Name

Date

Vector Calculus Independent Study

Unit 8 Sample Test

1. [25 points] Let R be a region in the plane with area A, and let ∂R be R 's boundary. Use Green's theorem to show that the center of mass (\bar{x}, \bar{y}) of R has coordinates

$$
\bar{x}=\frac{1}{2 A} \int_{C} x^{2} d y
$$

and

$$
\bar{y}=\frac{1}{2 A} \int_{C} y^{2} d y
$$

2. [25 points] Suppose
(a) $\nabla \cdot \vec{F}=0$ everywhere except at $(1,0,0)$ and $(3,0,0)$,
(b) $\iint \vec{F} \cdot d \vec{S}=5$ over the sphere $x^{2}+y^{2}+z^{2}=4$ oriented with outward pointing normal, and
(c) $\iint \vec{F} \cdot d \vec{S}=7$ over the sphere $x^{2}+y^{2}+z^{2}=16$ oriented with outward pointing normal.

Use Gauss' Theorem to determine all the other possible values of

$$
\iint \vec{F} \cdot d \vec{S}
$$

evaluated over spheres (not necessarily centered at the origin) with outward pointing normals.
3. [25 points] Calculate the surface integral

$$
\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{S}
$$

where S is the hemisphere $x^{2}+y^{2}+z^{2}=1, x \leq 0$ and

$$
\vec{F}(x, y, z)=\left(x^{3},-y^{3}, 0\right) .
$$

4. [25 points] Prove that the work done by a particle moving along a closed path against a constant force field $\vec{F}(x, y, z)=\vec{v}$ is 0 .
