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1. Let A be a subset of {1, 2, . . . , 2008}, such that for all x, y ∈ A with x 6= y, the sum x+ y is not divisible
by 1004. Find, with proof, the maximum possible size of A.

Solution: We can group the 2008 numbers in 1003 pairs of the form {k, 2008−k}, with k ∈ {1, 2, . . . , 1003},
and the pair {1004, 2008}. Observe that A cannot contain two elements from the same pair, as they would
add up to a number divisible by 1004. Thus |A| ≤ 1004.

To see that |A| = 1004 is possible, construct A by taking all the elements of {1, 2, . . . , 2008} whose remainder
upon division by 1004 is less than or equal to 502, and removing the elements 1506 and 2008 from the
resulting set. This yields a 1004-element set A satisfying the desired properties (why?).

2. Find, with proof, all real number solutions to the following:

(a2 + 1)(b2 + 1) = (ab+ 1)(a+ b).

Solution: We have

2(a2 + 1)(b2 + 1)− 2(ab+ 1)(a+ b)

= 2(a2b2 + a2 + b2 + 1− a2b− ab2 − a− b)
= (a2b2 − 2a2b+ a2) + (a2b2 − 2ab2 + b2) + (a2 − 2a+ 1) + (b2 − 2b+ 1)

= a2(b− 1)2 + b2(a− 1)2 + (a− 1)2 + (b− 1)2

= (b2 + 1)(a− 1)2 + (a2 + 1)(b− 1)2,

which is positive unless a = 1 and b = 1, which forms a solution. Therefore, the only solution is a = b = 1.

Remark: Alternatively, note that by Cauchy-Schwarz inequality, we have

(a2 + 1)(b2 + 1) ≥ (ab+ 1)2 and (a2 + 1)(1 + b2) ≥ (a+ b)2

and multiplying together yields [(a2 + 1)(b2 + 1)]2 ≥ [(ab+ 1)(a+ b)]2, so we can find all the solutions to
the equation by consider the equality cases in the above inequalities.

3. Find all ordered pairs (x, y) of positive integers such that 2x = 3y + 7.

Solution: In mod 3, we have (−1)x ≡ 1 (mod 3), so that x is even. Let x = 2a. Now, in mod 4, we have
0 ≡ (−1)y − 1 (mod 4), so that y is even. Let y = 2b. Then 22a − 32b = 7, so that

(2a + 3b)(2a − 3b) = 7.

Since 2a + 3b > 0, 2a + 3b > 2a − 3b, and 7 is prime, we must have 2a + 3b = 7 and 2a − 3b = 1. So 2a = 4
and 3b = 3. Thus (a, b) = (2, 1) and so (x, y) = (2a, 2b) = (4, 2).

4. To clip a convex n-gon means to choose a pair of consecutive sides AB, BC and to replace them by the
three segments AM , MN , and NC, where M is the midpoint of AB and N is the midpoint of BC. In
other words, one cuts off the triangle MBN to obtain a convex (n+ 1)-gon. A regular hexagon P6 of area
1 is clipped to obtain a heptagon P7. Then P7 is clipped (in one of the seven possible ways) to obtain an
octagon P8, and so on. Prove that no matter how the clippings are done, the area of Pn is at least 1

2 , for
all n ≥ 6.

Solution: The key observation is that for any n ≥ 6 and any side of P6, some subsegment of this
side is a side of Pn (this can be easily proven using induction). So, for any Pn, we can select points
P1, P2, . . . , P6 on its perimeter so that Pi lies on the i-th side of P6. Since Pn is convex, it contains the
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hexagon P1P2P3P4P5P6. Therefore, it suffices to prove that the area of P1P2 . . . P6 is at least 1
2 whenever

Pi lies on the i-th side of P6 for each i.

Consider this problem as a minimization problem, where we want to minimize the area of P1P2P3P4P5P6

subject to the above condition. Observe that as Pi moves along the i-th side of P6, the area of P1P2P3P4P5P6

changes monotonically (in fact, linearly) as Pi moves form one end to the other. Therefore, the minimum
must occur when Pi coincides with a vertex of P6. Therefore, we simply needs to search through the set
of (possibly degenerate) hexagons P1P2P3P4P5P6 with the property that each Pi is one of the endpoints
of the i-th side of P6. We wish to find the one with the minimum area. After some work, we see that the
minimum occurs when P1P2P3P4P5P6 is an equilateral triangle, and its area is 1

2 .

Therefore, the area of Pn is at least 1
2 .

