Inequalities

Yufei Zhao

yufeiz@mit.edu

1 Classical Theorems

Theorem 1. (AM-GM) Let a_1, \dots, a_n be positive real numbers. Then, we have

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdots a_n}.$$

Theorem 2. (Cauchy-Schwarz) Let $a_1, \dots, a_n, b_1, \dots, b_n$ be real numbers. Then,

$$(a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2) \ge (a_1b_1 + \dots + a_nb_n)^2$$
.

Theorem 3. (Jensen) Let $f:[a,b] \to \mathbb{R}$ be a convex function. Then for any $x_1, x_2, \ldots, x_n \in [a,b]$ and any nonnegative reals $\omega_1, \omega_2, \ldots, \omega_n$ with $\omega_1 + \omega_2 + \cdots + \omega_n = 1$, we have

$$\omega_1 f(x_1) + \omega_2 f(x_2) + \dots + \omega_n f(x_n) \ge f(\omega_1 x_1 + \omega_2 x_2 + \dots + \omega_n x_n).$$

If f is concave, then the inequality is flipped.

Theorem 4. (Weighted AM-GM) Let $\omega_1, \dots, \omega_n > 0$ with $\omega_1 + \dots + \omega_n = 1$. For all $x_1, \dots, x_n > 0$, we have

$$\omega_1 x_1 + \omega_2 x_2 + \dots + \omega_n x_n \ge x_1^{\omega_1} x_2^{\omega_2} \cdots x_n^{\omega_n}.$$

Theorem 5. (Schur) Let x, y, z be nonnegative real numbers. For any r > 0, we have

$$\sum_{\text{cyclic}} x^r(x - y)(x - z) \ge 0.$$

Definition 1. (Majorization) Let $\mathbf{x} = (x_1, x_2, \dots x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ be two sequences of real numbers. Then \mathbf{x} is said to majorize \mathbf{y} (denoted $\mathbf{x} \succ \mathbf{y}$) if the following conditions are satisfied

- $x_1 \ge x_2 \ge x_3 \cdots \ge x_n$ and $y_1 \ge y_2 \ge y_3 \cdots \ge y_n$; and
- $x_1 + x_2 + \cdots + x_k \ge y_1 + y_2 + \cdots + y_k$, for $k = 1, 2, \dots, n-1$; and
- $x_1 + x_2 + \cdots + x_n = y_1 + y_2 + \cdots + y_n$.

Theorem 6. (Muirhead)¹ Suppose that $(a_1, \ldots, a_n) \succ (b_1, \ldots, b_n)$, and $x_1, \ldots x_n$ are positive real numbers, then

$$\sum_{\text{sym}} x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \ge \sum_{\text{sym}} x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}.$$

where the symmetric sum is taken over all n! permutations of x_1, x_2, \ldots, x_n .

Theorem 7. (Karamata's Majorization inequality) Let $f:[a,b]\to\mathbb{R}$ be a convex function. Suppose that $(x_1,\dots,x_n)\succ (y_1,\dots,y_n)$, where $x_1,\dots,x_n,y_1,\dots,y_n\in[a,b]$. Then, we have

$$f(x_1) + \dots + f(x_n) \ge f(y_1) + \dots + f(y_n).$$

¹Practical note about Muirhead: don't try to apply Muirhead when there are more than 3 variables, since mostly likely you won't succeed (and never, ever try to use Muirhead when the inequality is only cyclic but not symmetric, since it is incorrect to use Muirhead there)

Theorem 8. (Power Mean) Let $x_1, \dots, x_n > 0$. The power mean of order r is defined by

$$M_{(x_1,\dots,x_n)}(0) = \sqrt[n]{x_1 \cdots x_n}, \ M_{(x_1,\dots,x_n)}(r) = \left(\frac{x_1^r + \dots + x_n^r}{n}\right)^{\frac{1}{r}} \ (r \neq 0).$$

Then, $M_{(x_1,\dots,x_n)}:\mathbb{R}\longrightarrow\mathbb{R}$ is continuous and monotone increasing.

