complex, warranting the use of full numerical integrations to
determine the mean obliquity of Jupiter. Over this interval, the
mean obliquity to the invariable plane is 3°.2.

Figure B1. The evolution of θ, the obliquity of Jupiter relative to the invariable plane, obtained by running nbody integrations without satellite migrations. The origin
of time is that of J2000 (JD 2451545.0).

Table A1
Jupiter’s Gravitational Moments Reported by Durante et al. (2020), with Those

Obtained with the CLC Method

Measured CLC Values

J2 × 106 14696.5063 ± 0.0006 14696.50633
J4 × 106 −586.6085 ± 0.0008 −586.60367
J6 × 106 34.2007 ± 0.0022 34.5161
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