Remark: More elegantly, the bound can be proven using the inequality

x1(1− x2) + x2(1− x3) + x3(1− x4) + x4(1− x5) + x5(1− x6) + x6(1− x1)
≤ (1− x2) + x2 + (1− x4) + x4 + (1− x6) + x6

≤ 3.

I’ll leave the details to you.

Also, the bound 1
2 is not optimal. Can you find a better bound? What’s the best bound? (I don’t know

the answer to the last question.)

5. Let n be a positive integer. Suppose that θ1, θ2, . . . , θn are angles with 0 < θi <
π
2 for each i such that

cos2 θ1 + cos2 θ2 + · · ·+ cos2 θn = 1.

Prove that
tan θ1 + tan θ2 + · · ·+ tan θn ≥ (n− 1)(cot θ1 + cot θ2 + · · ·+ cot θn).

Solution: Let ai = cos θi. Then

tan θi =
sin θi
cos θi

=
√

1− cos2 θi
cos θi

=

√
a2
1 + a2

2 + · · ·+ a2
i−1 + a2

i+1 + · · ·+ a2
n

ai

≥ a1 + a2 + · · ·+ ai−1 + ai+1 + · · ·+ an

ai
√
n− 1

by the Power-Mean inequality. Summing the above inequality for i = 1, 2, . . . , n yields
n∑
i=1

tan θi ≥
1√
n− 1

n∑
i=1

∑
j 6=i

aj
ai

=
√
n− 1

∑
i 6=j

aj
ai
,

as each ratio ai

aj
appears n− 1 times.

On the other hand, we have

cot θi =
cos θi
sin θi

=
cos θi√

1− cos2 θi
=

ai√
a2
1 + a2

2 + · · ·+ a2
i−1 + a2

i+1 + · · ·+ a2
n

≤ 1
(n− 1)3/2

ai

(
1
a1

+
1
a2

+ · · · 1
ai−1

+
1

ai+1
+ · · · 1

an

)
again by the Power-Mean inequality. Summing the above inequalities for i = 1, 2, . . . , n yields

n∑
i=1

cot θi ≤
1

(n− 1)3/2

n∑
i=1

∑
j 6=i

aj
ai

=
√
n− 1

∑
i 6=j

aj
ai
.

Therefore,
n∑
i=1

tan θi ≥
√
n− 1

∑
i 6=j

aj
ai
≥ (n− 1)

n∑
i=1

cot θi.
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6. Let AA1, BB1, CC1 be the altitudes of an acute triangle ABC. Let O be an arbitrary point inside A1B1C1.
Denote the feet of the perpendiculars from O to the lines AA1 and BC by M and N , respectively; the ones
from O to the lines BB1 and CA by P and Q, respectively; the ones from O to the lines CC1 and AB by
R and S, respectively. Prove that the lines MN , PQ, and RS are concurrent.

Solution: Consider a dilation about O with ratio 2. Let M ′, P ′, R′ be the image of M,P,R respectively.
The dilation sends line MN to line A1M

′, line PQ to line B1P
′, line RS to line C1R

′. So it suffices to
prove that A1M

′, B1P
′, C1R

′ are concurrent.

Observe that in triangle A1B1C1, A1A is an angle bisector (why?), and ∠M ′A1A = ∠MNO = ∠OA1A.
That is, lineA1M

′ is the reflection ofA1O across the angle bisector of ∠B1A1C1. Therefore, A1M
′, B1P

′, C1R
′

concur at the isogonal conjugate of O with respect to triangle A1B1C1.

7. Positive integers a and b are given such that 2a+ 1 and 2b+ 1 are relatively prime. Find all possible values
of the greatest common divisor of 22a+1 + 2a+1 + 1 and 22b+1 + 2b+1 + 1.

Solution: We begin with a well-known lemma:

Lemma. For any positive integers k and n, we have gcd(2k − 1, 2n − 1) = 2gcd(k,n) − 1.

Proof. We use induction on the quantity k + n. If k + n = 1, the claim is obvious. Now, using the fact
that gcd(a, b) = gcd(a− b, b), we have (for k ≥ n)

gcd(2k − 1, 2n − 1) = gcd(2k − 2n, 2n − 1) = gcd(2n(2k−n − 1), 2n − 1)

= gcd(2k−n − 1, 2n − 1) = 2gcd(k−n,n) − 1 = 2gcd(k,n) − 1.

where we applied the induction hypothesis to the pair (k − n, n).

