
DISCRETE LOGARITHM PROBLEM IN FINITE GROUPS

A. ANAS CHENTOUF

Abstract. The discrete logarithm problem plays a central role in modern cryptography.
In this paper, we introduce the discrete logarithm problem in finite groups. We then present
a diverse list of algorithms that solve this problem and analyze the efficiency of those
algorithms.

Contents

1. Introduction 1
2. Elementary Algorithms 5
3. Discrete Logarithms in Nilpotent Groups 6
4. Pollard rho Algorithm 7
5. Conclusion 10
Acknowledgements 10
References 10

1. Introduction

Consider a group G written multiplicatively, and let α, β ∈ G be two elements. The discrete
logarithm of β with base α, denoted as logα β, is defined as the smallest possible positive
integer x such that

αx := α · . . . α︸ ︷︷ ︸
x times

= αx = β

if such x exists, and +∞ otherwise. Note that logα β is finite if and only if β lies in the
subgroup generated by α.

For example, if G = (Z/nZ,+), then the discrete logarithm logα β is the smallest solution
to the linear congruence αx ≡ β (mod n). When α is invertible (mod n), there exists a
unique solution to the congruence βα−1 (mod n). However, if that is not the case, then there
may exist multiple solutions: we can determine α in general using the generalized Euclidean
algorithm.
To illustrate that the discrete logarithm indeed shares some properties with the familiar

logarithm, we present the following result. For both properties, we use the fact that in a finite
group, logα(α

x) = x (mod ordα), where the right-hand side is the nonnegative remainder of
the division of x by the order of the element α in the group.

Claim 1.1. Let α, β, γ be elements of a finite group G such that β, γ ∈ ⟨α⟩. The following
results holds.

Date: December 13, 2022.
This expository paper was produced for the Fall 2022 offering of 18.704, MIT’s Seminar in Algebra.

1

(1) logα(βγ) =
(
logα(β) + logα(γ)

)
mod (ordα).

(2) If β ∈ ⟨γ⟩, then logγ(β) = logα(β) logγ(α) mod (ord γ)

Proof. For the first result, since β, γ ∈ ⟨α⟩, we may set x = logα(β), y = logα(γ). Then

logα(βγ) = logα(α
x+y) = (x+ y) mod (ordα) =

(
logα(β) + logα(γ)

)
mod (ordα).

For the second part, write x = logα(β), y = logγ(α). Then

logγ(β) = logγ(α
x) = logγ(γ

xy) = xy mod (ord γ).

□

The discrete logarithm problem is the computational problem of computing logα β, given
an input α, β, as efficiently as possible. It is often abbreviated as DLP in literature. Note
that we have not yet specified the means of representing the group has not been made clear,
but it shall be visited soon. The DLP is, in some sense, the “inverse” operation of the
exponentiation problem, which given α ∈ G, x ∈ N, aims to compute αx as efficiently as
possible. Before presenting algorithms for the DLP, let us first see a reason why we would
care about it in the first place.

Definition 1.2 (Primitive roots). Consider a prime p. We say that g ∈ (Z/pZ)× is a
primitive root if and only if F×

p = (Z/pZ)× = ⟨g⟩.

Note that this definition makes sense due to the well-known fact that the multiplicative
group of a finite field is cyclic.

1.1. Why the DLP?. In general, many cryptographical schemes rely on the “fact” that a
certain problem is “hard”, often much more difficult than its inverse. The RSA cryptosystem
exploits the fact that factoring a semiprime n = pq into its prime factors p, q is a much more
difficult task than computing n by multiplying out p, q. In a similar fashion, the DLP is
computationally much more difficult than its inverse problem of exponentiation. Protocols
such as the Diffie-Hellman key exchange exploit this fact.

The Diffie-Hellman key exchange protocol between Alice and Bob 1 operates as follows [5]:

(1) Alice and Bob jointly choose (g, p), where p is a cryptographic-size prime 2 and g is a
primitive root modulo p.

(2) Alice chooses a secret integer a (which she does not share), and shares with Bob the
value ga mod p.

(3) Bob chooses a secret integer b (which he does not share), and communicates with
Alice the value gb mod p.

(4) The secret key is given by gab mod p, which they can both compute.

An eavesdroppper to this conversation would have access to the prime p as well g, ga, gb mod
p, but would need to compute the secret key gab mod p. To do so, one way is to use the
Discrete Logarithm Attach, which calculates b using the Discrete Logarithm and then raises
ga mod p to the power of b.

