Special topics

tab wv vs

- Interactions test whether the combination of variables affects the outcome differently than the sum of the main (or individual) effects.
- For example, how would we test whether defendants are sentenced to death more frequently for killing white strangers than you would expect from the coefficients on white victim and on victim stranger?

. g wvXvs = wv* vs . reg death bd yv ac fv v2 ms wv vs wvXvs								
death		Coef.	Std. Err.	t	P> t			
(omitt	ed)							
wv		.0985493	.1873771	0.53	0.600			
vs	1	.1076086	.2004193	0.54	0.593			
wvXvs	1	.3303334	.2299526	1.44	0.154			
_cons	I	.0558568	.2150039	0.26	0.796			

•To interpret interactions, substitute the appropriate values for each variable

•E.g., what's the effect for

•		.099 wv+.108 vs+.330 wvXvs
•White,	non-stranger:	.099(1) + .108(0) + .330(1) * (0) = .099
•White,	stranger:	.099(1) + .108(1) + .330(1) * (1) = .537
•Black,	non-stranger:	.099(0) + .108(0) + .330(0) * (0) = comparison
•Black,	stranger:	.099(0) + .108(1) + .330(1) * (0) = .108

. tab wv vs, sum(death)

Means, Standard Deviations and Frequencies of death

	VS		
VW	0	1	Total
0	.16666667 .38924947 .12	.28571429 .46880723 14	.23076923 .42966892 26
1	.40540541 .49774265 .37	.75675676 .43495884 37	.58108108 .4967499 74
Total		.62745098 .48829435 51	<pre>.49 .50241839 .100</pre>

Death penalty example

. sum death bd- yv

Max	Min	Std. Dev.	Mean	Obs	Variable
1	0	.5024184	.49	100	death
1	0	.5016136	.53	100	bd
1	0	.440844	.74	100	WV
1	0	.225705	.4366667	100	ac
1	0	.4648232	.31	100	fv
1	 0	.5024184	.51	100	+ vs
1	0	.3487351	.14	100	v2
1	0	.3265986	.12	100	ms
1	0	.2726599	.08	100	yv

Death penalty example

. reg death bd-yv , beta									
death		Coef.	Std.	Err.	P> t	Beta			
bd	•	0869168	.110	2374	0.432	0867775			
WV	Ι	.3052246	.120	7463	0.013	.2678175			
ac	I	.4071931	. 222	8501	0.071	.1829263			
fv	I	.0790273	.106	1283	0.458	.0731138			
vs	Ι	.3563889	.10	1464	0.001	.3563889			
v 2	Ι	.0499414	.139	4044	0.721	.0346649			
ms	Ι	.2836468	.151	7671	0.065	.1843855			
yv	Ι	.050356	.177	3002	0.777	.027328			
_cons	I	1189227	.178	2999	0.506	•			

Three potential answers
 Theoretical importance
 Level importance
 Dispersion importance

Theoretical importance

- Theoretical importance = Regression coefficient (b)
- To compare explanatory variables, put them on the same scale
 - E.g., vary between 0 and 1

- Level importance: most important in particular times and places
 - E.g., did the economy or presidential popularity matter more in congressional races in 2006?
 - \Box Level importance= $b_j^* x_j$

- Dispersion importance: what explains the variance on the dependent variable
 - E.g., given that the GOP won in this particular election, why did some people vote for them and others against?
 - Dispersion importance =
 - Standardized coefficients, or alternatively
 - Regression coefficient times standard deviation of explanatory variable
 - In bivariate case, correlation

Which to use?

Depends on the research question
 Usually theoretical importance
 Sometimes level importance
 Dispersion importance not usually relevant

Partial residual scatter plots

Partial residual scatter plots

- Importance of plotting your data
- Importance of controls
- How do you plot your data after you've adjusted it for control variables?
- Example: inferences about candidates in Mexico from faces

