17.871 Political Science Lab

Spring 2015

Problem set # 5: Multiple regression, sampling, and hypothesis testing

Handed out: April 13, 2015 Due back: April 22, 2015

1. We are interested in understanding how people feel about the expansion of voting rights to Americans in recent years. One of the ways that voting rights have been expanded is by requiring that non-English speakers be allowed to receive language assistance when they vote.

The data are taken from the MIT module of the 2013 Cooperative Congressional Election Study.

The following is how the variables of interest were measured:

englishhelpgood: dependent variable. Based on the answer to the question, "Did requiring voting assistance for non-English speakers... (1) diminish elections a lot, (2) diminish elections somewhat, (3) improve elections somewhat, or (4) improve elections a lot?" This variable was then recoded to lie in the [1,4] interval as indicated by the response categories.

age01: calculated as 2013 – birth year, and then to lie in the [0,1] interval. (In other words, the oldest respondents were 84 years old, and were coded as 1; the youngest respondents were 18 years old, and were coded as 0; everyone else is rescaled proportionately within the interval.)

age01sq: the square of age01

liberal01: ideology coded 1 = very conservative, 2 = conservative, 3 = moderate, 4 = liberal, 5 = very liberal. This variable was then recoded to lie in the [0,1] interval.

dem01: party identification coded 1 = Democrat, 0.5 = neither Democrat or Republican, <math>0 = Republican.

fraudscale01: a scale produced from several items on the survey. The scale is coded in the [0,1] interval, so that 1 means you think voting fraud happens all the time, and 0 means you think that voting fraud never happens.

votedin12: dummy variable equal to 1 if the respondent reported "definitely voted" in 2012, 0 otherwise.

Three dummy variables to code race:

- **black** = 1 if the respondent identified as African American, 0 otherwise
- **hisp** = 1 if the respondent identified as Hispanic, 0 otherwise

- **asian** = 1 if the respondent identified as Asian-American, 0 otherwise
- **other_race** = 1 if the respondent identified as any other racial group except white, 0 otherwise

The following is a portion of the Stata printout from the regression.

reg englishhelpgood age01 age01sq liberal01 dem01 fraudscale01 votedin12 black hisp
asian other_race [aw=weight]
(sum of wgt is 7.9249e+02)

(Sum of wgt is	7.92490+02)				
Source	SS	df	MS	Number of obs F(10, 777)		
Model Residual	234.213276 788.508188			Prob > F R-squared Adj R-squared	= 0.0000 = 0.2290	
Total	1022.72146	787 1	1.29951901	Root MSE		
englishhel~d	Coef.	Std. Ei	 rr. 			
age01sq liberal01 dem01 fraudscale01 votedin12 black hisp asian other_race	1935157 .2844007 .4029849	.545244 .042852 .102557 .139823 .092526 .115337 .143392 .20693	45 226 77 34 68 71 24 12			

- 1a. Provide a substantive interpretation of each regression coefficient.
- 1b. Calculate the 95% confidence interval around the first three slope coefficients (age01, age01sq, and liberal01)
- 2. Suppose we had a database of all the household incomes in the United States. First, we draw an infinite number of samples from this database, with a sample size of 100, and calculate the average household income for each sample, and save them all in a database called "Sample 1". Second, we draw an infinite number of samples from this same database of household incomes in the United States, with sample size of 10,000, and calculate the average household income for each sample, and save them all in a database called "Sample 2."
 - 2a. If the average of all the values in Sample 1 is \$54,596, would you expect the average of all values in Sample 2 to be (a) greater than (b) less than, or (c) the same as Sample 1? Why?

- 2b. If the standard error of Sample 1 is \$3,950, what would you expect the standard error of Sample 2 to be?
- 3. Suppose you sampled 1,000 Americans and asked them if they had a favorable personal opinion of Barack Obama. You have respondents give answers on a four-point scale, with "very favorable" = 4 and "very unfavorable" = 1. You calculate the average answer to the question and then calculate the 95% confidence interval around the answer. You are interested in knowing whether residents of the Bahamas have the same opinion of Obama as Americans do. What is the sample size of Bahamians you would have to draw in the Bahamas, if you wanted the 95% confidence interval of the answer *from Bahamians* to equal that of the 95% confidence interval from Americans? (Assume that the average answer, and the standard deviation, from Bahamians is the same as the average answer, and standard deviation, from Americans.)
- 4. In the 2014 Cooperative Congressional Election Study, 63.2% of respondents reported they "definitely" voted in the 2012 presidential election. The number of respondents was 56,200. The best estimate of turnout in the 2014 election, from official election statistics is that 35.9% of voting-eligible Americans voted in 2014. Calculate the *t*-ratio to measure how far the CCES turnout rate is from the actual turnout rate. (Note that you will need to calculate the variance of the CCES turnout estimate from what you have been taught about variances of proportions.)