1it is “convention” to use Alice and Bob as the two sides in a cryptographic scheme
2This usually ranges from 256 to 2048 bit prime

2

This exchange scheme works in the group (Z/pZ)×. Of course, we can modify this scheme
to use any finite group G, but somehow the choice of which group should be something that
both Alice and Bob would know.

Example 1.3 (Layman Exponentiation). Consider the exponentiation problem of computing
241 mod 47. A natural way would be to repeatedly square using the fact that

2n+1 ≡ 2(2n mod 47) (mod 47).

We would therefore get the sequence of residues

2, 4, 8, 16, 32, 17, 34, 21, . . . , 25 .

Note that in general, computing an mod m here would involve n multiplications (group
operations) and n reductions modulo m.

Example 1.4 (Double-and-Add). Consider the same exponentiation problem as above. A
more efficient way to conduct this computation would be to look at the binary expansion of
41, which is 1010012. We could then use the following algorithm, which can compute an in
any monoid.

Algorithm 1 Double-and-Add

procedure Double-and-Add(α, n)

Compute the binary representation
∑k

i=0 ai2
i of n

h ← 1
For i from k-1 to 0
h ←h2

if ai = 1 then:
h ← hg
return h

Note that this algorithm only uses O(log2 n) group operations, and only stores the binary
representation of n, as well as one group element (which is updated) and one pointer.
Obtaining the binary representation of n is elementary to do, and can be do in O(log2 n)
group operations.

1.2. Nuances of the Problem. Note that the DLP, per se, is a perfectly well-defined
problem over an infinite group. Nevertheless, we assume that G is a finite group. The
reasons for this assumption are threefold. Firstly, most groups that arise in applications
(such as cryptography) tend to be finite. Secondly, there is an inherent difficulty associated
with formally defining the problem for inputting arbitrary infinite groups into an algorithm.
Thirdly, and more relevant to us, is that finite groups impose a uniform upper bound on
the discrete logarithm: logα β ≤ |G|. More generally, we usually require that the discrete
logarithm exists - otherwise, it will not be known whether a probabilistic algorithm does not
succeed because we are simply unlucky, or because the logarithm odes not exist.

We also have to deal with the formal question of the representation of the group G. That
is, what would the input of any algorithm that solves the DLP be. In the next paragraph, we
shall provide a sketch of this representation, but a complete formalization would be out of the

3

scope of the paper. The uninterested reader is welcome to completely ignore the remainder
of this subsection.

The workaround is to represent the finite group using strings of bits. An encoding of G is
an injective map σ : G→ {0, 1}n. This allows us to represent each element of G as a string
of bits, something that Turing machines can process as an input. We also want our encoding
σ to appropriately interact with the group structure through an oracle. We therefore require
that the oracle model supports certain properties:

(1) Identity: we can output σ(1G).
(2) Inverse: given σ(α), we can output σ(α−1) for all α ∈ G.
(3) Group Operation: given σ(α) and σ(β), we can output σ(αβ) for all α ∈ G.
(4) Random element: we can output σ(α) for a uniformly randomly distributed element

α ∈ G.

A generic group algorithm on a group G is an algorithm that implements a certain task on
the group through solely interacting with an oracle equipped with any encoding. As such, we
search for a generic group algorithm which, on input σ(α) and σ(β), uses the above oracle to
compute logα(β).

Remark 1.5. Note that the fourth point allows generic group algorithms to be probabilistic,
i.e. nondeterminstic, algorithms that use randomness as part of their procedure. Note also
that this computational model allows us to compare the equality of two elements using their
encodings thanks to the injectivity of σ:

α = β ⇐⇒ αβ−1 = 1 ⇐⇒ σ(αβ−1) = 1,

and the latter can be computed using σ(α) and σ(β).

1.3. Asymptotic Analysis. In this paper, we will study algorithms pertaining to the
discrete logarithm problem. To quantify this study, we use asymptotic notation to measure
the space/time complexity of the algorithm.
Throughout this section, let f, g be functions whose domain is either R or N and whose

codomain is R. We impose the additional constraint that g is nonzero for sufficiently large
inputs.

Definition 1.6 (Big-O Notation). We say that f(x) ∈ O(g(x)) if

lim sup
x→∞

(∣∣∣∣∣f(x)g(x)

∣∣∣∣∣
)

<∞.

Definition 1.7 (Big-Omega Notation). We say that f(x) ∈ Ω(g(x)) if

lim inf
x→∞

(∣∣∣∣∣f(x)g(x)

∣∣∣∣∣
)

<∞.

Definition 1.8 (Big-Theta Notation). We say that Θ(g) to be the intersection of O(g) and
Ω(g).

