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Abstract.  This talk addresses two separate questions: “Is the solar system stable?”
and “Can we use chaos to make better measurements?’ In the first part, a review is
presented of the numerical experiments which indicate that the motion of Pluto, and
indeed the whole solar system, is chaotic. The time scale for the exponential diver-
gence of nearby trajectories is remarkably short compared to the age of the solar
system. In the second part, numerical experiments are presented which indicate that
the exponential sensitivity of trajectories to changes in initial conditions and param-
eters cannot be used to exponentially constrain initial conditions and parameters from
trajectory measurements. It does appear though that parameters are better constrained
by measurements of chaotic trajectories than might naively be expected.

Introduction

First, it is useful to remind ourselves of the reality of chaos, and just how
much fun it is. I have a nice demonstration to show you, of a doubie
pendulum (Fig. 1). The double pendulum is one of the simplest dynam-
ical systems one can build after the pendulum: one pendulum supported
at the end of another pendulum, constrained to move in a plane. This
simple system exhibits outrageously complicated behavior. How could
anyone watch the double pendulum and continue to assume that all
solutions of Newton’s equations could be developed in quasiperiodic per-
turbation expansions? Did hundreds of years really go by without anyone
looking at a dynamical system in action? The double pendulum can also
be used to illustrate the divided phase-space characteristic of Hamil-
tonian systems (even though there is friction in the physical pendulum):
{rajectories with the same energy can be either chaotic or regular depend-
ing on the initial condition. Given that such a simple system as the double
pendulum exhibits such complicated motion, it is hard to understand
why it has taken so long for the importance of chaotic behavior to be
realized. Chaos is not an irrelevant mathematical curiosity.
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Fig. 1. The double pendulum provides a nice demonstration of chaotic behavior and the
divided phase space in simple physical systems.

Question 1: Is the solar system stable?

Surely this is one of the oldest questions in modern science. As soon as
Newton’s equations of motion are written down one has to wonder about
the long-term consequences. It has generally been assumed that our solar
system is quasiperiodic and consequently stable, and that it is only a
matter of time until a mathematical proof of this fact is given. Tremen-
dous progress towards that goal has been made. Arnold (1963) has
proven that solar systems are quasiperiodic in large measure provided
that the masses, inclinations, and eccentricities of the planets are suffi-
ciently small. On the other hand, we know that dynamical systems gen-
erally display chaotic behavior as well as regular behavior, and the solar
system is, after all, just another dynamical system. The question of its
stability should be approached with an open mind.

What we really would like to know is whether our solar system is oD
a chaotic or quasiperiodic trajectory. Since the physical experiment runs

too slowly for us to deci
of the stability of the so
numerical experiments i
(Sussman and Wisdom,

1.1. Previous integratior

Numerical integrations
amount of computer tim
time scales. A direct cak
follow each planet arow
interesting on time scale
This time scale separ
two-body problem. The
frequency, the orbital fr
freedom after eliminatio
by planetary perturbatic
orbital nodes precess. ]
orbital frequency multip
that of the sun. The pre
of years to a couple of m
precession time scale s
coupling between the pl
We have performed ¢
{Applegate ef al., 1985,
centuries (Fig. 2), the ]
puter designed specifica
one-third the speed of ¢
jector. It consists of ten
because there are nine j
capabilities: it can add, :
integrate Newton’s equ:
bits on the Cray; it has
In our first calculatio
planets (Sun, Jupiter, |
Plutos) forward and ba
is longer than the clas
Cohen, Hubbard, and C
orders of magnitude.
One result from that
tion theory (Bretagnon,
merically resolving the



n of chaotic behavior and the

lern science. As soon as
e has to wonder about
1 assumed that our solar
s, and that it is only a
s fact is given. Tremen-
de. Arnold (1963) has
large measure provided
of the planets are suffi-
dynamical systems gen-
behavior, and the solar
em. The question of its
1d.

r our solar system is on
hysical experiment runs

Jack Wisdom 277

too slowly for us to decide the matter, we have approached the question
of the stability of the solar system through numerical experiments. Our
numerical experiments indicate that, in fact, the solar system is chaotic
(Sussman and Wisdom, 1988).

L.1. Previous integration

Numerical integrations of the solar system take an extraordinarily large
amount of computer time. This is because there is a tremendous range of
time scales. A direct calculation must take steps that are small enough to
follow each planet around the sun, yet the motion of the planets is only
interesting on time scales of millions of years.

