Known Dehn Invariant Zero Tetrahedra

Known Dehn Invariant Zero Last updated June 2022

We present a list of tetrahedra that are known to the author as of the last update of this webpage. In particular, we list the sextuple of dihedral edges in the order (12,34,13,24,14,23). The same goes for edge lengths. If you are aware of Dehn invariant zero tetrahedra that are not listed in this webpage, please share them with me myself (preferably the dihedral angles) and I will update this webpage and acknowledge your contribution.

First Hill Family

This family is parametrized by a single parameter α. For brevity, we denote s=sin(α),c=cos(α). Dihedral AnglesEdge Lengths(α,α,π3,π2α,π2,π2)(s,s,s,3c,1,1)(α+2π3,α+2π3,α+π6,α+5π6,α,α)(s,s,s3c2+1,s3c2+1,s+3c2,s+3c2)(α+2π3,α+2π3,2απ3,π3,π2,π2)(s+3c2,s+3c2,3s3c2,s+3c2,1,1) Colored in red is the orbit element commonly used to define the family in literature.

Second Hill Family

This family is parametrized by a single realparameter α. For brevity, we denote s=sin(α),c=cos(α) and β=cos1(12cotα). Dihedral AnglesEdge Lengths(α,β,α+π2,π3,πβ,π2)(2s,f,2s,3c,f,2)(β,α,α2β2+2π3,α2β2+5π6,α2β2+2π3,α2+β2+π6)(2s,f,f2+s3c2+1,f2s+3c2+1,f2+s+3c21,f2+s+3c2+1)(α2β+3π4,α2+3π4,α+β2π12,β2+π12,α2+β2+π6,α2β2+2π3)(fs+1,s+1,f2+2s3c2,f2+3c2,f2+s+3c2+1,f2+s+3c21)(α2+3π4,α2β+3π4,α+π2,π3,α2+βπ4,α2+π4)(s+1,fs+1,2s,3c,f+s1,s+1)(β2+5π12,α+β2+5π12,β2+π12,α+β2π12,πβ,π2)(f2+3c2,f2+2s+3c2,f2+3c2,f2+2s3c2,f,2)(β2+5π12,α+β2+5π12,α2β2+2π3,α2β2+5π6,α2+βπ4,α2+π4)(f2+2s+3c2,f2+3c2,f2+s3c2+1,f2s+3c2+1,f+s1,s+1) Colored in red is the orbit element commonly used to define the family in literature.

Third Hill Family

This family is parametrized by a single realparameter α. For brevity, we denote s=sin(α),c=cos(α),r=sin2(α)+2 and γ=cos1(13cosα). Dihedral AnglesEdge Lengths(α,γ,π6,π2α,πγ,π2)(2s,r,23c,s,r,2)(3α2+γ2+7π12,α2γ2+7π12,α2+γ2+5π12,3α2+γ25π12,πγ,π2)(r2+3s2+3c,r2s2+3c,r2+3s23c,r2+s2+3c,2,r)(α2γ+3π4,α2+3π4,π2α,π6,α2+γπ4,α2+π4)(s+1,rs+1,s,23c,s+1,r+s1)(α2γ+3π4,α2+3π4,3α2+γ25π12,α2+γ2+5π12,αγ2+5π6,α+γ2+π3)(rs+1,s+1,r2+3s23c,r2+s2+3c,r2+s2+3c1,r2+s2+3c+1)(α,γ,αγ2+π3,αγ2+7π6,αγ2+5π6,α+γ2+π3)(r,2s,r2+s23c+1,r2s2+3c+1,r2+s2+3c1,r2+s2+3c+1)(α2γ2+7π12,3α2+γ2+7π12,αγ2+π3,αγ2+7π6,α2+π4,α2+γπ4)(r2s2+3c,r2+3s2+3c,r2s2+3c+1,r2+s23c+1,s+1,r+s1) Colored in red is the orbit element commonly used to define the family in literature.

New Family

For any real parameter t>4 , let s=12(cos13(t+4)(t2)t+2+cos13(t4)(t+2)t2+cos1t228(t2)(t+2)+cos1(t4)(t+4)2(t2)(t+2)) Then the new family and its Regge orbit is given as follows. Dihedral AnglesEdge Lengths(cos13(t+4)(t2)t+2,cos13(t4)(t+2)t2,cos13(t+4)(t2)t+2,cos13(t4)(t+2)t2,cos1t228(t2)(t+2),cos1(t4)(t+4)2(t2)(t+2))(t+1,t1,t+1,t1,t,6)(cos13(t+4)(t2)t+2,cos13(t4)(t+2)t2,scos13(t+4)(t2)t+2,scos13(t4)(t+2)t2,scos1t228(t2)(t+2),scos1(t4)(t+4)2(t2)(t+2))(t+1,t1,t2+2,t2+4,t2+3,3t23)

Sporadic Cases

Newly discovered sporadic tetrahedra

(11,9,26,22,30,16)(11,10,24,22,30,14)(12,8,25,23,30,16)(13,7,22,21,23,24)(13,11,21,17,27,12)(13,12,16,8,14,16)(14,10,20,18,27,12)(15,13,18,10,19,9)(16,4,27,25,30,24)(16,4,28,26,29,23)(16,16,29,25,16,30)(17,3,24,22,26,22)(17,3,25,21,25,23)(18,14,27,27,16,30)(19,17,21,15,7,29)(20,7,27,25,28,29)(20,11,21,11,30,9)(20,15,23,19,17,29)(20,15,25,21,15,27)(21,11,24,15,26,5)(21,15,26,18,30,26)(21,19,26,14,26,29)(22,14,25,19,30,26)(22,14,27,14,17,27)(23,9,23,23,25,29)(23,9,25,21,27,27)(23,13,26,18,14,27)(23,21,30,13,29,30)(25,22,29,9,30,27)(13,11,13,12,11,19)(11,9,26,22,30,16)(11,10,24,22,30,14)(12,8,25,23,30,16)(13,7,22,21,23,24)(13,11,21,17,27,12)(13,12,16,8,14,16)(14,10,20,18,27,12)(15,13,18,10,19,9)(16,4,27,25,30,24)(16,4,28,26,29,23)(16,16,29,25,16,30)(17,3,24,22,26,22)(17,3,25,21,25,23)(18,14,27,27,16,30)(19,17,21,15,7,29)(20,7,27,25,28,29)(20,11,21,11,30,9)(20,15,23,19,17,29)(20,15,25,21,15,27)(21,11,24,15,26,5)(21,15,26,18,30,26)(21,19,26,14,26,29)(22,14,25,19,30,26)(22,14,27,14,17,27)(23,9,23,23,25,29)(23,9,25,21,27,27)(23,13,26,18,14,27)(23,21,30,13,29,30)(25,22,29,9,30,27)(13,11,13,12,11,19)
\