

MIT course number of the political science department

Nominal GDP per capita of Russia in 2017 (USD)

Number of achievable states of a $2 \times 2 \times 2$ Rubik's cube

Number of characters in Richard III that are dead by the end of the play, including characters that appear only as ghosts

Number of citations on the most cited paper ever

Number of distinct Pokémon, as of Gen VII

Number of Heinz pickle varieties

Number of kernels in a bag of microwave popcorn (according to Google instant answers)

Number of picometers in a Planck length

Population of New Hampshire

Price of 1 troy ounce of gold in U.S. dollars in 1956

Smallest number ever mentioned in a previous BRAIN WORLD CUP

The 1000th digit of e (including the 2)

	The expected number of rounds needed in the following process: The 1000th digit of e fair dice are tossed, and all (including the 2) dice showing a deuce is removed. This process is repeated until all dice are removed.
The fourth three-digit narcissistic number (a narcissistic number is a number that is the sum of its own digits each raised to the power of the number of digits; there are four narcissistic numbers with three digits, the first three of which are 153, 371, and 407)	The largest number that can be represented by the product of the digits on a single Splendor card
The month during which this BRAIN WORLD CUP is held (as an integer from 1 to 12)	The number of confirmed exoplanets discovered by the Kepler mission, as of Thursday, November 1,
2018	

The number X such that X degrees Fahrenheit equals X degrees Kelvin

The number X such that X degrees Fahrenheit equals X degrees Kelvin	The Ramsey number $R(3,3)$
The second smallest perfect number	The value of the Google Sheets expression DATEVALUE ("2018-11-2")
The year of the peace of	Given a 102 $\times 102$ sheet of graph paper and a connected figure of unknown shape consisting of 101 squares, the smallest number of copies of the figure which can be cut out of the square, assuming cutting is done optimally