This time scale separation is a consequence of the degeneracy of the
two-body problem. The unperturbed two-body problem has only a single
frequency, the orbital frequency, even though there are three degrees of
freedom after elimination of the center of mass. The degeneracy is broken
by planetary perturbations. The largest effect is to make the perihelia and
orbital nodes precess. The frequency of these motions is of order the
orbital frequency multiplied by the mass ratio of the perturbing planet to
that of the sun. The precession time scales range from tens of thousands
of years to a couple of million years. Only on a time scale longer than this
precession time scale should we expect to find interesting dynamical
coupling between the planets.

We have performed our numerical integrations on the Digital Orrery
(Applegate ef al, 1985). Named after the orreries of the 18th and 19th
centuries (Fig. 2), the Digital Orrery (Fig. 3) is a special purpose com-
puter designed specifically for solar system dynamics. It runs at about
one-third the speed of a Cray 1, but is smaller than the viewgraph pro-
jector. It consists of ten computers which run in parallel. There are ten
because there are nine planets plus the sun. Each computer has limited
capabilities: it can add, multiply, and take —3/2 powers—just enough to
integrate Newton’s equations. The mantissa has 56 bits compared to 48
bits on the Cray; it has turned out that this extra precision was crucial.

In our first calculation (Applegate ef al, 1985) we integrated the outer
planets (Sun, Jupiter, Saturn, Uranus, Neptune, and several massless
Plutos) forward and backward in time for about 100 million years. This
is longer than the classic million year (£500000 yr) integration of
Cohen, Hubbard, and Oesterwinter {1973) by a factor of more than two
orders of magnitude.

One result from that integration was that the best analytic perturba-
tion theory (Bretagnon, 1982) for the solar system was inadequate. Nu-
merically resolving the observed motions of the massive planets into a
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Fig. 2. The mechanical orreries are nice symbols of the apparent clockwork predictability
of the motions of the planets.

quasiperiodic series, we found that the spectrum of Jupiter contained
terms which were larger than all but seven of the 200 terms listed in

Fig. 3. The *Digital Orrery” is a computer which was specifically designed to investigate
the dynamics of the solar system.
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Fig. 4. The power spectrum of a variable related to the eccentricity of Jupiter's orbit. The
common logarithm of the power is plotted vs frequency (in cycles per day).

Bretagnon’s solution (see Figs. 4 and 5). The problem was that the
perturbation theory was not carried to high enough order.

The motion of Piuto is particularly complicated. The orbit of Pluto
crosses the orbit of Neptune. This is only possible because the two planets
are in an orbital resonance (Cohen and Hubbard, 1965): three times the
orbital period of Neptune is approximately two times the orbital period of
Pluto. With the system in this resonance close encounters do not occur

Fig. 5. The power spectrum of Jupiter was not adequately represented by the best analytic
perturbation theories. Lines marked D and E are not recovered in perturbation theories
which are third order in the eccentricities and inclinations and second order in the
planetary masses.
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Fig. 6. The argument of perihelion of Pluto had a strong long-period modulation, with a
period of 34 million years.

even though the orbits cross. Integrations by Williams and Benson
(1973) showed that Pluto was involved in yet another resonance: Pluto’s
perihelion (the longitude at which the planet is closest to the sun) and its
ascending node (the longitude at which the orbit plane crosses the plane
perpendicular to the angular momentum of the solar system) are locked
together. The regression of the perihelion and the ascending node have
precisely the same periods. The difference between the two angles, which
is called the argument of perihelion, oscillates about 7/2 with a period of
about 3.8 million years.

Several new features in the motion of Pluto were revealed by our
calculation. We found a surprisingly large number of strong, long-period
variations. The argument of perihelion showed a strong modulation with
a period of 34 million years (Fig. 6). The variable 2 = e sin @, where ¢
is the orbital eccentricity and @ is the longitude of perihelion, had 2
strong component with a period near 137 million years (Fig. 7). (This
variable plays an important role in analytic theories.) This frequency
may be associated with a near resonance between one of the fundamental
frequencies associated with Pluto and one of the fundamental frequencies
of the system of massive planets. The inclination of Pluto showed some
evidence of a period longer than our integration, or perhaps even a S¢¢°
ular decline (Fig. 8). The most suspicious bit of evidence was the very
noisy power spectrum of the resonance variable associated with the basic
3:2 commensurability of the orbital periods (Fig. 9). The power spec”
trum of a quasiperiodic trajectory should have no more independent
frequencies than the number of degrees of freedom. Noisiness of power
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Fig. 7. There was a very long period (137 million year) component in a variable related
to Pluto’s eccentricity.

spectra or the presence of a broadband component have been widely
associated with chaotic behavior. Unfortunately, the noisiness of a power
spectrum is difficult to quantify.

