

What can a synthetic chemist learn from charge density?

Dietmar Stalke

Institut für Anorganische Chemie der Universität Göttingen

Bond or topological connectivity?

T. Stey, D. Stalke *Lead structures in lithium organic chemistry* in *The Chemistry of Organolithium Compounds*, eds. Z. Rappoport, I. Marek, John Wiley & Sons New York, **2004**, 47-120.

Experimental charge density

High resolution diffraction data (2 Θ = 3-110° (MoK_a))

Standard structure determination

Multipole refinement

Analyses according to Bader's "Atoms in Molecules" (AIM) formalism

Inert gas and low temperature crystal application T. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615.

Bruker TXS and INCOATEC Mo mirrors

Exquisite data from the Bruker TXS

Resolution	2 θ (MoK _α)	$\frac{\sin\theta}{\lambda}$	% Complete	Red.	Mean I/ o	R _{int}	R_{σ}
Inf - 1.18	36.13	0.42	99.8	22.43	145.11	0.0159	0.0047
1.18 - 0.93	46.33	0.54	100.0	23.09	117.94	0.0194	0.0058
0.93 - 0.81	53.70	0.62	100.0	20.16	97.26	0.0237	0.0072
0.81 - 0.73	60.16	0.68	99.6	6.43	52.82	0.0222	0.0133
0.73 - 0.68	65.10	0.74	99.0	5.87	46.52	0.0248	0.0150
0.68 - 0.64	69.73	0.78	98.5	6.51	45.91	0.0286	0.0160
0.64 - 0.60	75.15	0.83	98.1	10.00	55.29	0.0328	0.0129
0.60 - 0.57	79.86	0.88	97.6	9.23	44.20	0.0395	0.0168
0.57 - 0.54	85.30	0.93	97.4	6.11	35.16	0.0393	0.0217
0.54 - 0.52	89.43	0.96	94.9	4.16	26.96	0.0382	0.0291
0.52 - 0.50	94.06	1.00	93.1	3.75	20.87	0.0479	0.0390
0.50 - 0.48	99.32	1.04	94.8	3.73	16.95	0.0572	0.0491
0.48 - 0.46	105.38	1.09	94.9	3.75	15.57	0.0628	0.0533
0.46 - 0.45	108.79	1.11	92.5	3.59	14.71	0.0658	0.0577
0.45 - 0.44	112.51	1.14	94.7	3.43	12.82	0.0733	0.0667
0.44 - 0.42	121.18	1.19	75.3	2.13	10.64	0.0770	0.0817
0.52 - 0.42			91.9	3.50	16.37	0.0570	0.0503
Inf - 0.42			95.4	7.67	43.86	0.0201	0.0126

P. Coppens, X-ray Charge Densities and Chemical Bonding, IUCr texts on Crystallography, Oxford Univ. Press, 1997.

Structure topology

The gradient vector field of methyl carbamide:

P. Coppens, X-ray Charge Densities and Chemical Bonding, IUCr texts on Crystallography, Oxford Univ. Press, 1997.

Charge density and derivatives

Charge density distribution $\rho = f(\mathbf{r})$

R. J. Gillespie, E. A. Robinson, Angew. Chem. Int. Ed. Engl. 1996, 35, 495.

Charge density and derivatives

R. J. Gillespie, E. A. Robinson, Angew. Chem. Int. Ed. Engl. 1996, 35, 495.

Hypervalency ??

The usual suspects: third (or higher) period central atoms, dⁿsp^m hybridized, no formal charges.

Si←N	Si—N	Si=N
197 pm	174 pm	157 pm
	CCDC 2005	Wiberg et al. 1986

Topology of the Si-E-bonding (E = N, O, F)

Topology of the Si-E-bonding (E = N, O, F)

$\nabla^2 \circ (n)$	
v-p(r)	
	And States
	S OU AND
	MAN 33
	and the second sec

A-B	bond path	ρ(r _{BCP})	$ abla^2$ ρ(r _{BCP})	charge (B)	NBO- charge (B)
Si-N	197.03	0.501(16)	7.755(32)	- 0.78	- 0.43
Si-O	177.89	0.766(13)	7.373(29)	- 1.21	- 0.81
Si-F	163.97	1.015(13)	13.472(33)	- 0.80	- 0.66

Phosphorus centred Janus-Head ligands

Classical chelating ligands asymmetrical, chiral, hemilabile Janus-Head ligands σ/π coordination via the ligand periphery

Reviews: L. Mahalakshmi, D. Stalke, In *Structure and Bonding*, Springer Verlag Heidelberg, **2002**, *103*, 85. D. Stalke et al., *J. Organomet. Chem.* **2002**, *661*, 111.