Definition 1.9 (Small-o Notation). We say that f(x) ∈ o(g(x)) if

lim
x→∞

(∣∣∣∣∣f(x)g(x)

∣∣∣∣∣
)

= 0.

4

Remark 1.10. Note that O(g(x)) is technically a class of functions, hence the inclusion notation
f(x) ∈ O(g(x)). However, we shall follow the commonly-committed abuse of notation in
saying f(x) = O(g(x)).

Example 1.11. Note that p(x) = o(ex) since exponentials grow faster than any polynomial.
Similarly, x2 + x = θ(x).

The following theorem, whose proof is beyond the scope of this paper, presents a lower
bound that we seek to achieve. Henceforth, our model for time complexity will measure the
number of group operations needed, since that is what matters most from a group-theoretic
perspective.

Theorem 1.12 (Shoup’s Theorem). The runtime of a generic group algorithm for the discrete

logarithm problem is at least Ω(
√
|G|) group operations.

2. Elementary Algorithms

There are many elementary algorithms that can be used to solve the discrete logarithm
problem in a finite group G.

2.1. Linear Search. Consider the following algorithm.

procedure Linear Search DLP(G, α, β)
x← 0
g ← 1
while x ≤ |G| do:

if g == β then: return x
else x+=1, g = g · α

The algorithm still relies on looping over possible powers of α until we find β. The worst
case runtime can use at most |G| group operations.

2.2. Baby-Steps Giant-Steps. There exists also an algorithm known as Baby-Steps Giant-
Steps which relies on the ”meet me in the middle” principal to calculate the exponent.

procedure Baby-Steps Giant Steps(G,α, β)
Find integers r, s ≥ 1 such that rs ≥ |G|.
Map i→ αi for i ∈ 0, . . . , r − 1 into a hash function.
Set x = β.
for j ∈ 0, . . . , s− 1 do

if collision occurs with i then return i+ rj
else: x ← xα−r

To see why this algorithm works, we need to show that any nonnegative integer which
is less than |G| can be written in the form i + rj, where 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s − 1.
This is true viewing it as Euclidean division. The condition rs ≥ |G| is needed to cover all
remainders.

5

The space complexity of this algorithm is Ω(r+s) group elements which is at least Ω(
√
|G|)

by the AM-GM inequality, and trivially at most O(|G|). The time complexity of the algorithm
can be easily seen to be

r∑
k=1

log2 k + log2 r +O(s) =
r log r − r

ln(2)
+O(log r) +O(s),

where the last equality holds by Stirling’s approximation. To demonstrate the difference
between the two algorithms, we ran the two previous algorithms on CoCalc, yielding the
following runtimes.

Size of p (bits) BSGS Linear Search
15 0.00055 s 0.0088 s
20 0.0474 s 0.4593 s
30 0.211s 824 s

Table 1. Runtime of Baby-Steps Giant-Steps vs. Linear Search

3. Discrete Logarithms in Nilpotent Groups

Following Romankov [2], we specialize to the case of finite nilpotent groups. Note that
a finite nilpotent group is the product of its Sylow p-subgroups, and so we only present an
algorithm for the case where our group G is a p-group of order pk.

3.1. Algorithm. Since G is nilpotent, it possesses a normal series

G = G0 > G1 > · · · > Gk = 1.

Suppose that we would like to solve the discrete logarithm problem αx = β for some
unknown x. The algorithm proposed by Roman’kov calculates x by determines its base p
expansion.
Define Bi to be the quotient Gi/Gi+1, an abelian p-group of rank ri. The image of an

element g ∈ G is g ∈ B0.
Consider the discrete logarithm problem (α, β). Compute the exponent x0 associated to

this DLP in B0, and set α1 = αp, β = α−x0β ∈ G1. This now reduces to the problem in G1:

α
(x−x0)/p
1 = β1.

If both reductions are the identity, then they already live in G1 and we could have started
the problem there. Then continue with

αx−xk−1p
k−1

= β

in G1.
If β ∈ G1 and α ̸∈ G1, we have x0 = 0 and so we continue with α

x/p
1 = β. Repeatedly

applying this process, we obtain a solution to the discrete logarithm problem.
6

3.2. Lifting Back. Since G is a finite nilpotent group, it is the product of Sylow p-subgroups:

G =
∏

p∈π(G)

Gp.

Write an element g in the form g = (gp)p∈π(G). Applying the algorithm in the previous
subsection we obtain a tuple of exponents (xp)p∈π(G). Then a solution to the initial DLP
problem can be obtained by finding a solution to the system of congruences for p ∈ π(G)

x ≡ xp mod ptp ,

where ptp is the order of gp. Using the Chinese Remainder Theorem, we can solve this
system of congruences and obtain the minimal solution x.
Providing a runtime analysis of Romankov’s algorithm is much more complicated. The

algorithm not only involves solving DLP one group, but it projects to quotients and so the
analysis will vary from model to model, and this is beyond the focus of the paper.