The proper thing to do to determine whether a trajectory is chaotic or
quasiperiodic is to compute the Lyapunov exponents, which measure
whether or not neighboring trajectories diverge exponentially. Qur first
calculation of the Lyapunov exponent is shown in Fig. 10. The plot
displays log;, ¥ versus logyo(z — 1), where y = In[d(¢)/d(,)1/(t — t,),

0.25

4ElR JELD

Fig. 8. The inclination of Pluto had periods longer than could be resolved by our 214
million year integration.




282 Is the solar system stable?

1. 0%E=2 . 1.20E-?
Fig. 9. Expanded views of power spectra for Pluto were suspiciously noisy.

and d(t) the phase-space distance between neighboring Plutos. There was
no sign that y was leveling off to a positive Lyapunov exponent.

1.2. New integration

We were compelled by the very long periods and noisy spectra we found
in our integrations to carry out a longer integration of the solar system.
The motion of Pluto just seemed too complicated.

Our earlier integration was limited to == 100 million years because of
the accumulation of roundoff errors. We found a trick that allowed us to
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Fig. 10. The computation of the Lyapunov exponent did not show any indication of 2
nONZzero exponent greater than 1058 yr— 1,

Fig. 11. Relative ex

significantly redu
much longer time
etary orbits the er
11). This energy
growth of the err
in energy corresy
grated yields an .
The origin of this
which can estima
would be that the
grow with the sg
understand why 1
found in our nur
pended on the ste
positive and for o
W. Kahan, we in’
which there was n
was indeed the c:
size which elimir
length of the test i
integrations were
million days vers
measured in days,
of the solar mass.
The best step size
for our new integ



CE-7
re suspiciously noisy.

iring Plutos. There was
Inov exponent.

10isy spectra we found
o of the solar system.

illion years because of
rick that allowed us to

™

HLX

t show any indication of a

Jack Wisdom . 283

1o "

-2xip ™

1 s :
0 al 0.2 [HR] 04 0.5

[ 10" years}

Fig. 11. Relative energy error in our new long-term integration of the outer planets.

significantly reduce our numerical error and extend our infegrations to
much longer times. In all direct long-term numerical integrations of plan-
etary orbits the error energy is found to grow linearly with time (see Fig.
11). This energy error dominates all other errors; it leads to a quadratic
growth of the error in all positions and longitudes since the linear error
in energy corresponds to a linear error in frequency which when inte-
grated yields an error in longitude which grows quadratically in time.
The origin of this energy error is not understood; there is as yet no theory
which can estimate the rate of the linear growth. The naive expectation
would be that the error in energy should behave like a random walk and
grow with the square root of time. However, even though we do not
understand why the error grows as it does we can make use of it. We
found in our numerical studies that the slope of the energy error de-
pended on the step size; in fact, for some step sizes the energy error was
positive and for others the error was negative. Following a suggestion of
W. Kahan, we investigated whether there might be special step sizes for
which there was no linear growth in the energy error. We found that this
was indeed the case. More importantly, we found that the special step
size which eliminated the linear energy error did not depend on the
length of the test integrations, but rather became better defined as the test
integrations were extended. Figure 12 shows the energy error after 5
million days versus step size. The units are not important, but time is
measured in days, distance is in astronomical units, and mass is in units
of the solar mass. Figure 13 shows the energy error after a billion days.
The best step size of these test runs is 32.7 days, which is what we chose
for our new integrations. We extensively studied the numerical accuracy
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Fig. 12. The energy error after 5 million days as a function of step size.

of integrations with various step sizes. These errors were determined by
integrating forward in time, then reversing the system to recover the
initial state. This is a valid test since our integrator is not microscopically
reversible or explicitly symplectic. Figure 14 shows the round trip errors
in the position of Jupiter, which display a minimum at the special step
size of 32.7 days. Thus removing the energy error actually gives a better
long-term trajectory (as indicated by the round trip errors). It is curious
that at the special step size the round trip errors in all the planets are
comparable; this is not true for other step sizes.

