Harvard-MIT Math Tournament

March 17, 2002

Individual Subject Test: Calculus

- 1. Two circles have centers that are d units apart, and each has diameter \sqrt{d} . For any d, let A(d) be the area of the smallest circle that contains both of these circles. Find $\lim_{d\to\infty}\frac{A(d)}{d^2}$.
- **2.** Find $\lim_{h\to 0} \frac{x^2-(x+h)^2}{h}$.
- **3.** We are given the values of the differentiable real functions f, g, h, as well as the derivatives of their pairwise products, at x = 0:

$$f(0) = 1$$
; $g(0) = 2$; $h(0) = 3$; $(gh)'(0) = 4$; $(hf)'(0) = 5$; $(fg)'(0) = 6$.

Find the value of (fgh)'(0).

- **4.** Find the area of the region in the first quadrant x > 0, y > 0 bounded above the graph of $y = \arcsin(x)$ and below the graph of the $y = \arccos(x)$.
- **5.** What is the minimum vertical distance between the graphs of $2 + \sin(x)$ and $\cos(x)$?
- **6.** Determine the positive value of a such that the parabola $y = x^2 + 1$ bisects the area of the rectangle with vertices $(0,0), (a,0), (0,a^2+1)$, and (a,a^2+1) .
- 7. Denote by $\langle x \rangle$ the fractional part of the real number x (for instance, $\langle 3.2 \rangle = 0.2$). A positive integer N is selected randomly from the set $\{1,2,3,\ldots,M\}$, with each integer having the same probability of being picked, and $\langle \frac{87}{303}N \rangle$ is calculated. This procedure is repeated M times and the average value A(M) is obtained. What is $\lim_{M \to \infty} A(M)$?
- **8.** Evaluate $\int_{0}^{(\sqrt{2}-1)/2} \frac{dx}{(2x+1)\sqrt{x^2+x}}.$
- **9.** Suppose f is a differentiable real function such that $f(x) + f'(x) \le 1$ for all x, and f(0) = 0. What is the largest possible value of f(1)? (Hint: consider the function $e^x f(x)$.)
- **10.** A continuous real function f satisfies the identity f(2x) = 3f(x) for all x. If $\int_0^1 f(x) dx = 1$, what is $\int_1^2 f(x) dx$?

1