Theorem 9. (Bernoulli) For all $r \ge 1$ and $x \ge -1$, we have

$$(1+x)^r \ge 1 + rx.$$

Definition 2. (Symmetric Means) For given arbitrary real numbers x_1, \dots, x_n , the coefficient of t^{n-i} in the polynomial $(t + x_1) \cdots (t + x_n)$ is called the *i*-th elementary symmetric function σ_i . This means that

$$(t+x_1)\cdots(t+x_n) = \sigma_0 t^n + \sigma_1 t^{n-1} + \cdots + \sigma_{n-1} t + \sigma_n.$$

For $i \in \{0, 1, \dots, n\}$, the *i*-th elementary symmetric mean S_i is defined by

$$S_i = \frac{\sigma_i}{\binom{n}{i}}.$$

Theorem 10. Let $x_1, \ldots, x_n > 0$. For $i \in \{1, \cdots, n\}$, we have

- (1) (Newton) $\frac{S_i}{S_{i+1}} \ge \frac{S_{i-1}}{S_i}$,
- (2) (Maclaurin) $S_i^{\frac{1}{i}} \geq S_{i+1}^{\frac{1}{i+1}}$

Theorem 11. (Rearrangement) Let $x_1 \ge \cdots \ge x_n$ and $y_1 \ge \cdots \ge y_n$ be real numbers. For any permutation σ of $\{1,\ldots,n\}$, we have

$$\sum_{i=1}^{n} x_i y_i \ge \sum_{i=1}^{n} x_i y_{\sigma(i)} \ge \sum_{i=1}^{n} x_i y_{n+1-i}.$$

Theorem 12. (Chebyshev) Let $x_1 \ge \cdots \ge x_n$ and $y_1 \ge \cdots \ge y_n$ be real numbers. We have

$$\frac{x_1y_1 + \dots + x_ny_n}{n} \ge \left(\frac{x_1 + \dots + x_n}{n}\right) \left(\frac{y_1 + \dots + y_n}{n}\right).$$

Theorem 13. (Hölder)² Let $x_1, \dots, x_n, y_1, \dots, y_n$ be positive real numbers. Suppose that p > 1 and q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Then, we have

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}}.$$

More generally, let x_{ij} $(i = 1, \dots, m, j = 1, \dots, n)$ be positive real numbers. Suppose that $\omega_1, \dots, \omega_n$ are positive real numbers satisfying $\omega_1 + \dots + \omega_n = 1$. Then, we have

$$\prod_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right)^{\omega_j} \ge \sum_{i=1}^{m} \left(\prod_{j=1}^{n} x_{ij}^{\omega_j} \right).$$

Theorem 14. (Minkowski)³ If $x_1, \dots, x_n, y_1, \dots, y_n > 0$ and p > 1, then

$$\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} y_{i}^{p}\right)^{\frac{1}{p}} \ge \left(\sum_{i=1}^{n} (x_{i} + y_{i})^{p}\right)^{\frac{1}{p}}$$

²Think of this as generalized Cauchy, as you can use it for more than two sequences.

³Think of this as generalized triangle inequality.

Quotient Substitution

1. Let a, b, c > 0 with abc = 1. Prove that

$$\frac{a}{ab+1} + \frac{b}{bc+1} + \frac{c}{ca+1} \ge \frac{3}{2}.$$

2. (Russia 2004) Let n > 3 and $x_1, x_2, \ldots x_n > 0$ with $x_1 x_2 \ldots x_n = 1$. Prove that

$$\frac{1}{1+x_1+x_1x_2}+\frac{1}{1+x_2+x_2x_3}+\cdots+\frac{1}{1+x_n+x_nx_1}>1.$$

3. Let a, b, c, d > 0 with abcd = 1. Prove that

$$\frac{1}{a(1+b)} + \frac{1}{b(1+c)} + \frac{1}{c(1+d)} + \frac{1}{d(1+a)} \ge 2.$$

4. (Crux 3147) Let $n \geq 3, x_1, \ldots, x_n > 0$ such that $x_1 x_2 \cdots x_n = 1$. For n = 3 and n = 4 prove that

$$\frac{1}{x_1^2 + x_1 x_2} + \frac{1}{x_2^2 + x_2 x_3} + \dots + \frac{1}{x_n^2 + x_n x_1} \ge \frac{n}{2}.$$

5. (IMO 2000) Let a, b, c > 0 with abc = 1. Prove that

$$\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \le 1.$$

Cauchy

6. Let a, b, x, y, z > 0. Prove that

$$\frac{x}{ay+bz} + \frac{y}{az+bx} + \frac{z}{ax+by} \ge \frac{3}{a+b}.$$

7. Let a, b, c, x, y, z > 0. Prove that

$$(b+c)x + (c+a)y + (a+b)z \ge 2\sqrt{(xy+yz+zx)(ab+bc+ca)}$$

8. (IMO 1995) Let a, b, c > 0 with abc = 1. Prove that

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}.$$

Convexity and Endpoints

9. Let $0 \le a, b, c, d \le 1$. Prove that

$$(1-a)(1-b)(1-c)(1-d) + a+b+c+d > 1.$$

10. If $a, b, c, d, e \in [p, q]$ with p > 0, prove that

$$(a+b+c+d+e) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} \right) \leq 25 + 6 \left(\sqrt{\frac{p}{q}} - \sqrt{\frac{q}{p}} \right)^2.$$