Table I lists for comparison the rate of growth of energy error in

Queer Planet Errors (1,000,000,800 days)
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Fig. 13. The energy error after a billion days as a function of step size.
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Fig. 14. The error in recovering the position of Jupiter after integrating forward a billion
days and then backward a billion days vs step size. The round trip errors are a minimum
at the same step size that minimizes the energy error.

several long-term integrations of the solar system. Our new integration is
significantly more accurate and longer than all other long-term integra-
tions of the solar system. We simulated the motion of the outer planets
for nearly a billion years. The estimated error in the longitude of Jupiter
at the end of the integration is only a few degrees, and the error in the
longitude of Pluto is a few arc minutes. The calculation took about five
months on the Digital Orrery; this is about 4 MegaFlop-years of com-
puter time.

Table I. Energy errors in the various long-term integrations of the outer planets. Our first
integration is marked “200 MYR (1986).” In our new integration the growth of the
energy error is about three orders of magnitude smaller than all previous long-term
integrations.

Interval of

. . . d E— E() -
Integration integration I fyr=1
CHO (1973} 1000000 yr 24%1019
K&N (1984) 6 000 000 yr 5%10™18
200 MYR (1986) 214 000 000 yr 1.8% 1016
LONGSTOP (1986) 8 000 000 yr
LONGSTOP (1987) 100 000 000 yr —25x10718
This work 845 000 000 yr —30x107"
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Fig. 15. The argument of perihelion of Pluto continues to display a 34 million year
modulation.

The argument of perihelion of Pluto is displayed in Fig. 15. The 34
million year oscillation we previously observed (Fig. 6) is the longest
period which is noticeable in the time series for the argument of perihe-
lion. The 137 million year modulation of the quantity ~=¢ sin o, is also
still the longest period noticeable (Fig. 16). The inclination was not
secularly declining, but there may be a weak component with a period
near 600 million years (Fig. 17).

The most important indicator of chaotic behavior is the largest Ly-
apunov exponent. We computed the largest Lyapunov exponent in sev-
eral different ways. The simplest method is to just look at the divergence
of nearby trajectories. Figure 18 shows the divergence of two Plutos.
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Fig. 16. The eccentricity of Pluto continues to display the 137 million year modulation.
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Fig. 17. The inclination of Pluto varies somewhat irregularly.

Already here there is evidence of exponential divergence of trajectories.
The slope gives an exponential divergence time scale of about 20 million
years. This simple method has the disadvantage that the two trajectories
eventually separate so much that the two trajectories do not any longer
represent the divergence of “nearby” trajectories, and ultimately the dis-
tance between the trajectories saturates. In this case two Plutos cannot
separate more than about 45 AU, if the amplitude of the osciliation of the
basic 3:2 orbital resonance variable does not significantly change. There
are two prescriptions for improving on this simple Lyapunov exponent
calculation. One way is to “renormalize” the distance between the two

P L . .
0 0. 02 0J 04 [13.]
C[10” years]

Fig. 18. The logarithm of the distance between two “Plutos™ is plotted vs time. The linear
growth indicates exponential divergence with a time scale of about 20 million years. The
simple two-trajectory method saturates at a distance of about 45 AU.
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Fig. 19. The logarithm of the distance between neighboring Plutos computed with the
linearized variational equations.

trajectories, i.e., the test trajectory is repeatedly brought back to be near
the reference trajectory preserving the direction (in phase space) between
them, and keeping track of how much the test trajectory was moved. The
problem with this method is knowing how often to renormalize. In a
system with a small Lyapunov exponent, we found that tco frequent
renormalization can contaminate the result. The best method is to inte-
grate the lincarized variational equations along with the equations of
motion. This method needs renormalization only if the distance grows so
large that it cannot be represented in the computer—a problem not en-
countered here. Figure 19 shows the divergence of nearby Plutos com-
puted using the variational method. The agreement with the two Pluto
caleulation is striking (Fig. 20). The two calculations differ significantly
only when the two trajectory method is close to saturation. Figure 21
shows the conventional (more conservative) plot of the calculation of the
Lyapunov exponent. The exponent is clearly leveling off at a positive
value, in a manner typical of Lyapunov exponent calculations. The in-
verse of the Lyapunov exponent is about 20 million years. Thus our
calculation indicates that the motion of Pluto is chaotic, with a surpris-
ingly short divergence time scale.

