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Statistical Inference
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Two simple examples

 Lady tasting tea

 Human energy fields
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Fisher’s exact test

 A simple approach to inference

 Only applicable when outcome probabilities 
known 

 Lady tasting tea example
 Claims she can tell whether the milk was poured first

 In a test, 4/8 teacups had milk poured first

 The lady correctly detects all four

 What is the probability she did this by chance?
 70 ways of choosing four cups out of eight

 How many ways can she do so correctly?
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Lady tasting tea: Prob. of identifying by chance

0.014

0.229

0.514

0.229

0.014

4 3 2 1 0

# Milk-first teacups correctly identified
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Second simple example

Healing touch: human energy field detection

“A Close Look at 

Therapeutic Touch” 

Linda Rosa; Emily 

Rosa; Larry Sarner; 

Stephen Barrett. 

1998. 

JAMA

(279: 1005 – 1010) 
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Human energy field: Prob. of success by chance
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Human energy field detection: 

Confidence in ability
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0.940.960.970.980.990.990.99
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# of successful detections out of 150 trials



8Linda Rosa; Emily Rosa; Larry Sarner; Stephen Barrett. 1998. “A Close Look at Therapeutic Touch” JAMA, 279: 1005 - 1010. 
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Null hypothesis

 In both cases, we calculated the probability of 
making the correct choice by chance and 
compared it to the observed results.

 Thus, our null hypothesis was that the lady and 
the therapists lacked any of their claimed ability.

 What’s the null hypothesis that Stata uses by 
default for calculating p values?

 Always consider whether other null hypotheses 
might be more substantively meaningful.
 E.g., testing whether the benefits from government 

programs outweigh the costs.
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Two types of inference

 Testing underlying traits

E.g., can lady detect milk-poured first?

E.g., does democracy improve human lives?

 Testing inferences about a population from 
a sample

What percentage of the population approves 
of President Bush?

What’s average household income in the 
United States?
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Assessing uncertainty

 Today we will cover

Standard error

Confidence intervals

Central limit theorem
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Baseball example

 In 2006, Manny Ramírez hit .321

 How certain are we that, in 2006, he was a .321 

hitter?

 To answer this question, we need to know how 

precisely we have estimated his batting average

 The standard error gives us this information, which 

in general is (where s is the sample standard 

deviation)

n

s
err. std.
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Baseball example

 The standard error (s.e.) for proportions 

(percentages/100) is

 N = 400, p = .321, s.e. = .023

 Which means, on average, the .321 

estimate will be off by .023

02.0
1000

)37.1(37.)1(







n

pp
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Baseball example: postseason

 20 at-bats

N = 20, p = .400, s.e. = .109

Which means, on average, the .400 estimate 
will be off by .109

 10 at-bats

N = 10, p = .400, s.e. = .159

Which means, on average, the .400 estimate 
will be off by .159
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Using Standard Errors, we can 

construct “confidence intervals”

 Confidence interval (ci):  an interval 

between two numbers, where there is a 

certain specified level of confidence that a 

population parameter lies

 ci = sample parameter + multiple * sample 

standard error



Confidence interval
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

N = 20; avg. = .400; s = .489; s.e. =.109

.400

.400+.109=.511.400-.109=.290

.400+2*.109=

.615

.400-2*.109=

.185
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 Much of the time, we fail to realize the 

uncertainty in statistical estimates

Postseason statistics

Competitions
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Certainty about mean of a population based 

on a sample: Family income in 2006
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Histogram of Family Income

X= 65.8, n = 31401, s = 41.7

Source: 2006 CCES
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Calculating the Standard Error

n

s
err. std.

For the income example,

std. err. = 41.6/177.2 =  .23

X= 65.8, n = 31401, s = 41.7



The Picture
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

N = 31401; avg. = 65.8; s = 41.6; s.e. = s/√n = .2

65.8

65.8+.2=66.065.8-.2=65.6

65.8+2*.2=

66.2

65.8-2*.2=

65.4
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Where does the bell-shaped curve 

come from?

