Name_

Date_

Vector Calculus Independent Study

Unit 8 Sample Test

1. [25 points] Let R be a region in the plane with area A, and let ∂R be R's boundary. Use Green's theorem to show that the center of mass (\bar{x}, \bar{y}) of R has coordinates

$$\bar{x} = \frac{1}{2A} \int_C x^2 \, dy$$

and

$$\bar{y} = \frac{1}{2A} \int_C y^2 \, dy$$

- 2. [25 points] Suppose
 - (a) $\nabla \cdot \vec{F} = 0$ everywhere except at (1, 0, 0) and (3, 0, 0),
 - (b) $\iint \vec{F} \cdot d\vec{S} = 5$ over the sphere $x^2 + y^2 + z^2 = 4$ oriented with outward pointing normal, and
 - (c) $\iint \vec{F} \cdot d\vec{S} = 7$ over the sphere $x^2 + y^2 + z^2 = 16$ oriented with outward pointing normal.

Use Gauss' Theorem to determine all the other possible values of

$$\int \int \vec{F} \cdot d\vec{S}$$

evaluated over spheres (not necessarily centered at the origin) with outward pointing normals.

3. [25 points] Calculate the surface integral

$$\iint_{S} (\nabla \times \vec{F}) \cdot d\vec{S}$$

where S is the hemisphere $x^2 + y^2 + z^2 = 1$, $x \le 0$ and

$$\vec{F}(x, y, z) = (x^3, -y^3, 0).$$

4. [25 points] Prove that the work done by a particle moving along a closed path against a constant force field $\vec{F}(x, y, z) = \vec{v}$ is 0.