IMO Training Camp Buffet Contest

June 30, 2008

1. Let A be a subset of $\{1, 2, ..., 2008\}$, such that for all $x, y \in A$ with $x \neq y$, the sum x + y is not divisible by 1004. Find, with proof, the maximum possible size of A.

Solution: We can group the 2008 numbers in 1003 pairs of the form $\{k, 2008-k\}$, with $k \in \{1, 2, ..., 1003\}$, and the pair $\{1004, 2008\}$. Observe that A cannot contain two elements from the same pair, as they would add up to a number divisible by 1004. Thus $|A| \leq 1004$.

To see that |A| = 1004 is possible, construct A by taking all the elements of $\{1, 2, \ldots, 2008\}$ whose remainder upon division by 1004 is less than or equal to 502, and removing the elements 1506 and 2008 from the resulting set. This yields a 1004-element set A satisfying the desired properties (why?).

2. Find, with proof, all real number solutions to the following:

$$(a2 + 1)(b2 + 1) = (ab + 1)(a + b).$$

Solution: We have

$$\begin{split} &2(a^2+1)(b^2+1)-2(ab+1)(a+b)\\ &=2(a^2b^2+a^2+b^2+1-a^2b-ab^2-a-b)\\ &=(a^2b^2-2a^2b+a^2)+(a^2b^2-2ab^2+b^2)+(a^2-2a+1)+(b^2-2b+1)\\ &=a^2(b-1)^2+b^2(a-1)^2+(a-1)^2+(b-1)^2\\ &=(b^2+1)(a-1)^2+(a^2+1)(b-1)^2, \end{split}$$

which is positive unless a = 1 and b = 1, which forms a solution. Therefore, the only solution is a = b = 1.

Remark: Alternatively, note that by Cauchy-Schwarz inequality, we have

$$(a^{2}+1)(b^{2}+1) \ge (ab+1)^{2}$$
 and $(a^{2}+1)(1+b^{2}) \ge (a+b)^{2}$

and multiplying together yields $[(a^2 + 1)(b^2 + 1)]^2 \ge [(ab + 1)(a + b)]^2$, so we can find all the solutions to the equation by consider the equality cases in the above inequalities.

3. Find all ordered pairs (x, y) of positive integers such that $2^x = 3^y + 7$.

Solution: In mod 3, we have $(-1)^x \equiv 1 \pmod{3}$, so that x is even. Let x = 2a. Now, in mod 4, we have $0 \equiv (-1)^y - 1 \pmod{4}$, so that y is even. Let y = 2b. Then $2^{2a} - 3^{2b} = 7$, so that

$$(2^a + 3^b)(2^a - 3^b) = 7.$$

Since $2^a + 3^b > 0$, $2^a + 3^b > 2^a - 3^b$, and 7 is prime, we must have $2^a + 3^b = 7$ and $2^a - 3^b = 1$. So $2^a = 4$ and $3^b = 3$. Thus (a, b) = (2, 1) and so (x, y) = (2a, 2b) = (4, 2).

4. To *clip* a convex *n*-gon means to choose a pair of consecutive sides *AB*, *BC* and to replace them by the three segments *AM*, *MN*, and *NC*, where *M* is the midpoint of *AB* and *N* is the midpoint of *BC*. In other words, one cuts off the triangle *MBN* to obtain a convex (n + 1)-gon. A regular hexagon \mathcal{P}_6 of area 1 is clipped to obtain a heptagon \mathcal{P}_7 . Then \mathcal{P}_7 is clipped (in one of the seven possible ways) to obtain an octagon \mathcal{P}_8 , and so on. Prove that no matter how the clippings are done, the area of \mathcal{P}_n is at least $\frac{1}{2}$, for all $n \geq 6$.

Solution: The key observation is that for any $n \ge 6$ and any side of \mathcal{P}_6 , some subsegment of this side is a side of \mathcal{P}_n (this can be easily proven using induction). So, for any \mathcal{P}_n , we can select points P_1, P_2, \ldots, P_6 on its perimeter so that P_i lies on the *i*-th side of \mathcal{P}_6 . Since \mathcal{P}_n is convex, it contains the

hexagon $P_1P_2P_3P_4P_5P_6$. Therefore, it suffices to prove that the area of $P_1P_2...P_6$ is at least $\frac{1}{2}$ whenever P_i lies on the *i*-th side of \mathcal{P}_6 for each *i*.

Consider this problem as a minimization problem, where we want to minimize the area of $P_1P_2P_3P_4P_5P_6$ subject to the above condition. Observe that as P_i moves along the *i*-th side of \mathcal{P}_6 , the area of $P_1P_2P_3P_4P_5P_6$ changes monotonically (in fact, linearly) as P_i moves form one end to the other. Therefore, the minimum must occur when P_i coincides with a vertex of \mathcal{P}_6 . Therefore, we simply needs to search through the set of (possibly degenerate) hexagons $P_1P_2P_3P_4P_5P_6$ with the property that each P_i is one of the endpoints of the *i*-th side of \mathcal{P}_6 . We wish to find the one with the minimum area. After some work, we see that the minimum occurs when $P_1P_2P_3P_4P_5P_6$ is an equilateral triangle, and its area is $\frac{1}{2}$.

Therefore, the area of \mathcal{P}_n is at least $\frac{1}{2}$.

Remark: More elegantly, the bound can be proven using the inequality

$$\begin{aligned} x_1(1-x_2) + x_2(1-x_3) + x_3(1-x_4) + x_4(1-x_5) + x_5(1-x_6) + x_6(1-x_1) \\ &\leq (1-x_2) + x_2 + (1-x_4) + x_4 + (1-x_6) + x_6 \\ &< 3. \end{aligned}$$

I'll leave the details to you.

Also, the bound $\frac{1}{2}$ is not optimal. Can you find a better bound? What's the best bound? (I don't know the answer to the last question.)

5. Let n be a positive integer. Suppose that $\theta_1, \theta_2, \ldots, \theta_n$ are angles with $0 < \theta_i < \frac{\pi}{2}$ for each i such that

$$\cos^2\theta_1 + \cos^2\theta_2 + \dots + \cos^2\theta_n = 1.$$

Prove that

 $\tan \theta_1 + \tan \theta_2 + \dots + \tan \theta_n \ge (n-1)(\cot \theta_1 + \cot \theta_2 + \dots + \cot \theta_n).$

Solution: Let $a_i = \cos \theta_i$. Then

$$\tan \theta_i = \frac{\sin \theta_i}{\cos \theta_i} = \frac{\sqrt{1 - \cos^2 \theta_i}}{\cos \theta_i} = \frac{\sqrt{a_1^2 + a_2^2 + \dots + a_{i-1}^2 + a_{i+1}^2 + \dots + a_n^2}}{a_i}$$
$$\geq \frac{a_1 + a_2 + \dots + a_{i-1} + a_{i+1} + \dots + a_n}{a_i \sqrt{n - 1}}$$

by the Power-Mean inequality. Summing the above inequality for i = 1, 2, ..., n yields

$$\sum_{i=1}^{n} \tan \theta_{i} \ge \frac{1}{\sqrt{n-1}} \sum_{i=1}^{n} \sum_{j \ne i} \frac{a_{j}}{a_{i}} = \sqrt{n-1} \sum_{i \ne j} \frac{a_{j}}{a_{i}},$$

as each ratio $\frac{a_i}{a_j}$ appears n-1 times.