3.3. Cryptographic Impracticality of the Algorithm. Although the algorithm presented
by Romankov is theoretically correct, Kahrobaei et al. [1] showed that it is impractical for
cryptogrpahic-size inputs.
Determining a0 when p is large enough can be quite difficult. Assume that p = 2q + 1

for another prime q, known as a safe prime, and that G = ⟨g2⟩, where g is a primitive root
modulo p. Then the nilpotency series becomes

G = G0 > G1 = {1},
so determining a0 amounts to solving the DLP in G, a group of order q. This means that
the problem does not get much easier, and so the practicality of the implementation is
compromised. Since then, cryptographic schemes for DLP which are based on nilpotency
have been developed.

4. Pollard rho Algorithm

One can solve the DLP more efficiently by expanding our scope to probabilistic algorithms.
To do so, we view group operations as a path on the elements of G, giving rise to the Pollard
rho algorithm [6].

Definition 4.1. Let S be a finite set. A random function f : S → S is defined by assigning
to each s ∈ S, an image in S uniformly randomly.

Definition 4.2. Let S be a finite set, and let f : S → S be a function on S. Let s = s1 ∈ S
be the initial value, and consider the recurrence given by si+1 = f(si) for i ≥ 1. We define
the value ρs(f) to be the smallest ρ such that there exists λ < ρ such that sλ < sρ, and λs(f)
to be the associated λ.

Note that by finiteness of S, we know that ρs(f) is finite. In fact, it is bounded above by
|S|+ 1 using the pigeonhole principle.

Lemma 4.3 (Expected Values for ρ in Random Walks). Let S be a finite set. For any s ∈ S
and a random function f : S → S, the asymptotic relation

7

E[ρs(f)]→
√

π|S|
2

holds as |S| → ∞. Moreover,

E[λs(f)]→
√

π|S|
8

.

Proof. We only prove the first result, as the second has a similar proof. Using basic counting,
one can see that for any n ≥ 0

Pr[ρs(f) > n] =
n∏

i=0

(
1− i

|S|

)
.

Now

E[ρs(f)] =
|S|−1∑
n=1

nPr[ρs(f) = n] =

|S|−1∑
n=1

n
(
Pr[ρs(f) > n− 1]− Pr[ρs(f) > n]

)
,

which telescopes to

|S|−1∑
i=1

Pr[ρs(f) > n]− (|S| − 1) Pr
[
ρs(f) > |S| − 1

]
.

Note that

Pr[ρs(f) > n] = exp

(
n∑

i=0

log

(
1− i

|S|

))
< exp

(
− 1

|S|

|S|∑
i=0

i

)
< exp

(
−n2

2|S|

)
.

Similarly using bounds that following from the Taylor series,

Pr[ρs(f) > n] = exp

(
n∑

i=0

log

(
1− i

|S|

))
> exp

(
−

n∑
i=1

(i

|S|
+

i

|S|2
))

.

Assuming that n < |S|0.6, we get that

n∑
i=1

(i

|S|
+

i

|S|2
)
<

n∑
i=1

(i

|S|
+ |S|−0.8

)
<

n2 + n

2|S|
+ |S|−0.2 <

n2

2|S|
+ 2|S|−0.2.

Since the latter term can be bounded by a constant, this shows that

Pr[ρs(f) > n] > C exp
−n2

2|S|
for some constant C ∈ 1 + o(1).

Now combining this to the telescoping formula we proved earlier

⌊M⌋∑
n=0

Pr[ρs(f) > n] +

|S|−1∑
n=⌈M⌉

Pr[ρs(f) > n] + o(1),

8

where o(1) arises from the term nPr[ρs(f) > n] < n exp(−n2/2|S|). We also note that the
second term is negligible (that is, o(1)) since it is bounded above by

|S| exp(−M2/2|S| = |S| exp (−|S|−0.2/2)) = o(1).

Note

⌊M⌋∑
n=0

Pr[ρs(f) > n] =

⌊M⌋∑
n=0

(
1 + o(1)

)
exp

(n2

2|S|

)
.

which, up to a difference of O(1), is equal to(
1 + o(1)

)∫ ∞

0

e−
x2

2|S| .