Greatest competence disparity: pairing 10

Α

 Gubernatorial race

- A more competent
- Who won?
 - □ A by 65%

- mean of competent
- mean of honest
- + mean of sympathet

Regression

	Source	SS	df	MS		Number of obs	=	33
_	+-					F(3, 29)	=	4.16
	Model	.082003892	3	.027334631		Prob > F	=	0.0144
	Residual	.190333473	29	.006563223		R-squared	=	0.3011
	+-					Adj R-squared	=	0.2288
	Total	.272337365	32	.008510543		Root MSE	=	.08101
_								
	vote_a	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
_	vote_a	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
_	vote_a +- competent	Coef. .1669117	Std. E .08638	rr. t 	P> t 0.063	[95% Conf. 0097577	In	terval] .343581
_	vote_a +- competent incumbent	Coef. .1669117 .0110896	Std. E .08638 .03105	rr. t 12 1.93 49 0.36	P> t 0.063 0.724	[95% Conf. 0097577 0524248	In 	terval] .343581 .074604
	vote_a +- competent incumbent party a	Coef. .1669117 .0110896 .2116774	Std. E .08638 .03105 .10989	rr. t 12 1.93 49 0.36 25 1.93	P> t 0.063 0.724 0.064	[95% Conf. 0097577 0524248 013078	In 	terval] .343581 .074604 4364327
	vote_a competent incumbent party_a _cons	Coef. .1669117 .0110896 .2116774 .2859541	Std. E .08638 .03105 .10989 .06359	rr. t 12 1.93 49 0.36 25 1.93 44 4.50	<pre>P> t 0.063 0.724 0.064 0.000</pre>	[95% Conf. 0097577 0524248 013078 .1558889	In 	terval] .343581 .074604 4364327 4160194

- vote_a is vote share for Candidate A
- incumbent is a dummy variable for whether the party currently holds the office
- party_a is the vote share for the party of Candidate A in the previous election
- We want to create a scatter plot of vote_a by competent controlling for incumbent and party_a

Calculating partial residuals

First run your regression with all the relevant variables

```
. reg vote_a competent incumbent party_a
```

To calculate the residual for the full model, use

```
. predict e, res
```

(This creates a new variable "e", which equals to the residual.)

Here, however, we want to generate the residual controlling only for some of the variables. To do this, we could manually predict vote_a based only on incumbent and party_a:

```
. g y hat = 0*.167+ incumbent*.011 + party a*.212
```

We can then generate the partial residual

. g partial_e = vote_a - y_hat

Instead, can use the Stata adjust

- . adjust competent = 0, by(incumbent party a) gen(y hat)
- . g partial_e = vote_a y_hat

Calculating partial residuals

 Regression of the partial residual on competent should give you the same coefficient as in the earlier regression. It does.

. reg partial	_e competent					
Source	SS	df	MS		Number of obs	= 33
	+				F(1, 31)	= 4.52
Model	.027767147	1 .02	27767147		Prob > F	= 0.0415
Residual	.190333468	31 .00	6139789		R-squared	= 0.1273
	+				Adj R-squared	= 0.0992
Total	.218100616	32 .00	6815644		Root MSE	= .07836
e	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
competent	.1669117	.078487	2.13	0.042	.0068364	.326987
_cons	-7.25e-09	.0470166	-0.00	1.000	0958909	.0958909

Compare scatter plot (top) with residual scatter plot (bottom)

 Residual plots especially important if results change when adding controls

avplot

- You can also use avplot to generate residual scatter plots
 - avplot competent, scheme(lean2)
- Unlike the method above, avplot also conditions your explanatory variable

coef = .16691168, se = .08638117, t = 1.93

Imputing missing data

Imputing missing data

- Variables often have missing data
- Sources of missing data
- Missing data reduces estimate precision and may bias estimates
- To rescue data with missing cases: impute using other variables
- Imputing data can
 - Increase sample size and so increase precision of estimates
 - □ Reduce bias if data is not missing at random

Imputation example

- Car ownership in 1948
- Say that some percentage of sample forgot to answer a question about whether they own a car

The data set contains variables that predict car ownership: family_income, family_size, rural, urban, employed

Stata imputation command

- impute depvar varlist [weight] [if exp]
 [in range], generate(newvar1)
 - $\hfill\square$ depvar is the variable whose missing values are to be imputed.
 - varlist is the list of variables on which the imputations are to be based
 - newvar1 is the new variable to contain the imputations

Example

impute own_car family_income family_size
rural suburban employed, g(i_own_car)

Rules about imputing

- Before you estimate a regression model, use the summary command to check for missing data
- Before you impute, check that relevant variables actually predict the variable with missing values (use regression or other estimator)
- Don't use your studies' dependent variable or key explanatory variable in the imputation (exceptions)
- Don't impute missing values on your studies' dependent variable or key explanatory variable (exceptions)
- Always note whether imputation changed results
- If too much data is missing, imputation won't help