It is interesting to further examine the divergence of nearby trajecto-
ries by displaying the distance between Plutos on a log d versus log ¢ plot
(Fig. 22). Several different experiments are superimposed to show the
envelope. The solid curve is an exponential with a 20 million year e-
folding time scale. The dashed curve is a power law with distance pro-
portional to the 3/2 power of the time. The plot shows that the initial
divergence of the Plutos follows the 3/2 power law. Numerical experi-
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Fig. 20. The two methods for computing the divergence of trajectories give results which
are in excellent agreement up to the point of saturation.

ments on a system of Plutos without planetary perturbations showed a
similar behavior for the divergence. (This divergence can be contrasted
with the square-law behavior observed for the round trip errors.) We see
that when the slope of the exponential exceeds the power-law the diver-
gence begins to follow the exponential. Thus the initial power-law diver-
gence acts as a “seed” for the later exponential divergence. This plot
illustrates the disaster that could result from too frequent renormaliza-
tion during a calculation of a small Lyapunov exponent. If the renormal-
ization is repeatedly carried out during the power-law phase of the di-
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Fig. 21. The conventional representation of a Lyapunov calculation clearly indicates a
positive exponent with a divergence time scale of about 20 million years,
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Fig. 22. A log-log plot of the distance between two Plutos vs time emphasizes the early
stapes of the separation. The initial divergence due to round-off error provides a seed to
the exponential divergence associated with chaotic behavior.

vergence, the measured Lyapunov exponent may have no relation to the
true exponent. The variational method does not have this problem.
There is a disturbing aspect to this result that the motion of Pluto is
chaotic. In other examples of chaotic behavior in the solar system (see
Wisdom, 1987 for a review) trajectories always look decidedly irregular
when there is a positive Lyapunov exponent. That is not the case here.
For example, the argument of perihelion (Fig. 16) looks remarkably
regular. The inclination is a little more complicated, but not obviously
irregular. The strongest evidence for irregular behavior is in the power
spectra. Figure 23 shows a portion of the power spectrum of /1 = e sin &
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Fig. 23. This expanded view of the Pluto spectrum still has a broadband character.
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Fig. 24. This expanded view of the Neptune spectrum is still consistent with a quasipe-
ricdic line spectrum.

for Pluto. Figure 24 shows, for comparison, a similar portion of the
power spectrum of Neptune. The power spectra are qualitatively dif-
ferent. The spectrum of Neptune is consistent with a very complicated
line spectrum; the spectrum of Pluto has a broadband character. Note
that the broadband component is stronger than most of the lines in the
spectrum of Neptune. The broadband component of Pluto’s spectrum is
consistent with our measurement of a positive Lyapunov exponent.

In planetary motion the semimajor axes are usually the most uninter-
esting of the orbital elements. The reason is that the semimajor axes are
closely related to the momenta conjugate to the fastest moving angles, the
longitudes of the planets. Because of the large separation of time scales,
the motion on the orbital time scale is not very important. The effects
associated with the extremely rapid variations in longitude tend to aver-
age out and produce no cumulative effect. The fact that the orbital lon-
gitudes are ignorable implies that the variables conjugate to them are, on
the average, constant and hence not very interesting. Curiously, plots of
the sampled semimajor axis appear more irregular than plots of any other
orbital element of Pluto. Figures 25 and 26 show the semimajor axes of
Pluto and Neptune (for comparison) over several hundred million years.
The semimajor axis of Pluto is markedly more irregular. Figures 27 and
28 show expanded portions of these time series. The semimajor axis of
Neptune shows patterns characteristic of a sampled quasiperiodic signal.
On the other hand, the word “turbulent” is brought to mind by the plot
of the semimajor axis of Pluto. Apparently, sampling the semimajor axis
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Fig. 25. The time series of the semimajor axis of Pluto has an irregular appearance.

has brought out the chaotic character of Pluto’s motion. Perhaps there is
a clue here to the dynamical resonance mechanism responsible for Pluto’s
chaotic motion?

Since we performed this numerical experiment which indicated that
the motion of Pluto was chaotic an analogous experiment has been per-
formed by J. Laskar (1989) for the whole solar system. With today’s
computers and today’s computer time allotments it is impossible to di-
rectly integrate the whole solar system for hundreds of millions of years.
Instead, Laskar has studied the whole solar system by first analytically
averaging the equations of motion to yield a system of about 150 000
secular equations which he then integrated on a conventional supercom-
puter. Figure 29 shows the calculation of the Lyapunov exponent from
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Fig. 27. On a shorter time scale the time series of the semimajor axis of Pluto still has an
irregular appearance.

his paper. Laskar has found that the whole solar system is chaotic with an
exponential divergence time of only about 5 million years. The detailed
long-term evolution of the Earth is unpredictable!