Integrating this yields
(
1 + o(1)

)√
π|S|
2
, and taking the limits proves the result. □

Instead of defining a random function, Pollard’s algorithm will partition G into three
disjoint subsets of almost equal size S1, S2, S3, and will use the following function.

f(X) =

αX if X ∈ S1

X2 if X ∈ S2

βX if X ∈ S3

.

It will then run starting at 1G, and will proceed by storing all previous iterants until a
collision is detected. Any collision will give a result of the form αXβY = αxβy, from which
we can apply the extended Euclidean algorithm to determine logα β. Note that here we need
to determine the order of α in order to apply the discrete logarithm, but that can be done
relatively easily using other algorithms.

Remark 4.4. One mnemonic about the algorithm explains why it is called ρ as follows. Tracing
from the root of ρ (initial value), the algorithm traverses elements of the field, but it then
cycles back to a point it had already passed through, completing the loop in ρ.

In this case, it is assumed that this function indeed behaves like a random function. Note
that this implementation will indeed allow us to achieve Shoup’s lower bound of Ω(

√
|G|), as

the theorem above indicates. However, a slight improvement could be made.
The current implementations stores all the previous iterants to check for collisions. Instead,

we can convert this information into a graph-theoretic sense: with vertices being group
elements, the random function corresponding to choice of outgoing vertices. Then a cycle-
detection algorithm, such as Floyd’s algorithm, is used to detect cycles without having to
explicitly run and store all iterants. This will reduce the space complexity of the algorithm,
and will add a “negligible” number of group operations associated with the graph-theoretic
portion of the algorithm. Similar improvements which optimize the probabilistic model
and the graph-theoretic component have been made to the Pollard-rho algorithm. These
essentially seek to reduce the constant c in the runtime of c

√
|G|.

9

5. Conclusion

The DLP highlights a central property of computational group theory: the ability to use
advanced results in pure mathematics for computational applications. Throughout, we have
used arguments and tools from group theory, probability, and graph theory to develop efficient
algorithms that achieve Shoup’s minimal bound.

We conclude by presenting a summary of the algorithms we surveyed:

Algorithm Deterministic Generic Runtime
Linear Exponentiation ✓ ✓ Linear

Double-and-add ✓ ✓ Linear
Baby-steps Giant-steps ✓ ✓ O(r log r + s)

Romankov ✓ X Complicated

Pollard rho X ✓ O(
√
|G|)

Table 2. Summary of the algorithms we presented for the Discrete Logarithm Problem

The DLP is a very active subject of research - there are plenty of improvements to the
algorithms we presented that we did not cover in detail, let alone completely new algorithms
in literature. One cannot write a paper about the DLP without mentioning, at least in
passing, the index method for the interested reader - it solves in the DLP in the multipliclative
group of a finite field Fpk . The method exploits the fact that finite fields can be related,
after lifting, to the integers, and so there is multiplicative but also additive structure. The
Pohlig-Hellman algorithm is also a central topic in the field. The discrete logarithm problem
continues to be at the forefront of computational group theory: both because of the rich
theoretical background and the computational and cryptographic relevance of the problem.

Acknowledgements

I would like to thank Kent Vashaw for his valuable feedback and suggestions, and my
classmates Mark Jabbour and Boris Velasevic for their valuable peer-review. I would also
like to thank Professor Bjorn Poonen for the LATEX template on which which this paper was
created, and Andrew Sutherland for introducing me to this beautiful topic.

References

[1] Kahrobaei et al., A Closer Look at the Multilinear Cryptography using Nilpotent Groups, 2021,
arxiv.org/pdf/2102.04120.pdf. 7
[2] V. A. Roman’kov, Discrete logarithm for nilpotent groups and cryptanalysis of polylinear cryptographic
system, Prikl. Diskr. Mat. Suppl., 2019, Issue 12, 154–160. 6
[3] Granger et al, On the discrete logarithm problem in finite fields of fixed characteristic, American
Mathematical Society, 2017, Issue 5, pp 3129–3145.
[4] A. Sutherland, MIT 18.783 Lecture Notes, 2022.
[5] E. Dummit, Discrete Logarithms in Cryptography. URL. 2
[6] J.M. Pollard, Monte Carlo methods for index computation (mod p), Mathematics of Computation 143
(1978), 918–924.

7

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
02139-4307, USA

Email address: chentouf@mit.edu
10

https://arxiv.org/pdf/2102.04120.pdf
https://web.northeastern.edu/dummit/docs/cryptography_3_discrete_logarithms_in_cryptography.pdf

	1. Introduction
	2. Elementary Algorithms
	3. Discrete Logarithms in Nilpotent Groups
	4. Pollard rho Algorithm
	5. Conclusion
	Acknowledgements
	References