11. Let σ_i denote the *i*-th elementary symmetric polynomial in x_1, x_2, \ldots, x_n . That is,

$$(t+x_1)(t+x_2)\cdots(t+x_n) = t^n + \sigma_1 t^{n-1} + \sigma_2 t^{n-2} + \cdots + \sigma_{n-1} t + \sigma_n$$

Let a_0, a_1, \ldots, a_n be real numbers. Prove that the maximum and minimum values of the expression

$$a_0 + a_1\sigma_1 + a_2\sigma_2 + \dots + a_n\sigma_n$$

under the constraints $x_1, x_2, \ldots, x_n \ge 0$ and $x_1 + x_2 + \cdots + x_n = 1$, can be attained when (x_1, x_2, \ldots, x_n) is of the form $(\frac{1}{k}, \frac{1}{k}, \ldots, \frac{1}{k}, 0, 0, \ldots, 0)$ for some $1 \le k \le n$.

12. (IMO 1984) Let $x, y, z \ge 0$ with x + y + z = 1. Prove that

$$0 \le yz + zx + xy - 2xyz \le \frac{7}{27}.$$

13. (IMO Shortlist 1993) Let $a, b, c, d \ge 0$ with a + b + c + d = 1. Prove that

$$abc + abd + acd + bcd \le \frac{1}{27} + \frac{176}{27}abcd.$$

More Inequalities

14. (IMO Shortlist 1986) Find the minimum value of the constant c such that for any $x_1, x_2, \dots > 0$ for which $x_{k+1} \ge x_1 + x_2 + \dots + x_k$ for any k, the inequality

$$\sqrt{x_1} + \sqrt{x_2} + \dots + \sqrt{x_n} \le c\sqrt{x_1 + x_2 + \dots + x_n}$$

also holds for any n.

15. (Russia 2002) Let a, b, c, x, y, z > 0 with a + x = b + y = c + z = 1. Prove that

$$(abc + xyz)\left(\frac{1}{ay} + \frac{1}{bz} + \frac{1}{cx}\right) \ge 3.$$

16. (Korea 2001) Let $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$ with $x_1^2 + x_2^2 + \cdots + x_n^2 = y_1^2 + y_2^2 + \cdots + y_n^2 = 1$. Prove that

$$(x_1y_2 - x_2y_1)^2 \le 2\left(1 - \sum_{k=1}^n x_k y_k\right).$$

17. (USAMO 2004) Let a, b, c > 0. Prove that

$$(a^5 - a^2 + 3)(b^5 - b^2 + 3)(c^5 - c^2 + 3) \ge (a + b + c)^3.$$

18. Let a, b, c > 0. Prove that

$$\frac{a+\sqrt{ab}+\sqrt[3]{abc}}{3} \leq \sqrt[3]{a\cdot\left(\frac{a+b}{2}\right)\cdot\left(\frac{a+b+c}{3}\right)}.$$

19. (Singapore TST) Let $a_1, \ldots, a_n, b_1, b_2, \ldots, b_n \in [1001, 2002]$, such that $a_1^2 + a_2^2 + \cdots + a_n^2 = b_1^2 + b_2^2 + \cdots + b_n^2$. Show that

$$\frac{a_1^3}{b_1} + \frac{a_2^3}{b_2} + \dots + \frac{a_n^3}{b_n} \le \frac{17}{10} (a_1^2 + a_2^2 + \dots + a_n^2).$$

20. Let $x_1, x_2, ..., x_n > 0$ with $x_1 x_2 ... x_n = 1$. Prove that

$$\sum_{i=1}^{n} x_i^2 \le n + \sum_{1 \le i < j \le n} (x_i - x_j)^2.$$

21. Prove that if $a_1, a_2, \ldots, a_n \in \mathbb{R}$, then

$$\max_{x \in [0,2]} \prod_{i=1}^{n} |x - a_i| \le 12^n \max_{x \in [0,1]} \prod_{i=1}^{n} |x - a_i|.$$

22. (Romanian TST 2004) Let $a_1, a_2, \ldots, a_n \in \mathbb{R}$ and S a nonempty subset of $\{1, 2, \ldots, n\}$. Prove that

$$\left(\sum_{i \in S} a_i\right)^2 \le \sum_{1 \le i \le j \le n} (a_i + \dots + a_j)^2.$$