Dynamic Speculation Control of Modern Processors

Sankara Prasad Ramesh, Dean Tullsen, Daniel A. Jiménez, Gilles Pokam

Motivation

Highly Speculative and Wide Machines prevalent

Aggressive Front End	 Fetch/Branch Directed Prefetching(FDIP) (Decoupled Frontend) Improved Branch Predictors
Larger ROB Size	 Intel Golden Cove – 512 entries AMD Zen4 – 320 entries
Larger BTB	 ARM Neoverse – 8K entries Intel Golden Cove -12K entries
Increasing Width	 ARM Neoverse – 16 inst/cycle –> 2 taken/cycle 6 - wide machines most common
Datacenter Workloads	 Large code footprints stressing I-Cache Higher impact of Data dependent branches

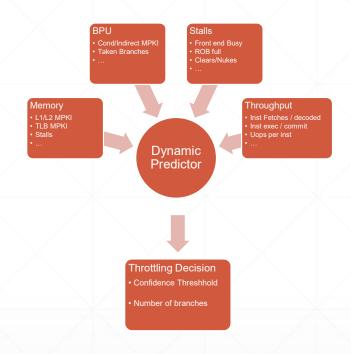
Speculation Control

- Degree of Speculation(DoS) = insts fetched / inst committed
- Mean ~ 2.2X => High overallocation during fetch
- With FDIP enabled DoS increases by 23% on average

Simulation Setup

- Execution driven simulation on gem5
- The CPU Model has FDIP support included
- Statistics dumped every 20,000 committed instructions for fine-grained analysis
- Benchmark suites spec17, Dacapo, Renaissance, tailbench

CPU Model	X86 O3CPU
Fetch Width	6-wide fetch , 24 entry FTQ
Branch Predictor	Conditional Predictor : TAGE Indirect Predictor : ITAGE 8192 entry BTB
Decode Width	6-wide decode
LSQ	Load Queue Entries 72
	Store Queue entries 56
Re-order Buffer	352 entry
	32KB L1i Cache
Caches	48KB L1d Cache
	512 KB L2 Cache
	2 MB L3 Cache

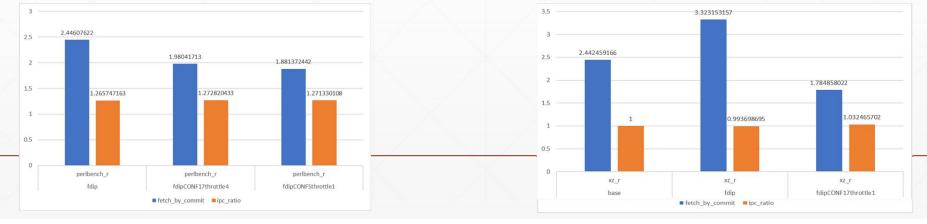

Dynamic Throttling

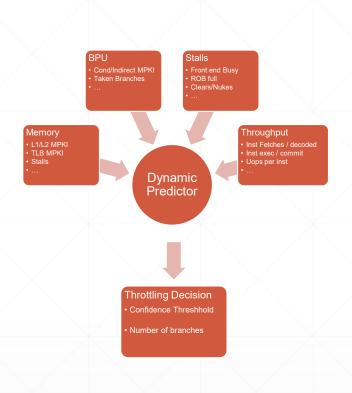
How to Throttle

- Limit number of Low Confident Outstanding Branches
- Confidence Table JRS style confidence estimator
- Important to not limit high confident branches

When to Throttle

- Detect phase behavior of programs where speculation is useful
- Train a predictor whose features are the different Program Counters from different features


Dynamic Throttling


How to Throttle

- Limit number of Low Confident Outstanding Branches
- Confidence Table JRS style confidence estimator
- Important to not limit high confident branches

When to Throttle

- Detect phase behavior of programs where speculation is useful
- Train a predictor whose features are the different Program Counters from different features

