
Detecting 
Microarchitectural 
Vulnerabilities via Fuzz 
Testing of White-box CPUs 

Bo (Brian) Fu

Simon Fraser University

Alaa R. Alameldeen

Simon Fraser University

Gururaj Saileshwar

NVIDIA Research



Existing Work – Revizor (ASPLOS ’22)

Credit for both figures: O. Oleksenko, C. Fetzer, B. Kopf, and M. Silberstein, “Revizor: testing ¨
black-box cpus against speculation contracts,” in Proceedings of the 27th ACM International 
Conference on Architectural Support for Programming Languages and Operating Systems, 2022

•Randomly generated programs

•Bounded memory accesses to a sandbox

•Randomly generated architectural state (“Input”)

•Register values and memory contents

Idea: Fuzz µarch with generated test cases

•Specify expected µarch side effects

•Augment ISA with “allowed” speculation clauses

Speculation Contracts

•Contract Traces

•Expected observations from given contract; via 
Unicorn emulator

•Hardware Traces

•Actual observations from hardware; via Prime+Probe

Trace-generation Framework

Example: MEM-COND
-Observe memory addresses, collect for 
both correct and mispredicted paths

For the same program, test with different inputs, 
and check if traces match. 
If NOT: Contract violation, Side-Channel found!



ISSUE:
- No relation between contract and hardware traces directly
- No insight into how hardware trace is generated
 Can only construct an existence proof of a vulnerability 

SOLUTION - White-box system:
- Can understand exactly how hardware trace is generated;

- E.g. Which cache block miss caused traces to differ
- Can correlate contract (expected) and hardware (actual) traces
- Much easier to understand what is wrong

Importantly: Provides a method to validate (or disprove) 
existing speculation defenses e.g. Invisi-Spec, CleanupSpec

Comparable!

Hardware Trace Contract Trace

Hardware Trace
Contract Trace



Example – Spectre v1 (Spec. Store Bypass):

For 2 different inputs: Can see which memory 
addresses were accessed by the transient miss; 
0x2c100 for the RHS, 0x2c280 for the LHS (VAddr)

Can be sure a contract violation 
occurs & results are not false positive. 

Great speedup vs. original Revizor, 
which must repeatedly check to 
ascertain findings are real.

Can also measure other µarch structures i.e. LSQ Unit, TLB, BTB, etc. & 
look for possible side channels there! (via Speculation Contract Violation)



Goals & Future of our work:

• Implement our changes in existing gem5 implementations of speculative 
defenses (Invisi-Spec, CleanupSpec, etc.) and validate them, finding existing 
known vulnerabilities (and maybe unknown ones!)

• Smart mutation of generated programs

• Don’t test previously tested µarch states/contexts

• Can directly set initial µarch context as another input

• Detect vulnerabilities in future proposed defenses

• Create an extensible fuzzing framework that any gem5-based defense may be plugged 
into, after running a script to make our required modifications (within gem5)


	Slide 1
	Slide 2: Existing Work – Revizor (ASPLOS ’22)
	Slide 3: ISSUE:
	Slide 4: Example – Spectre v1 (Spec. Store Bypass):
	Slide 5: Goals & Future of our work:

