
IMO Training Camp Mock Olympiad #2 Solutions

July 3, 2008

Time limit: 4.5 hours

1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M .
Let X be a variable point on the shorter arc MA of the circumcircle of triangle ABM . Let
T be the point in the angle domain BMA, for which ∠TMX = 90◦ and TX = BX. Prove
that ∠MTB − ∠CTM does not depend on X.

Solution: See IMO Shortlist 2007 Problem G2

2. Find all functions f : R+ → R+ such that

f(x+ f(y)) = f(x+ y) + f(y)

for all x, y ∈ R+. (Symbol R+ denotes the set of all positive real numbers.)

Solution: See IMO Shortlist 2007 Problem A4

3. For a prime p and a positive integer n, denote by νp(n) the exponent of p in the prime
factorization of n. Given a positive integer d and a finite set {p1, . . . , pk} of primes. Show
that there are infinitely many positive integers n such that d | νpi(n!) for all 1 ≤ i ≤ k.

Solution: See IMO Shortlist 2007 Problem N7

1



IMO Training Camp Mock Olympiad #3

July 5, 2008

Time limit: 4.5 hours

1. A unit square is dissected into n > 1 rectangles such that their sides are parallel to the sides
of the square. Any line, parallel to a side of the square and intersecting its interior, also
intersects the interior of some rectangle. Prove that in this dissection, there exists a rectangle
having no point on the boundary of the square.

Solution: See IMO Shortlist 2007 Problem C2

2. The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between the parallel
lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P and Q. Prove
that ∠BQP = ∠DAQ.

Solution: See IMO Shortlist 2007 Problem G3

3. Let n be a fixed positive integer. Find the maximum value of the expression

(ab)n

1− ab +
(bc)n

1− bc +
(ca)n

1− ca
where a, b, c ≥ 0 and a+ b+ c = 1.

Answer: When n = 1, then maximum is 3
8 . When n ≥ 2, the answer is 1

3·4n−1 .

Solution: First consider the case when n ≥ 2. By AM-GM, we have ab ≤
(
a+b
2

)2 ≤ 1
4 , and

similarly ab, bc, ca ≤ 1
4 . So

(ab)n

1− ab +
(bc)n

1− bc +
(ca)n

1− ca ≤
4
3

((ab)n + (bc)n + (ca)n) .

Thus, we have to prove that (ab)n + (bc)n + (ca)n ≤ 1
4n . Without loss of generality, suppose

that a is the maximum among a, b, c. We have a(1− a) ≤ 1
4 , so

1
4n
≥ an(1− a)n = an(b+ c)n ≥ anbn + ancn + nanbn−1c ≥ anbn + bncn + cnan.

So we have proved that in this case the maximum is at most 1
3·4n−1 . Furthermore, this bound

can be attained when a = b = 1
2 , c = 0. Therefore, the maximum value of the expression is

1
3·4n−1 when n ≥ 2.

Now, suppose that n = 1. The value of 3
8 can be attained by a = b = c = 1

3 . So it remains to
prove that

ab

1− ab +
bc

1− bc +
ca

1− ca ≥
3
8
.

Since a+ b+ c = 1, it is equivalent to prove that

ab

(a+ b+ c)2 − ab +
bc

(a+ b+ c)2 − bc +
ca

(a+ b+ c)2 − ca ≥
3
8
.
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Now, clearing the denominators and simplifying (details omitted here . . . ), we see that the
above inequality is equivalent to

3[6, 0, 0] + 14[5, 1, 0] + 2[4, 2, 0] + 10[4, 1, 1] ≥ 6[3, 3, 0] + 10[3, 2, 1] + 13[2, 2, 2], (†)

where we adopt the notation

[p, q, r] =
∑
sym

apbqcr = apbqcr + apbrcq + aqbpcr + aqbrcp + arbpcq + arbqcp.

Now, (†) is true as it is the sum of the following inequalities, each of which is true due to
Muirhead’s Inequality:

3[6, 0, 0] ≥ 3[3, 3, 0], 3[5, 1, 0] ≥ 3[3, 3, 0], 10[4, 1, 1] ≥ 10[3, 2, 1],
11[5, 1, 0] ≥ 11[2, 2, 2], 2[4, 2, 0] ≥ 2[2, 2, 2].
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IMO Training Camp Mock Olympiad #4

July 6, 2008

Time limit: 4.5 hours

1. Let b, n > 1 be integers. Suppose that for each integer k > 1 there exists an integer ak such
that b− ank is divisible by k. Prove that b = An for some integer A.

Solution: See IMO Shortlist 2007 Problem N2

2. Consider those functions f : N→ N which satisfy the condition

f(m+ n) ≥ f(m) + f(f(n))− 1

for all m,n ∈ N. Find all possible values of f(2007).

(N denotes the set of all positive integers.)

Solution: See IMO Shortlist 2007 Problem A2

3. Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle of triangle
CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles APD
and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let lines
AK and BL meet at F . Prove that points E, I and F are collinear.

Solution: See IMO Shortlist 2007 Problem G8
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IMO Training Camp Mock Olympiad #5

July 8, 2008

Time limit: 4.5 hours

1. Given non-obtuse triangle ABC, let D be the foot of the altitude from A to BC, and let I1, I2
be the incenters of triangles ABD and ACD, respectively. The line I1I2 intersects AB and
AC at P and Q, respectively. Show that AP = AQ if and only if AB = AC or ∠A = 90◦.

Solution: First, we prove that if AB = AC or ∠A = 90, then AP = AQ. If AB = AC,
then the result is obvious, so assume that ∠A = 90◦. Let P ′, Q′ be the points on AB,AC,
respectively, such that AP ′ = AQ′ = AD, so ∠AP ′Q′ = ∠AQ′P ′ = 45◦. Let I ′1 and I ′2
be the intersections of the bisectors of ∠BAD and ∠CAD, respectively, with P ′Q′. Then
triangles AP ′I1 and ADI ′1 are congruent, and triangles and AQ′I ′2 and ADI ′2 are congruent,
so ∠ADI ′1 = ∠ADI ′2 = 45◦. Therefore I ′1 lies on the angle bisector of ∠BDA and I ′2 lies
on the angle bisector of ∠CDA. Hence, I ′1 and I ′2 are the incenters of ABD and ACD,
respectively, so I ′1 = I1 and I ′2 = I2. This means that P ′ = P and Q′ = Q, so AP = AQ.

A

B C
D

P

Q

I1

I2
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Conversely, suppose that AP = AQ. Let D′ be the point on AD such that AD′ = AP = AQ.
If D 6= D′, then triangles API1 and AD′I1 are congruent, and triangles AQI2 and AD′I2
are congruent, so ∠I1D′A = ∠I2D′A. Then ∠I1D′D = ∠I2D′D, and since we also know
that ∠I1DD′ = ∠I2DD′ (they are either both 45◦ or both 135◦, depending on whether D′

is on the segment AD or the ray AD past D), we have that triangles I1D′D and I2D
′D

are congruent. Thus triangles AD′I1 and AD′I2 are congruent, so in particular ∠BAD =
2∠I1AD′ = 2∠I2AD′ = ∠CAD, hence triangle ABC is isosceles with AB = AC.

If D = D′, then ∠API1 = ∠ADI1 = ∠ADI2 = ∠AQI2 = 45◦, so ∠A = 90◦.

Comment: Various trigonometric solutions are available, and they are generally pretty easy.

2. Let λ be the positive root of the equation t2 − 2008t− 1 = 0. Define the sequence x0, x1, . . .
by setting

x0 = 1 and xn+1 = bλxnc for n ≥ 0.

Find the remainder when x2008 is divided by 2008.

Solution: Because λ2− 2008− 1 = 0, we have λ = 2008 + 1
λ . Note also that xn is an integer.

We conclude that

xn+1 = bxnλc =
⌊
2008xn +

xn
λ

⌋
= 2008xn +

⌊xn
λ

⌋
≡
⌊xn
λ

⌋
(mod 2008).
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Because xn = bxn−1λc and xn−1 is an integer and λ is irrational, we have xn = xn−1λ − ε,
where 0 < ε < 1 is the fractional part of xn−1λ. Since λ > 1, we have 0 ≤ ε

λ < 1, and so⌊xn
λ

⌋
=
⌊
xn−1 −

ε

λ

⌋
= xn−1 − 1.

It follows that xn+1 ≡ xn−1−1 (mod 2008). Therefore, by induction x2008 ≡ x0−1004 ≡ 1005
(mod 2008).

3. Let A0 = (a1, . . . , an) be a finite sequence of real numbers. For each k ≥ 0, from the sequence
Ak = (x1, . . . , xn) we construct a new sequence Ak+1 in the following way.

We choose a partition {1, . . . , n} = I ∪ J , where I and J are two disjoint sets, such that the
expression ∣∣∣∣∣∣

∑
i∈I

xi −
∑
j∈J

xj

∣∣∣∣∣∣
attains the smallest possible value. (We allow the sets I or J to be empty; in this case the
corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily. Then
we set Ak+1 = (y1, . . . , yn), where yi = xi + 1 if i ∈ I, and yi = xi − 1 if i ∈ J .

Prove that for some k, the sequence Ak contains an element x such that |x| ≥ n
2 .

Solution: See IMO Shortlist 2007 Problem C4
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IMO Training Camp Mock Olympiad #6

July 11, 2008

Time limit: 4.5 hours

1. Let ABC be a triangle, and let M be the midpoint of side BC. Triangles ABM and ACM
are inscribed in circles ω1 and ω2, respectively. Points P and Q are midpoints of arcs AB
and AC (not containing M , on ω1 and ω2 respectively). Prove that PQ ⊥ AM .

First solution: By arc midpoints, we have that PA = PB and QA = QC, ∠PMA =
∠PMB, and ∠QMA = ∠QMC. Pick point D such that A,D lie on the same side of M and
MB = MC = MD. By SAS, 4PAM ∼= 4PDM , and 4QMC ∼= 4QMD; consequently,
PD = PA and QD = QA. Therefore, PDQA is a kite, and so PQ ⊥ AD =⇒ PQ ⊥ AM .

Second solution: Consider a rotation about P that brings B to A, and let the image of M be
T . Since ∠PBM + ∠PAM = 180◦, we see that M,A, T are collinear and MB = AT = MC.

Similarly, consider a rotation about Q that brings C to A, this must also bring M to T as
the triangles QCM and QAT have equal side lengths.

Now, notice that in quadrilateral MPTQ we have PM = PT and QM = QT , so it is a kite,
and thus PQ ⊥MT . The result follows from the fact that A lies on line MT .

2. Let a1, . . . , an and b1, . . . , bn be two sequences of distinct real numbers such that ai + bj 6= 0
for all i, j. Show that if

n∑
j=1

cjk
ai + bj

=

{
1 if i = k

0 otherwise,

then
n∑
j=1

n∑
k=1

cjk = (a1 + · · ·+ an) + (b1 + · · ·+ bn).

Solution: Let ri =
∑n

k=1 cjk. Then

n∑
j=1

rj
ai + bj

=
n∑
j=1

n∑
k=1

cjk
ai + bj

=
n∑
k=1

n∑
j=1

cjk
ai + bj

= 1, (1)

for all i = 1, 2, . . . , n. We wish to determine r1 + · · ·+ rn. Let

R(x) =
n∑
j=1

rj
x+ bj

. (2)

Then R(x) = P (x)/Q(x) where Q(x) = (x + b1)(x + b2) · · · (x + bn) and P (x) has degree at
most n− 1. By (1), R(a1) = R(a2) = · · · = R(an) = 1, so if we write

R(x) = 1− S(x)
Q(x)

,
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then S(x) is a monic polynomials of degree n and S(a1) = S(a2) = · · · = S(an) = 0. Hence

S(x) = (x− a1)(x− a2) · · · (x− an).

Consider the coefficient of xn−1 in P (x) = Q(x)−S(x). Form (2), this coefficient is r1+· · ·+rn.
On the other hand,

Q(x) = (x+ b1)(x+ b2) · · · (x+ bn) and S(x) = (x− a1)(x− a2) · · · (x− an).

From this we see that coefficient xn−1 in Q(x)− S(x) equals to (a1 + a2 + · · ·+ an) + (b1 +
b2 + · · ·+ bn). Hence we have our desired result.

3. Let X be a subset of Z. Denote

X + a = {x+ a|x ∈ X}.

Show that if there exist integers a1, a2, . . . , an such that X + a1, X + a2, . . . , X + an form a
partition of Z, then there is an non-zero integer N such that X = X +N .

Solution:

Assume wlog that 0 = a1 < a2 < · · · < an. Define a map f : Z → {a1, a2, . . . , an} thus: for
r ∈ Z, f(r) is the unique ai such that r = X + ai.

Suppose we are given f(r), f(r + 1), f(r + 2), . . . , f(r + an) for some r ∈ Z. Then the value
of f(r + an + 1) is determined: if there exists ai > 0 such that f(r + an + 1 − ai) = 0, then
f(r+an+1) = ai; otherwise, f(r+an+1) = 0 = a1. The value of f(r−1) is also determined:
if there exists ai < an such that f(r − 1 + an − ai) = an, then f(r − 1) = ai; otherwise,
f(r − 1) = an.

By the Pigeonhole principle, there must exist distinct integers r and s such that

(f(r), f(r + 1), . . . , f(r + an)) = (f(s), f(s+ 1), . . . , f(s+ an)).

The preceding paragraph, along with a straightforward induction argument shows that that
f is periodic with period |r − s|, and therefore X = X + |r − s|.
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July 13, 2008

Time limit: 4.5 hours

1. Let T be a finite set of real numbers satisfying the property: For any two elements t1 and
t2 in T , there is a element t in T such that t1, t2, t (not necessarily in that order) are three
consecutive terms of an arithmetic sequence. Determine the maximum number of elements
T can have.

Solution: The answer is five.

Letm denote this maximum number. It is not difficult to check that the set S = {−3,−1, 0, 1, 3}
satisfies the conditions of the problem. Hence m ≥ 5. It suffices to show that m ≤ 5. We
approach indirectly by assuming on the contrary that m ≥ 6 and that T is a set satisfies
the given property and that T has m elements. Note that adding or multiplying a common
number to each element in T will not effect the property of the set. Hence, we may assume
that −3 = t1 < t2 < · · · < tm = 3. Then taking t1 = −3 and tm = 3, we know that 0 is an
element of T .

Because T has m ≥ 6 elements. There is an element in t in T such that t is not an element
in S. By symmetry, we may assume that 0 < t < 3. Because t is not in S, t 6= 1. Let t be the
element in T such that t > 0, t 6= 1, and |t − 1| is minimal. (This is possible because such t
exists by our assumption and that T is finite.) Taking elements −3 and t shows that t−3

2 ∈ T .
Because t−3

2 < 0, taking t−3
2 and 3 shows that t′ = 1

2

(
t−3
2 + 3

)
= t+3

4 ∈ T . Note that t′ > 0,
and that |t′ − 1| = 1

4 |t − 1|, violating the minimality of |t − 1|. Thus, our assumption was
wrong and thus m = 5.

2. Let ABM be an isosceles triangle with AM = BM . Let O and ω denote the circumcenter
and circle of triangle ABM , respectively. Point S and T lie on ω, and tangent lines to ω at S
and T meet at C. Chord AB meet segments MS and MT at E and F , respectively. Point X
lies on segment OS such that EX ⊥ AB. Point Y lies on segment OT such that FY ⊥ AB.
Line ` passes through C and intersects ω at P and Q. Chords MP and AB meet R. Let Z
denote the circumcenter of triangle PQR. Prove that X,Y, Z are collinear.

Solution: Consider a homothety centred at S that sends segment OM to segment XE. Let
ω0 be the image of ω under the homothety. We see that ω0 is centred at X and passes through
E and S. Furthermore, because ω is tangent to CS, ω0 is tangent to CS as well.
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Since ∠MAR = ∠MBA = ∠MPA, we see that triangles MAR and MPA are similar, from
which we get that MA2 = MR ·MP . Similarly, triangles MEA and MAS are similar, so
MA2 = ME ·MS. Thus

MR ·MP = ME ·MS.

Also, by Power of a Point, we have

CP · CQ = CS2.

It follows that both M and C have equal powers with respect to ω0 and the circumcircle
of PQR. That is, MC is the radical axis of these two circles. Since the radical axis is
perpendicular to the line joining the centres of the two circles, we have that ZX ⊥ MC.
Similarly, ZY ⊥MC. Therefore, X,Y, Z are collinear.

Source: China TST 2007

3. Let a1, a2, . . . be a sequence of positive integers satisfying the condition 0 < an+1−an ≤ 2008
for all integers n ≥ 1 Prove that there exist an infinite number of ordered pairs (p, q) of
distinct positive integers such that ap is a divisor of aq.

Solution: Consider all pairs (p, q) of distinct positive integers such that ap is a divisor of aq.
Assume, by way of contradiction, that there exists a positive N such that q < N for all such
pairs.

We prove by induction on k that for each k ≥ 1, there exist

• a finite set Sk ⊂ {aN , aN+1, . . . }, and

• a set Tk of 2008 consecutive positive integers greater than or equal to aN ,

such that at least k elements of Tk are divisible by some element of Sk.

For k = 1, the sets S1 = {aN} and T1 = {aN , aN+1, . . . , aN+2007} suffice.

Given Sk and Tk (with k ≥ 1), define

Tk+1 = {t+
∏
s∈Sk

s | t ∈ Tk}.
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Tk+1, like Tk, consists of 2008 consecutive positive integers greater than or equal to aN —
in fact, greater than or equal to max Sk. Also, at least k elements of Tk+1 are divisible by
some element of Sk: namely, t +

∏
s∈Sk

s for each of the elements t ∈ Tk which are divisible
by some element of Sk.

By the given condition 0 < an+1 − an ≤ 2008, and because the elements of Tk+1 are greater
than or equal to aN , we have that aq ∈ Tk+1 for some q ≥ N . Because the elements of Tk+1

are greater than max Sk, we have aq 6∈ Sk. Thus, by the definition of N , no element of Sk
divides aq.

Hence, at least k + 1 elements of Tk+1 are divisible by some element of Sk ∪ {aq}: at least k
elements of Tk+1 are divisible by some element of Sk, and in addition aq is divisible by itself.
Therefore, setting Sk+1 = Sk ∪ {aq} completes the inductive step.

Setting k = 2009, we have the absurd result that T2009 is a set of 2008 elements, at least 2009
of which are divisible by some element of S2009. Therefore, our original assumption was false,
and for each N there exists q > N and p 6= q such that ap | aq. It follows that there are
infinitely many ordered pairs (p, q) with p 6= q and ap | aq.
Source: Vietnam TST 2001
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