Phosphorus centred Janus-Head ligands

Reviews: L. Mahalakshmi, D. Stalke, In *Structure and Bonding*, Springer Verlag Heidelberg, **2002**, *103*, 85. D. Stalke et al., *J. Organomet. Chem.* **2002**, *661*, 111.

Aminoiminophosphoranes

Inorg. Chem. 1993, 32, 1977; Inorg. Chem. 1997, 36, 2413; J. Am. Chem. Soc. 2001, 123, 1381.

Aminoiminophosphoranes

Inorg. Chem. 1993, 32, 1977; Inorg. Chem. 1997, 36, 2413; J. Am. Chem. Soc. 2001, 123, 1381.

P=N double bond ??

P=N double bond ??

P=N double bond ??

All canonical forms would require hypervalent phosphorus in P—C or P—N multiple bonding.

No double bonds at phosphorus

No double bonds at phosphorus

N. Kocher, D. Leusser, A. Murso, D. Stalke, Chem. Eur. J. 2004, 10, 3622.

No double bonds at phosphorus

T. Stey, J. Henn, D. Stalke, Chem. Commun. 2007, 413.

(+)

Н

 \hat{S}

T. Stey, J. Henn, D. Stalke, Chem. Commun. 2007, 413.

T. Stey, J. Henn, D. Stalke, Chem. Commun. 2007, 413.

T. Stey, M. Pfeiffer, J. Henn, S. K. Pandey, D. Stalke, Chem. Eur. J. 2007, DOI: 10.1002/Chem200601221.

T. Stey, M. Pfeiffer, J. Henn, S. K. Pandey, D. Stalke, Chem. Eur. J. 2007, DOI: 10.1002/Chem200601221.

T. Stey, J. Henn, D. Stalke, Chem. Commun. 2007, 413.

F. A. Cotton et al. Dalton Trans. 1974, 800.

G. Bianchi et al. Inorg. Chem. 2000, 39, 2360.
P. Macchi et al. J. Am. Chem. Soc. 1998, 120, 13429.
L. J. Farrugia et al. Acta Crystallogr. Sect. B 2003, 59, 234.

Review: P. Macchi, A. Sironi, *Coord. Chem. Rev.* 2003, 238, 383. *Chemical Bonds without "Chemical Bonding"*? L. J. Farrugia, C. Evans, M. Tegel, *J. Phys. Chem. A* 2006, 110, 7952.

F. A. Cotton et al. Dalton Trans. 1974, 800.

G. Bianchi et al. Inorg. Chem. 2000, 39, 2360.
P. Macchi et al. J. Am. Chem. Soc. 1998, 120, 13429.
L. J. Farrugia et al. Acta Crystallogr. Sect. B 2003, 59, 234.

H. Braunschweig et al. Angew. Chem. Int. Ed. 2006, 45, 4352.

Review: P. Macchi, A. Sironi, *Coord. Chem. Rev.* 2003, 238, 383. *Chemical Bonds without "Chemical Bonding"*? L. J. Farrugia, C. Evans, M. Tegel, *J. Phys. Chem. A* 2006, 110, 7952.

R1 (I>3 σ (I)) / wR2 (I>3 σ (I)) after multipole ref. to sin θ/λ_{max} = 1.187 [Å]	0.0162 / 0.0281 (w = 1/o²)
no. of unique reflections / R _{int} / R _{sigma}	23961 / 0.0203 / 0.0126
N _{refl.} / N _{param.}	53.85

U. Flierler, J. Henn, M. Burzler, H. Braunschweig, H. Ott, D. Leusser, D. Stalke, in preparation.

A—B	bond lengths	bond paths	ρ(r _{BCP})	∇²ρ(r _{BCP})
Mn Mn	2.7820(8)	-	(0.213)	(1.415)
Mn—B	2.0215(3)	2.0217	0.617	2.904
Mn—C	1.7850(3)	1.78450	0.982	14.844

U. Flierler, J. Henn, M. Burzler, H. Braunschweig, H. Ott, D. Leusser, D. Stalke, in preparation.

U. Flierler, J. Henn, M. Burzler, H. Braunschweig, H. Ott, D. Leusser, D. Stalke, in preparation.

U. Flierler, J. Henn, M. Burzler, H. Braunschweig, H. Ott, D. Leusser, D. Stalke, in preparation.

J. Henn, D. Stalke, J. Comput. Chem., submitted.

85 % in NRT

J. Henn, D. Stalke, J. Comput. Chem., submitted.

J. Henn, D. Stalke, J. Comput. Chem., submitted.

J. Henn, D. Stalke, J. Comput. Chem., submitted.

According to the literature it is impossible to metalate pyridine directly with *n*-butyllithium, because this base acts as a nucleophile and the ring substitution is in favor of the deprotonation.

B. J. Wakefield, *The Chemistry of Organolithium Compounds*, Pergamon Press 1974.
D. R. Armstrong, R. E. Mulvey, D. Barr, R. Snaith, D. Reed, *J. Organomet. Chem.* 1988, 350, 191.
T. Lauterbach, K.-J. Niehues, *Butyllithium-Eigenschaften und Anwendungen*, CHEMETALL.

According to the literature it is impossible to metalate pyridine directly with *n*-butyllithium, because this base acts as a nucleophile and the ring substitution is in favor of the deprotonation.

B. J. Wakefield, *The Chemistry of Organolithium Compounds*, Pergamon Press 1974.
D. R. Armstrong, R. E. Mulvey, D. Barr, R. Snaith, D. Reed, *J. Organomet. Chem.* 1988, 350, 191.
T. Lauterbach, K.-J. Niehues, *Butyllithium-Eigenschaften und Anwendungen*, CHEMETALL.

H. Ott, J. Henn, D. Leusser, D. Stalke, in preparation.

R1 (I>3 σ (I)) / wR2 (I>3 σ (I)) after multipole ref. to sin θ/λ_{max} = 1.136 [Å]	0.0244 / 0.0417 (w = 1/o²)
no. of unique reflections / R _{int} / R _{sigma}	13125 / 0.0202 / 0.0092
N _{refl.} / N _{param.}	24.08

А—В	bond lengths	bond paths	ρ(r _{BCP})	∇²ρ(r _{BCP})
Li—N _(carb.)	1.9788(4)	1.9789	0.167	4.899
Li _(allyl) —N _(carb.)	2.0489(4)	2.0506	0.123	3.615
Li N _(donor)	2.0337(4)	2.0337	0.153	4.435
Li–C	2.4378(5)			

H. Ott, J. Henn, D. Leusser, D. Stalke, in preparation.

H. Ott, J. Henn, D. Leusser, D. Stalke, in preparation.

H. Ott, J. Henn, D. Leusser, D. Stalke, in preparation.

MoK_{α} TXS in life science

Cubic insulin

 $C_{257}H_{387}N_{65}O_{66}S_6 + soup$ a = 77.8 Å V = 470.140 Å³ space group = I 2₁3 size = 0.30 × 0.31 × 0.38 mm detector dist. = 75 mm

H. Ott, U. Flierler, I. Dix, M. Ruf, G. M. Sheldrick, D. Stalke, in preparation.

MoK_{α} TXS in life science

Cubic insulin

 $C_{257}H_{387}N_{65}O_{66}S_6 + \text{ soup}$ a = 77.8 Å V = 470.140 Å³ space group = I 2₁3 size = 0.30 × 0.31 × 0.38 mm detector dist. = 75 mm

H. Ott, U. Flierler, I. Dix, M. Ruf, G. M. Sheldrick, D. Stalke, in preparation.

MoK_{α} TXS in life science

H. Ott, U. Flierler, I. Dix, M. Ruf, G. M. Sheldrick, D. Stalke, in preparation.

Acknowledgement

Finances:

ExpED priority program 1178 of the DFG Graduiertenkolleg 690 of the DFG Deutscher Akademischer Austauschdienst (ARC, INIDA, PROCOP) German-Israeli Foundation CHEMETALL GmbH / Frankfurt