Recall the well-known factorization identity

4x4 + 1 = (2x2 + 1)2 − 4x2 = (2x2 + 2x+ 1)(2x2 − 2x+ 1).

Applying it to x = 2a gives us

24a+2 + 1 = (22a+1 + 2a+1 + 1)(22a+1 − 2a+1 + 1).

It follows that the greatest common divisor d of 22a+1 + 2a+1 + 1 and 22b+1 + 2b+1 + 1 divides the greatest
common divisor of 24a+2 + 1 and 24b+2 + 1, and hence it divides the greatest divisor of 28a+4 − 1 and
28b+4 − 1, which, by the lemma, equals to 2(8a+4,8b+4) − 1 = 24 − 1 = 15, as we are given that 2a+ 1 and
2b+ 1 are relatively prime. Therefore, d divides 15.

Since 22a+1 + 2a+1 + 1 ≡ 2a+1 6≡ 0 (mod 3), 3 does not divide d. Hence d = 1 or d = 5. Both cases are
possible. For a = 4, b = 8 we obtain d = 5, and for a = 2, b = 3 we obtain d = 1.

Second solution: Suppose a prime p divides 22a+1 +2a+1 +1 and 22b+1 +2b+1 +1. Then 22a+1 ≡ 2a+1 +1
(mod p). Squaring gives

24a+2 ≡ 22a+2 + 2a+2 + 1 ≡ 2(22a+1 + 2a+1 + 1)− 1 ≡ −1 (mod p).

Similarly, 24b+2 ≡ −1 (mod p). Since 2a + 1 and 2b + 1 are relatively prime, there are integers j, k such
that j(2a+ 1) + k(2b+ 1) = 1 (where j and k necessarily have opposite parity). Hence, we get

22 ≡ 22((2a+1)j+(2b+1)k) ≡ (−1)j+k ≡ −1 (mod p).

Hence, p = 5.

On the other hand, suppose 25 divides 2(22x+1 + 2x+1 + 1) = (2x+1 + 1)2 + 1. Since the only solutions
to y2 + 1 ≡ 0 (mod 25) are y ≡ ±7 (mod 25), we must have 2x+1 + 1 ≡ ±7 (mod 25). But it is easily
checked that 2 is a primitive root mod 25, as its order is not φ(25)/2 = 10 or φ(25)/5 = 4. It follows that
there is there a unique solution in mod 20 for x for each of 2x+1 + 1 ≡ 7 (mod 25) and 2x+1 + 1 ≡ −7

3



(mod 25), namely x ≡ 7 (mod 20) for the former and x ≡ 12 (mod 20) for the latter. In either case,
we have 5 | 2x + 1. This means that if 25 divides the greatest common divisor of 22a+1 + 2a+1 + 1 and
22b+1 + 2b+1 + 1, then 5 must divide both 2a + 1 and 2b + 1, contradicting the hypothesis that they are
relatively prime.

It follows that the only possible values for the greatest common divisor are 1 and 5. They can be achieved
by (a, b) = (4, 8) and (2, 3) respectively.

Source: St. Petersburg 2002

8. Let X be a finite set, and suppose A1, . . . , Am and B1, . . . , Bm are subsets of X with |Ai| = r and |Bi| = s
for each i, such that Ai ∩Bi = ∅ for every i and Ai ∩Bj 6= ∅ whenever i 6= j. Prove that m ≤

(
r+s
r

)
.

Solution: (by Béla Bollobàs in 1965) Let |X| = n. There are n! ways to label the elements of X with
{1, 2, . . . , n}. Let us pick a random labeling (i.e. permutation), so that every labeling is equally likely to
be chosen. For 1 ≤ i ≤ m, let Ei denote the event that the highest label in Ai is less than the lowest label
in Bi (which we denote by Ai < Bi).

First, observe that Pr(Ei) =
(
r+s
r

)−1
(why?). Now, we claim that if i 6= j, then Ei ∩ Ej = ∅. That is, no

labeling of X will result in both Ai < Bi and Aj < Bj . Indeed, if this were the case, and, say, the highest
label of Ai is at least as great as the highest label of Aj (we may switch i and j needed), then we must
have Aj < Bi so that Ai ∩Bj = ∅, contradiction.

Thus, E1, E2, . . . , Em are mutually disjoint events. It follows that

1 ≥ Pr(E1 ∪ E2 ∪ · · · ∪ Em) = Pr(E1) + Pr(E2) + · · ·+ Pr(Em) = m

(
r + s

r

)−1

.

Therefore, |X| = m ≤
(
r+s
r

)
.
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