Formal Characterization of Hardware Transmitters for Secure Software and Hardware Repair

Yao Hsiao¹, Christopher W. Fletcher², Caroline Trippel¹
¹Stanford University, ²University of Illinois Urbana-Champaign

- **Problem:**
 - Hardware side-channel attacks exploit unsafe instructions (i.e., transmitters) whose execution creates operand-dependent hardware resource usage that can be observed via some means (e.g., exec. time)

Formal Characterization of Hardware Transmitters for Secure Software and Hardware Repair

Yao Hsiao1, Christopher W. Fletcher2, Caroline Trippel1

1Stanford University, 2University of Illinois Urbana-Champaign

\textbf{Problem:}

\begin{itemize}
 \item Hardware side-channel attacks exploit unsafe instructions (i.e., transmitters) whose execution creates operand-dependent hardware resource usage that can be observed via some means (e.g., exec. time)
 \item Mitigating such attacks requires identifying all unsafe instructions on a given RTL design
 \item Many unsafe instructions can be latent in microarchitecture1
\end{itemize}

1Jose Vicarte et al. “Opening Pandora’s Box: A Systematic Study of New Ways Microarchitecture Can Leak Private Data”. In: ISCA’21.
τsynth: Automated approach and tool for discovering and characterizing unsafe instructions on an input RTL design

- **Methodology:**
 - Exhaustive exploration of instruction execution paths using a combination of formal property generation and model checking

- **Results:**
 - Identifies 15 timing-differentiable transmitters on RISC-V CVA6

- **Ongoing work:**
 - Extracting data that a transmitter depends on to exhibit variable execution

65 execution paths for division op → unsafe 😞