One word of caution is in order. Both of these calculations are so far
one of a kind calculations. We have not yet evaluated the sensitivity of
our results to uncertainties in our knowledge of the true masses and
initial conditions of the planets. It may be that the chaotic zones are very
tiny and with the true masses the system is not chaotic. This seems
unlikely to me since two very different kinds of calculation have been
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Fig. 28. On a shorter time scale the time series of the semimajor axis of Neptune still
appears quasiperiodic.
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Fig. 29. Calculation of the Lyapunov exponent for the whole solar system indicates
exponential divergence with a time scale of only 5 million years.

performed and both gave positive Lyapunov exponents. Still the sensitiv-
ity to parameters needs to be addressed.

It is difficult to evaluate the implications of these results. The chaotic
character of the solar system opens many possibilities. The high eccen-
tricity and inclination of Pluto’s orbit are puzzling since we understand
that planets form from a nebula which collapses to a disk; all the planets
should more or less be in the same plane. However, I have shown (Wis-
dom, 1987) that asteroids placed in the chaotic zones associated with
orbital resonances with Jupiter often evolve to high inclination and ec-
centricity. Thus Pluto may have formed in an orbit near the plane of the
other planets, and evolved through the chaotic zone to its current high
eccentricity and high inclination orbit. This seems a very natural sugges-
tion. Of course, it could also be the case that the chaotic zone in which
Pluto moves is very tiny with only exceedingly small holes into other
parts of the phase space. In this case, Pluto may always have had much
the same orbit. In an extreme view, the chaotic character of Pluto’s
motion opens the possibility that Pluto was initially in an orbit radically
different from the orbit in which it is found today. Chaos enlarges the
possibilities rather than constrains them.

The chaotic character of the dynamics of the solar system also pre-
cludes any rigorous statement about its future evolution (at the mo-
ment). The fact that the solar system is 4.6 billion years old does not
demand any conclusion regarding its future stability. Recall my curious
results regarding the motion of asteroids in the 3:1 orbital resonance with
Jupiter (Wisdom, 1982, 1983). Figure 30 shows the eccentricity of 2
chaotic asteroid trajectory versus time. For over a hundred thousand
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Fig. 30. Eccentricity vs time of a chaotic asteroidlike trajectory. These trajectories often
display long periods of apparently regular motion, followed by bursts of irregular motion.
During the regular periods the trajectory is stuck to an island in the phase space.

years the eccentricity looks quasiperiodic, then it becomes more irregular,
and then suddenly it begins shooting to large values. The reason for this
behavior is that the trajectory is originally stuck to an island, from which
it breaks loose, and eventually it finds its way into a different region of the
chaotic zone in which large jumps in eccentricity take place (Wisdom,
1985). Until we understand the structure of the chaotic zone in which
Pluto and the rest of the solar system move, it is not possible to exclude
the possibility, say, that the orbit of the Earth will suddenly begin to
exhibit similar wild excursions in eccentricity. It is not even possible to
say whether the Earth will still be a member of the solar system a billion
years from now.

Question 2: Can we use chaos to make measurements?

The hallmark of chaos is the sensitive dependence on initial conditions.
The exponential divergence of chaotic trajectories precludes long-term
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prediction given limited knowledge of the state of the system. Any error
in our knowledge of either the state of the system or the system param-
eters will exponentially explode into complete uncertainty in the state of
the system. Is it possible, though, to turn this sensitivity to our advan-
tage? Rather than trying to predict the future from limited knowledge,
can we use the sensitivity of a system undergoing chaotic motion to
deduce the properties of the system? Can we measure the behavior of a
system and deduce, exponentially well, properties of the system which
were required to produce the observed behavior. Several years ago (Wis-
dom, 1987) I suggested that it might be possible to use noisy observations
of the brightness of Hyperion, the chaotically tumbling satellite of Saturn
(Wisdom et al., 1984; Klavetter, 1989), to determine exponentially well
both the state of rotation of Hyperion and the ratios of its principal
moments of inertia. Letting the dream get out of hand, it even seemed
conceivable that if extensive observations of this otherwise uninteresting
400 km satellite could be made, an arbitrarily large amount of informa-
tion could be deduced about the Saturn system, without a spacecraft
going there. And why restrict oneself to observations of objects which are
difficult to observe? Surely the behavior of the double pendulum depends
outrageously sensitively on the parameters of the system such as the
lengths and masses of the individual pendula, and more importantly on
the value of the gravitational acceleration g. Can we make a chaotic
double pendulum to measure g, Or a chaotic Cavendish balance to mea-
sure the gravitational constant G? Unfortunately, it appears there is a sort
of “classical uncertainty principle,” which prevents us from using the
extreme sensitivity of chaotic behavior to make exponentially accurate
measurements.