 Central limit theorem
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Central Limit Theorem

As the sample size n increases, the 

distribution of the mean     of a random 

sample taken from practically any 

population approaches a normal

distribution, with mean μ and standard 

deviation 

X

n

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Illustration of Central Limit Theorem:
Exponential Distribution

F
ra

c
ti
o
n

inc
0 500000 1.0e+06

0

.271441

Mean = 250,000

Median=125,000

σ = 283,474

Min = 0

Max = 1,000,000
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Consider 10,000 samples of n = 100

F
ra

c
ti
o
n

(mean) inc
0 250000 500000 1.0e+06

0

.275972N = 10,000

Mean = 249,993

s = 28,559
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Consider 1,000 samples of 

various sizes

10 100 1000

Mean =250,105

s = 90,891

Mean = 250,498

s = 28,297

Mean = 249,938

s = 9,376

F
ra

c
ti
o
n

(mean) inc
0 250000 500000 1.0e+06

0

.731

F
ra

c
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o
n

(mean) inc
0 250000 500000 1.0e+06

0

.731

F
ra

c
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o
n

(mean) inc
0 250000 500000 1.0e+06

0

.731
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Play with some simulations

 http://www.ruf.rice.edu/~lane/stat_sim/sam

pling_dist/index.html

 http://www.kuleuven.ac.be/ucs/java/index.

htm

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html
http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html
http://www.kuleuven.ac.be/ucs/java/index.htm
http://www.kuleuven.ac.be/ucs/java/index.htm
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Most important standard 

errors

2
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Another example

 Let’s say we draw a sample of tuitions from 15 

private universities.  Can we estimate what the 

average of all private university tuitions is?

 N = 15

 Average = 29,735

 s = 2,196

 s.e. = 567
15

196,2


n

s



The Picture
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

N = 15; avg. = 29,735; s = 2,196; s.e. = s/√n = 567

29,735

29,735+567=30,30229,735-567=29,168

29,735+2*567=

30,869

29,735-2*567=

28,601
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Confidence Intervals for Tuition 

Example

 68% confidence interval = 29,735+567 = 

[29,168 to 30,302]

 95% confidence interval = 29,735+2*567 = 

[28,601 to 30,869]

 99% confidence interval = 29,735+3*567 = 

[28,034 to 31,436]
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What if someone (ahead of time) had 

said, “I think the average tuition of 

major research universities is $25k”?

 Note that $25,000 is well out of the 99% 

confidence interval, [28,034 to 31,436]

 Q: How far away is the $25k estimate from 

the sample mean?

A: Do it in z-scores: (29,735-25,000)/567 = 

8.35
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Constructing confidence intervals 

of proportions

 Let us say we drew a sample of 1,000 adults and asked 

them if they approved of the way George Bush was 

handling his job as president. (March 13-16, 2006 

Gallup Poll) Can we estimate the % of all American 

adults who approve?

 N = 1000

 p = .37

 s.e. = 02.0
1000

)37.1(37.)1(







n

pp



The Picture
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

N = 1,000; p. = .37; s.e. = √p(1-p)/n = .02

.37

.37+.02=.39.37-.02=.35

.37+2*.02=.41.37-2*.02=.33
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Confidence Intervals for Bush 

approval example

 68% confidence interval = .37+.02 = 

[.35 to .39]

 95% confidence interval = .37+2*.02 = 

[.33 to .41]

 99% confidence interval = .37+3*.02 = 

[ .31 to .43]
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What if someone (ahead of time) had 

said, “I think Americans are equally 

divided in how they think about Bush.”

 Note that 50% is well out of the 99% 

confidence interval, [31% to 43%]

 Q: How far away is the 50% estimate 

from the sample proportion?

A: Do it in z-scores: (.37-.5)/.02 = -6.5 [-8.7 

if we divide by 0.15]
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Constructing confidence intervals 

of differences of means

 Let’s say we draw a sample of tuitions from 15 

private and public universities.  Can we 

estimate what the difference in average tuitions 

is between the two types of universities?

