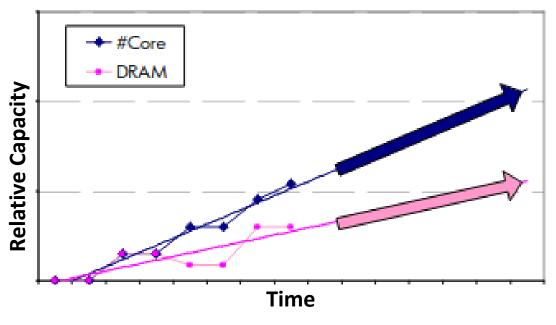
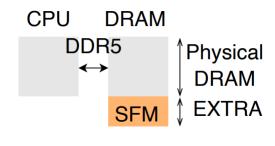
Accelerating Compressed Far Memory

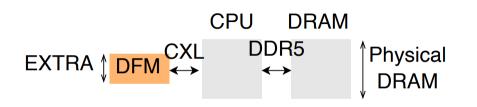

Neel Patel, Mohammad Alian

Electrical Engineering and Computer Science

Problem With DRAM

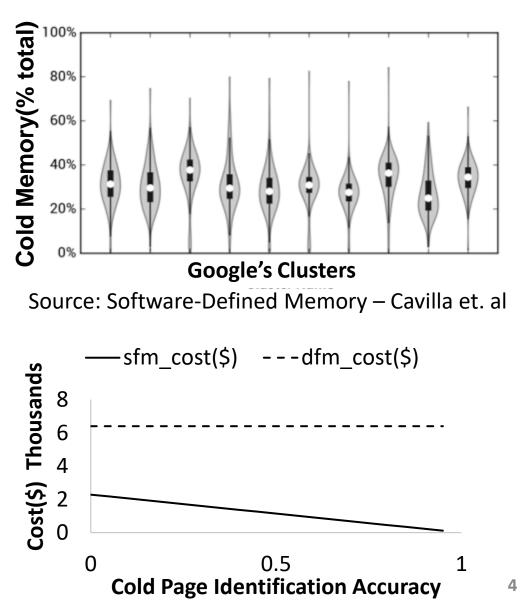
- DRAM is an inflexible, costly resource and is extremely contended in cloud environments
 - × Coarse-granularity upgrades: smallest memory capacity increase for a twosocket Intel Xeon 2nd Gen Scalable server is 25%
 - × **High power consumption**: 38% of Meta's Power Consumption
 - × High cost: 33% of Meta's Expenses




(Source: Disaggregated memory for expansion and sharing in blade servers -Lim et. al. 2009)

Far Memory Solutions

- Software-Defined Far Memory (SFM):
 - Compressed memory: shrink "cold" data using compression
- Disaggregated Far Memory (DFM):
 - Remote-accessible memory: take advantage of "stranded" memory
 - CXL-attached DRAM: add memory capacity to system bus
- Far memory associates cost with accesses
 - Network traversal
 - Decompression
 - o CXL latency


Software-Defined Memory

Disaggregated Far Memory

Software-Defined Far Memory (SFM)

- Benefits:
 - Reduced Memory Consumption: Smaller data footprint
 - ✓ Low Risk and Low Cost
 - ✓ Flexible: Dynamically provision "near" and "far" memory capacities
 - ✓ Smaller Failure Domain: No pages on remote nodes
- Drawback:
 - × **Suboptimal Datapath**: moves cold data from DRAM on-chip
 - × Cache contention
 - × Memory bandwidth utilization

Goal: Accelerate Software-Defined Far Memory using Near-Data Processing

- Benefits:
 - ✓ Cold data stays off-chip
 - ✓ Freed (De)compression-related CPU Cycles
- Challenges:
 - Mapping cold OS pages to DRAM
 Preserving and prioritizing host accesses
 Cacho cohoronov
 - Cache coherency