There has recently been considerable interest in the closely related
problem of “noise reduction” (Farmer and Sidorowich, 1987, 1988; Ko-
stelich and Yorke, 1989). Given the dynamical system (with its param-
eters), it certainly is possible to use noisy measurements to exponentially
constrain the trajectory of the system, away from the end points of the
time series. In the work reported here, I used neither of the techniques for
noise reduction mentioned above. Rather, I use the first part of the shad-
owing algorithm as described by Hammel et al. (1989). By the way, the
cesults of Hammel et al., are especially nice, if anyone is unfamiliar with
them. They prove, by “computer proof,” that for particular trajectories of
particular maps, there are true trajectories of the map which stay close to
the numerically computed trajectory for an astonishingly long time. Typ-
ical results are that for trajectories computed with 64 bit arithmetic true
trajectories shadow computed trajectories within a relative accuracy of
10~ 8 for 10® iterations. Who could ask for more of a numerical trajec-
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tory? The first part of the proof is to compute from the computed tra-
jectory a more consistent pseudotrajectory which is less contaminated by
the roundoff error. That this algorithm could be used for noise reduction
was mentioned by Sidorowich and Farmer {1988). I have found that it
works pretty well, though it is not ideal for a number of reasons. The
algorithm does not work for regular orbits. The algorithm sometimes
fails. The algorithm does not give a natural estimate of the error in the
result. Despite these shortcomings the shadow algorithm captures the
essence of the problem with parameter estimation from noisy measure-
ments, as we shalil shortly see.

In order to focus on the matters of principle rather than gory details I
set up a highly idealized set of numerical experiments. I chose to study a
stmple map, the standard map:

= Ksinx
g x,y:-; +y mod 27. (1
The map is used to generate a time series of the trajectory (x,, ;). Then
I make measurements of the trajectory by “observing” both x and y at
each time step. Observations are performed by adding to each variable
being measured a Gaussian random number with standard deviation o. I
measure all the state variables in order to avoid the unnecessary compli-
cations of embedding. In performing the noise reduction I assume that
the dynamical system, the standard map, is known, but the parameter K
is unknown. This avoids problems of having to build an approximation to
the dynamical system from the data. Given this intentionally ideal situ-
ation, to what extent is it possible to determine the parameter K? Is it
exponentially determined by the observations?

Figure 31 illustrates the now familiar result of noise reduction with the
dynamical system, including the parameter, known. In this case K = 1.
The common logarithm of the difference between the observations and
the true orbit, as well as the common logarithm of the difference between
the shadow orbit and the true orbit, are plotted as a function of iteration
number. We see that the shadow orbit, which is computed from the noisy
observations only, recovers the true orbit to about machine precision
except at the end points of the time series. Of course, the precision of the
machine is not a fundamental limitation; in principle a true trajectory
could be recovered with an accuracy which continues to grow exponen-
tially with the length of the time series.

Now what happens as we use the shadow algorithm to remove the
noise with a slightly incorrect value of the parameter K? Figure 32 illus-
trates the result for three different values of SK=K — K,,,.: 0, 107%, and
10~ 2, In each case the shadow algorithm finds a shadow orbit, and the
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Fig. 31. Demonstration of “‘noise reduction” for the standard map using the shadowing
algorithm. The time series of the logarithm of the errors before and after noise elimination
are shown.

error in recovering the true orbit is roughly of order the error in the
parameter K. We can see already that if this is generally true, then it will
be difficult to determine parameters. The differences between the shadow
orbits and the true orbit are far below the errors in the measurements.
The measurements, which are all we know in general, apparently cannot
distinguish which one is correct.

Perhaps we should try anyway. An objective measure of goodness of fit
is

Shadow Orhit Errors
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Fig. 32. The logarithm of the errors in the shadow orbit using slightly incorrect values of
the parameter.
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+

Fig. 33. I[Hustration of the behavior of the shadow orbits at the ith point. The shadow
orbits form a single parameter family of orbits.