On the other hand, we have

$$\cot \theta_i = \frac{\cos \theta_i}{\sin \theta_i} = \frac{\cos \theta_i}{\sqrt{1 - \cos^2 \theta_i}} = \frac{a_i}{\sqrt{a_1^2 + a_2^2 + \dots + a_{i-1}^2 + a_{i+1}^2 + \dots + a_n^2}}$$
$$\leq \frac{1}{(n-1)^{3/2}} a_i \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{i-1}} + \frac{1}{a_{i+1}} + \dots + \frac{1}{a_n}\right)$$

again by the Power-Mean inequality. Summing the above inequalities for i = 1, 2, ..., n yields

$$\sum_{i=1}^{n} \cot \theta_i \le \frac{1}{(n-1)^{3/2}} \sum_{i=1}^{n} \sum_{j \ne i} \frac{a_j}{a_i} = \sqrt{n-1} \sum_{i \ne j} \frac{a_j}{a_i}$$

Therefore,

$$\sum_{i=1}^{n} \tan \theta_i \ge \sqrt{n-1} \sum_{i \ne j} \frac{a_j}{a_i} \ge (n-1) \sum_{i=1}^{n} \cot \theta_i.$$

6. Let AA_1, BB_1, CC_1 be the altitudes of an acute triangle ABC. Let O be an arbitrary point inside $A_1B_1C_1$. Denote the feet of the perpendiculars from O to the lines AA_1 and BC by M and N, respectively; the ones from O to the lines BB_1 and CA by P and Q, respectively; the ones from O to the lines CC_1 and AB by R and S, respectively. Prove that the lines MN, PQ, and RS are concurrent.

Solution: Consider a dilation about O with ratio 2. Let M', P', R' be the image of M, P, R respectively. The dilation sends line MN to line A_1M' , line PQ to line B_1P' , line RS to line C_1R' . So it suffices to prove that A_1M', B_1P', C_1R' are concurrent.

Observe that in triangle $A_1B_1C_1$, A_1A is an angle bisector (why?), and $\angle M'A_1A = \angle MNO = \angle OA_1A$. That is, line A_1M' is the reflection of A_1O across the angle bisector of $\angle B_1A_1C_1$. Therefore, A_1M', B_1P', C_1R' concur at the isogonal conjugate of O with respect to triangle $A_1B_1C_1$.

7. Positive integers a and b are given such that 2a + 1 and 2b + 1 are relatively prime. Find all possible values of the greatest common divisor of $2^{2a+1} + 2^{a+1} + 1$ and $2^{2b+1} + 2^{b+1} + 1$.

Solution: We begin with a well-known lemma:

Lemma. For any positive integers k and n, we have $gcd(2^k - 1, 2^n - 1) = 2^{gcd(k,n)} - 1$.

Proof. We use induction on the quantity k + n. If k + n = 1, the claim is obvious. Now, using the fact that gcd(a, b) = gcd(a - b, b), we have (for $k \ge n$)

$$gcd(2^{k} - 1, 2^{n} - 1) = gcd(2^{k} - 2^{n}, 2^{n} - 1) = gcd(2^{n}(2^{k-n} - 1), 2^{n} - 1)$$
$$= gcd(2^{k-n} - 1, 2^{n} - 1) = 2^{gcd(k-n,n)} - 1 = 2^{gcd(k,n)} - 1.$$

where we applied the induction hypothesis to the pair (k - n, n).

Recall the well-known factorization identity

$$4x^{4} + 1 = (2x^{2} + 1)^{2} - 4x^{2} = (2x^{2} + 2x + 1)(2x^{2} - 2x + 1).$$

Applying it to $x = 2^a$ gives us

$$2^{4a+2} + 1 = (2^{2a+1} + 2^{a+1} + 1)(2^{2a+1} - 2^{a+1} + 1).$$

It follows that the greatest common divisor d of $2^{2a+1} + 2^{a+1} + 1$ and $2^{2b+1} + 2^{b+1} + 1$ divides the greatest common divisor of $2^{4a+2} + 1$ and $2^{4b+2} + 1$, and hence it divides the greatest divisor of $2^{8a+4} - 1$ and $2^{8b+4} - 1$, which, by the lemma, equals to $2^{(8a+4,8b+4)} - 1 = 2^4 - 1 = 15$, as we are given that 2a + 1 and 2b + 1 are relatively prime. Therefore, d divides 15.

Since $2^{2a+1} + 2^{a+1} + 1 \equiv 2^{a+1} \neq 0 \pmod{3}$, 3 does not divide d. Hence d = 1 or d = 5. Both cases are possible. For a = 4, b = 8 we obtain d = 5, and for a = 2, b = 3 we obtain d = 1.