 N = 15 in both cases

 Average = 29,735 (private); 5,498 (public); diff = 24,238

 s = 2,196 (private); 1,894 (public)

 s.e. = 
749

15

3,587,236

15

4,822,416

2

2

2

1

2

1 
n

s

n

s



The Picture
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

N = 15 twice; diff = 24,238; s.e. = 749

24,238

24,238+749=24,98724,238-749=

23,489

24,238+2*749=

25,736

24,238-2*749=

22,740
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Confidence Intervals for difference 

of tuition means example

 68% confidence interval = 24,238+749 = 

[23,489 to 24,987]

 95% confidence interval = 24,238+2*749 = 

[22,740 to 25,736]

 99% confidence interval =24,238+3*749 = 

 [21,991 to 26,485]
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What if someone (ahead of time) had 

said, “Private universities are no more 

expensive than public universities”

 Note that $0 is well out of the 99% 

confidence interval, [$21,991 to 

$26,485]

 Q: How far away is the $0 estimate from 

the sample proportion?

A: Do it in z-scores: (24,238-0)/749 = 32.4



40

Constructing confidence intervals 

of difference of proportions

 Let us say we drew a sample of 1,000 adults and asked 

them if they approved of the way George Bush was 

handling his job as president. (March 13-16, 2006 

Gallup Poll). We focus on the 600 who are either 

independents or Democrats.  Can we estimate whether 

independents and Democrats view Bush differently?

 N = 300 ind; 300 Dem.

 p = .29 (ind.); .10 (Dem.); diff = .19

 s.e. = 03.
300
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The Picture
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

diff. p. = .19; s.e. = .03

.19

.19+.03=.22.19-.03=.16

.19+2*.03=.25.19-2*.03=.13
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Confidence Intervals for Bush 

Ind/Dem approval example

 68% confidence interval = .19+.03 = 

[.16 to .22]

 95% confidence interval = .19+2*.03 = 

[.13 to .25]

 99% confidence interval = .19+3*.03 = 

[ .10 to .28]
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What if someone (ahead of time) had 

said, “I think Democrats and 

Independents are equally unsupportive of 

Bush”?

 Note that 0% is well out of the 99% 

confidence interval, [10% to 28%]

 Q: How far away is the 0% estimate 

from the sample proportion?

A: Do it in z-scores: (.19-0)/.03 = 6.33
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What if someone (ahead of time) had 

said, “Private university tuitions did 

not grow from 2003 to 2004”

 Stata command ttest

 Note that $0 is well out of the 95% 

confidence interval, [$1,141 to $2,122]

 Q: How far away is the $0 estimate from 

the sample proportion?

A: Do it in z-scores: (1,632-0)/229 = 7.13
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The Stata output

. gen difftuition=tuition2004-tuition2003

. ttest diff=0 in 1/15

One-sample t test

------------------------------------------------------------------------------

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

---------+--------------------------------------------------------------------

difftu~n |      15      1631.6    228.6886     885.707    1141.112    2122.088

------------------------------------------------------------------------------

mean = mean(difftuition)                                      t =   7.1346

Ho: mean = 0                                     degrees of freedom =       14

Ha: mean < 0                 Ha: mean != 0                 Ha: mean > 0

Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000
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Constructing confidence intervals 

of regression coefficients

 Let’s look at the relationship between the mid-

term seat loss by the President’s party at 

midterm and the President’s Gallup poll rating
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The Picture
y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%

N = 14; slope=1.97; s.e. = 0.45

1.97

1.97+0.47=2.441.97-0.47=1.50

1.97+2*0.47=2.911.97-2*0.47=1.03
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Confidence Intervals for regression 

example

 68% confidence interval = 1.97+ 0.47= 

[1.50 to 2.44]

 95% confidence interval = 1.97+ 2*0.47 = 

[1.03 to 2.91]

 99% confidence interval = 1.97+3*0.47 = 

[0.62 to 3.32]
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What if someone (ahead of time) had 

said, “There is no relationship 

between the president’s popularity 

and how his party’s House members 

do at midterm”?

 Note that 0 is well out of the 99% 

confidence interval, [0.62 to 3.32]

 Q: How far away is the 0 estimate from 

the sample proportion?

A: Do it in z-scores: (1.97-0)/0.47 = 4.19
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The Stata output

. reg loss gallup if year>1948

Source |       SS       df       MS              Number of obs =      14

-------------+------------------------------ F(  1,    12) =   17.53

Model |  3332.58872     1  3332.58872           Prob > F      =  0.0013

Residual |  2280.83985    12  190.069988           R-squared     =  0.5937

-------------+------------------------------ Adj R-squared =  0.5598

Total |  5613.42857    13  431.802198           Root MSE      =  13.787

------------------------------------------------------------------------------

loss |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gallup |    1.96812   .4700211     4.19   0.001     .9440315    2.992208

_cons |  -127.4281   25.54753    -4.99   0.000    -183.0914   -71.76486

------------------------------------------------------------------------------
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Reading a z table
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z vs. t
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If n is sufficiently large, we know the 

distribution of sample means/coeffs. will 

obey the normal curve

y

Mean

.000134

.398942

 2 3 4234 68%

95%

99%
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 When the sample size is large (i.e., > 150), 

convert the difference into z units and 

consult a z table

Z = (H1 - H0) / s.e.
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t 

(when the sample is small)

z
-4 -2 0 2 4

.000045

.003989

t-distribution

z (normal) distribution
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Reading a t table
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 When the sample size is small (i.e., <150), 

convert the difference into t units and 

consult a t table

t = (H1 - H0) / s.e.
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A word about standard errors and 

collinearity

 The problem:  if X1 and X2 are highly 

correlated, then it will be difficult to 

precisely estimate the effect of either one 

of these variables on Y
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Example:  Effect of party, ideology, and 

religiosity on feelings toward Bush

Bush 

Feelings

Conserv. Repub. Religious

Bush 

Feelings

1.0 .39 .57 .16

Conserv. 1.0 .46 .18

Repub. 1.0 .06

Relig. 1.0
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Regression table

(1) (2) (3) (4)

Intercept 32.7

(0.85)

32.9

(1.08)

32.6

(1.20)

29.3

(1.31)

Repub. 6.73

(0.244)

5.86

(0.27)

6.64

(0.241)

5.88

(0.27)

Conserv. --- 2.11

(0.30)

--- 1.87

(0.30)

Relig. --- --- 7.92

(1.18)

5.78

(1.19)

N 1575 1575 1575 1575

R2 .32 .35 .35 .36
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How does having another collinear

independent variable affect 

standard errors?

s e
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R2 of the “auxiliary regression” of X1 on all

the other independent variables
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Pathologies of 

statistical significance
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Understanding “significance”

 Which variable is 

more statistically 

significant?

 X1

 Which variable is 

more important?

 X2

 Importance is often 

more relevant

(1) (2)

Intercept 0.002

(0.005)

0.003

(0.008)

X1 0.500*

(0.244)

0.055**

(0.001)

X2 0.600

(0.305)

0.600

(0.305)

N 1000 1000

R2 .32 .20

*p<.05, **p <.01
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Substantive versus 

statistical significance

 Think about point estimates, 

such as means or regression 

coefficients, as the center of 

distributions

 Let B*  be of value of a 

regression coefficient that is 

large enough for substantive 

significance

 Which is significant?

 (a)

B*

B*

B*
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 Which is more 

substantively 

significant?

 Answer: depends, but 

probably (d)

B*

B*

B*
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Don’t make this mistake
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What to report

 Standard error

 t-value

 p-value

 Stars

 Combinations?
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Specification searches 
(tricks to get p <.05)

 Reporting one of many dependent 
variables or dependent variable scales

Healing-with-prayer studies

Psychology lab studies

 Repeating an experiment until, by 
chance, the result is significant

Drug trials

Called file-drawer problem
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Specification searches 
(tricks to get p <.05)

 Adding and removing control variables 

until, by chance, the result is 

significant

Exceedingly common
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Solutions

 With many dependent variables, use a simple 
unweighted average

 Bonferroni correction 
 If testing n independent hypotheses adjusts the 

significance level by 1/n times what it would be if only 
one hypothesis were tested

 Show bivariate results

 Show many specifications

 Model averaging