1 N—-1
Y=55= EO (%, — X2+ (F,— 7%, (2)

where (X, 7 ;) is the observational data, and (¥, 7 ;) is the shadow
orbit. In the sum I only included those points in the interior part of the
time series, excluding the exponential transients at the ends. & is the
number of points included in the sum. We can try to determine the best
fitting K by minimizing the y* of the shadow orbit as a function of K.
We can estimate how the error in the best fitting X should depend on
the number of observations. There are some interesting properties of
these shadow orbits which will help us to do this. The first is that the
shadow orbits seem to be uniquely determined. For instance, if I deter-
mine the shadow orbit with a slightly wrong value of the parameter, and
then use that shadow orbit as the initial observational data for the
shadow algorithm again, this time with the correct value of K, then the
true orbit is still recovered. Away from the end points, the shadow orbits
form a simple one parameter family of trajectories. This is illustrated in
Fig. 33, for the ith iteration. The point with the error bars indicates the
measured position for this iteration. The dot labeled (x, y;) represents
the position of the true trajectory. The curve represents how the shadow
trajectory varies as a function of 8K, for this iteration. The distance of the
shadow position from the true position is linearly proportional to 8K. The
linearity can be seen in Fig. 32, where the curves for 6K = 10-% and
8K = 107 ' are vertically displaced copies of one another. The linearity
for small 6K is a simple consequence of the fact that the shadow trajec-
tories form a single parameter family. From the picture of the shadow
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Fig. 34. Parameter estimation errors vs the number of points in the segment of the
trajectory inside the exponential transients. The errors deerease as 1/N rather than
1/ VN as was naively expected.

trajectory given in Fig. 33 we can estimate how the best fitting 8K will
vary with the number of points in the sum. Each measurement provides
additional information as to where along the curve the true trajectory
lies. The error in 8K should thus be proportional to 1/ VN, which is not
very spectacular.

Curiously, this 1/ VN expectation is not correct. Figure 34 shows the
results of a number of numerical experiments. For each NV several runs
were made with different random numbers, the best fitting 6K were de-
termined by the procedure outlined above for each of these runs. The
mean and standard deviation of the mean of the common logarithms of
these SK’s are plotted versus the logarithm of . The dotted curve shows
the expected 1/ VN behavior. The dashed curve is simply o/N. Appar-
ently, this provides an excellent fit to the data.

Where does the extra factor of 1/ VN come from? Let us continue the
calculation of y*. It is convenient to introduce vector notation, x; = (%
y;) for the true orbit, ¥; for the shadow orbit, and X for the observa-
tions. Because of the linear dependence of the shadow orbit on 8K, for
small 6K, we can write

':Eizxi—l—SKCi. (3}
The observational data can be represented:

_fi=xi+!1;, . (4)
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where n; are two-dimensional samples from a Gaussian random number
generator with standard deviation ¢. The sum for )(2 becomes

1 N1

X'=3p— EO 1% — &5 (5)
1 N-—1
- o 112
=N Eﬂ ||ms — KTy} (6)
Solving for the 8K which gives a minimum y* we find
s >0 B
TELCG (7)

Now if all the C; have comparable lengths, say, ||C}j =C, then the mag-
nitude of 8K scales as VN/NC, i.e., proportional to 1/ VN, again. Evi-
dently the average length of the C; grows with the length of the trajec-
tory. This curious suggestion was tested by computing the quantity:
ol Gl

=2‘5=o CrCi (8)
for each value of j up to the full length of the computed trajectory. The
resulting plot of D versus j did indeed fall as 1/VN, but in a very
irregular way. Apparently, some segments of the trajectory are more
difficult to shadow than others, and the 1/ VN behavior of D results from
the irregular close encounters of the trajectory with these difficult spots.

The longer the trajectory, the more likely a really difficult spot is encoun-
tered.

There seems to be a sort of ‘““classical uncertainty principle.” Even
though the trajectories are very sensitive, and almost any variation of
mnitial conditions or parameters lead to exponential divergence, chaotic
trajectories are also very flexible, so flexible in fact that even with the
wrong system parameters there are chaoctic trajectories that can fit the
data. The chaos has reduced the dimension of the unknowns from an
uncertainty in all of x;, y,, and K| to just an uncertainty in K. There is an
exponentially accurate constraint between any given value of X and the
orbit. Given K, the true trajectory can be determined; given any point on
the trajectory, the parameter K can be determined. Unfortunately, all we
can deduce from the data is the extremely accurate relationship between
them.

This particular set of numerical experiments indicates then that the
sensitive dependence of chaotic motion on system parameters cannot be
used to determine system parameters exponentially well. It does appear
though that chaos, in a somewhat mysterious way, gives an extra im-
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provement in the determination of system parameters by one extra factor
of 1/ VN beyond the naive estimate. Perhaps even this level of improve-
ment could be useful in a physical experiment.

I think it would be worthwhile to carry out similar experiments on
continuous systems, and higher dimensional systems.
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