Second solution: Suppose a prime p divides $2^{2a+1}+2^{a+1}+1$ and $2^{2b+1}+2^{b+1}+1$. Then $2^{2a+1} \equiv 2^{a+1}+1 \pmod{p}$. Squaring gives

$$2^{4a+2} \equiv 2^{2a+2} + 2^{a+2} + 1 \equiv 2(2^{2a+1} + 2^{a+1} + 1) - 1 \equiv -1 \pmod{p}.$$

Similarly, $2^{4b+2} \equiv -1 \pmod{p}$. Since 2a + 1 and 2b + 1 are relatively prime, there are integers j, k such that j(2a + 1) + k(2b + 1) = 1 (where j and k necessarily have opposite parity). Hence, we get

$$2^2 \equiv 2^{2((2a+1)j+(2b+1)k)} \equiv (-1)^{j+k} \equiv -1 \pmod{p}$$

Hence, p = 5.

On the other hand, suppose 25 divides $2(2^{2x+1} + 2^{x+1} + 1) = (2^{x+1} + 1)^2 + 1$. Since the only solutions to $y^2 + 1 \equiv 0 \pmod{25}$ are $y \equiv \pm 7 \pmod{25}$, we must have $2^{x+1} + 1 \equiv \pm 7 \pmod{25}$. But it is easily checked that 2 is a primitive root mod 25, as its order is not $\phi(25)/2 = 10$ or $\phi(25)/5 = 4$. It follows that there is there a unique solution in mod 20 for x for each of $2^{x+1} + 1 \equiv 7 \pmod{25}$ and $2^{x+1} + 1 \equiv -7$

(mod 25), namely $x \equiv 7 \pmod{20}$ for the former and $x \equiv 12 \pmod{20}$ for the latter. In either case, we have $5 \mid 2x + 1$. This means that if 25 divides the greatest common divisor of $2^{2a+1} + 2^{a+1} + 1$ and $2^{2b+1} + 2^{b+1} + 1$, then 5 must divide both 2a + 1 and 2b + 1, contradicting the hypothesis that they are relatively prime.

It follows that the only possible values for the greatest common divisor are 1 and 5. They can be achieved by (a, b) = (4, 8) and (2, 3) respectively.

Source: St. Petersburg 2002

8. Let X be a finite set, and suppose A_1, \ldots, A_m and B_1, \ldots, B_m are subsets of X with $|A_i| = r$ and $|B_i| = s$ for each i, such that $A_i \cap B_i = \emptyset$ for every i and $A_i \cap B_j \neq \emptyset$ whenever $i \neq j$. Prove that $m \leq \binom{r+s}{r}$.

Solution: (by Béla Bollobàs in 1965) Let |X| = n. There are n! ways to label the elements of X with $\{1, 2, ..., n\}$. Let us pick a random labeling (i.e. permutation), so that every labeling is equally likely to be chosen. For $1 \le i \le m$, let E_i denote the event that the highest label in A_i is less than the lowest label in B_i (which we denote by $A_i < B_i$).

First, observe that $\Pr(E_i) = {\binom{r+s}{r}}^{-1}$ (why?). Now, we claim that if $i \neq j$, then $E_i \cap E_j = \emptyset$. That is, no labeling of X will result in both $A_i < B_i$ and $A_j < B_j$. Indeed, if this were the case, and, say, the highest label of A_i is at least as great as the highest label of A_j (we may switch *i* and *j* needed), then we must have $A_j < B_i$ so that $A_i \cap B_j = \emptyset$, contradiction.

Thus, E_1, E_2, \ldots, E_m are mutually disjoint events. It follows that

$$1 \ge \Pr(E_1 \cup E_2 \cup \dots \cup E_m) = \Pr(E_1) + \Pr(E_2) + \dots + \Pr(E_m) = m \binom{r+s}{r}^{-1}.$$

Therefore, $|X| = m \leq \binom{r+s}{r}$.