class GraphModule(torch.nn.Module): def forward(self, L_x_: "f32[1, 3, 1088, 1088][3551232, 1183744, 1088, 1]cuda:0", L_self_modules_patch_embed_modules_proj_parameters_weight_: "f32[128, 3, 4, 4][48, 16, 4, 1]cuda:0", L_self_modules_patch_embed_modules_proj_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_patch_embed_modules_norm_parameters_weight_: "f32[128][1]cuda:0", L_self_modules_patch_embed_modules_norm_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_weight_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_: "f32[384, 128][128, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_: "f32[384][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_: "f32[169, 4][4, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_: "f32[128, 128][128, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_weight_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_: "f32[512, 128][128, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_: "f32[128, 512][512, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_weight_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_: "f32[384, 128][128, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_: "f32[384][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_: "f32[169, 4][4, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_: "f32[128, 128][128, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_weight_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_: "f32[512, 128][128, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_: "f32[128, 512][512, 1]cuda:0", L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_0_modules_downsample_modules_reduction_parameters_weight_: "f32[256, 512][512, 1]cuda:0", L_self_modules_norm0_parameters_weight_: "f32[128][1]cuda:0", L_self_modules_norm0_parameters_bias_: "f32[128][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_weight_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_: "f32[768, 256][256, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_: "f32[768][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_: "f32[169, 8][8, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_: "f32[256, 256][256, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_weight_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_: "f32[1024, 256][256, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_: "f32[1024][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_: "f32[256, 1024][1024, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_weight_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_: "f32[768, 256][256, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_: "f32[768][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_: "f32[169, 8][8, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_: "f32[256, 256][256, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_weight_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_: "f32[1024, 256][256, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_: "f32[1024][1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_: "f32[256, 1024][1024, 1]cuda:0", L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_weight_: "f32[1024][1]cuda:0", L_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_bias_: "f32[1024][1]cuda:0", L_self_modules_layers_modules_1_modules_downsample_modules_reduction_parameters_weight_: "f32[512, 1024][1024, 1]cuda:0", L_self_modules_norm1_parameters_weight_: "f32[256][1]cuda:0", L_self_modules_norm1_parameters_bias_: "f32[256][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_weight_: "f32[1536, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_bias_: "f32[1536][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_parameters_relative_position_bias_table_: "f32[169, 16][16, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_buffers_relative_position_index_: "i64[49, 49][49, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_weight_: "f32[512, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_weight_: "f32[2048, 512][512, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_bias_: "f32[2048][1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_weight_: "f32[512, 2048][2048, 1]cuda:0", L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_bias_: "f32[512][1]cuda:0", L_self_modules_norm2_parameters_weight_: "f32[512][1]cuda:0", L_self_modules_norm2_parameters_bias_: "f32[512][1]cuda:0"): l_x_ = L_x_ l_self_modules_patch_embed_modules_proj_parameters_weight_ = L_self_modules_patch_embed_modules_proj_parameters_weight_ l_self_modules_patch_embed_modules_proj_parameters_bias_ = L_self_modules_patch_embed_modules_proj_parameters_bias_ l_self_modules_patch_embed_modules_norm_parameters_weight_ = L_self_modules_patch_embed_modules_norm_parameters_weight_ l_self_modules_patch_embed_modules_norm_parameters_bias_ = L_self_modules_patch_embed_modules_norm_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_weight_ = L_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_weight_ l_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_bias_ = L_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_bias_ l_self_modules_layers_modules_0_modules_downsample_modules_reduction_parameters_weight_ = L_self_modules_layers_modules_0_modules_downsample_modules_reduction_parameters_weight_ l_self_modules_norm0_parameters_weight_ = L_self_modules_norm0_parameters_weight_ l_self_modules_norm0_parameters_bias_ = L_self_modules_norm0_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_weight_ = L_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_weight_ l_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_bias_ = L_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_bias_ l_self_modules_layers_modules_1_modules_downsample_modules_reduction_parameters_weight_ = L_self_modules_layers_modules_1_modules_downsample_modules_reduction_parameters_weight_ l_self_modules_norm1_parameters_weight_ = L_self_modules_norm1_parameters_weight_ l_self_modules_norm1_parameters_bias_ = L_self_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_parameters_relative_position_bias_table_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_parameters_relative_position_bias_table_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_buffers_relative_position_index_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_buffers_relative_position_index_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_bias_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_weight_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_weight_ l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_bias_ = L_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_bias_ l_self_modules_norm2_parameters_weight_ = L_self_modules_norm2_parameters_weight_ l_self_modules_norm2_parameters_bias_ = L_self_modules_norm2_parameters_bias_ # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/conv.py:453 in _conv_forward, code: return F.conv2d(input, weight, bias, self.stride, x: "f16[1, 128, 272, 272][9469952, 73984, 272, 1]cuda:0" = torch.conv2d(l_x_, l_self_modules_patch_embed_modules_proj_parameters_weight_, l_self_modules_patch_embed_modules_proj_parameters_bias_, (4, 4), (0, 0), (1, 1), 1); l_x_ = l_self_modules_patch_embed_modules_proj_parameters_weight_ = l_self_modules_patch_embed_modules_proj_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:520 in forward, code: x = x.flatten(2).transpose(1, 2) flatten: "f16[1, 128, 73984][9469952, 73984, 1]cuda:0" = x.flatten(2); x = None x_1: "f16[1, 73984, 128][9469952, 1, 73984]cuda:0" = flatten.transpose(1, 2); flatten = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_2: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.layer_norm(x_1, (128,), l_self_modules_patch_embed_modules_norm_parameters_weight_, l_self_modules_patch_embed_modules_norm_parameters_bias_, 1e-05); x_1 = l_self_modules_patch_embed_modules_norm_parameters_weight_ = l_self_modules_patch_embed_modules_norm_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:522 in forward, code: x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) transpose_1: "f32[1, 128, 73984][9469952, 1, 128]cuda:0" = x_2.transpose(1, 2); x_2 = None x_3: "f32[1, 128, 272, 272][9469952, 1, 34816, 128]cuda:0" = transpose_1.view(-1, 128, 272, 272); transpose_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:703 in forward, code: x = x.flatten(2).transpose(1, 2) flatten_1: "f32[1, 128, 73984][9469952, 1, 128]cuda:0" = x_3.flatten(2); x_3 = None x_4: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = flatten_1.transpose(1, 2); flatten_1 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_5: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.dropout(x_4, 0.0, False, False); x_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:435 in forward, code: H_tensor = torch.tensor(H, dtype=torch.float32, device=x.device) H_tensor: "f32[][]cuda:0" = torch.tensor(272, dtype = torch.float32, device = device(type='cuda', index=0)) # File: /workspace/networks/encoders/swin/swin_transformer.py:436 in forward, code: W_tensor = torch.tensor(W, dtype=torch.float32, device=x.device) W_tensor: "f32[][]cuda:0" = torch.tensor(272, dtype = torch.float32, device = device(type='cuda', index=0)) # File: /workspace/networks/encoders/swin/swin_transformer.py:437 in forward, code: Hp = torch.ceil(H_tensor / self.window_size) * self.window_size truediv: "f32[][]cuda:0" = H_tensor / 7; H_tensor = None ceil: "f32[][]cuda:0" = torch.ceil(truediv); truediv = None Hp: "f32[][]cuda:0" = ceil * 7; ceil = None # File: /workspace/networks/encoders/swin/swin_transformer.py:438 in forward, code: Wp = torch.ceil(W_tensor / self.window_size) * self.window_size truediv_1: "f32[][]cuda:0" = W_tensor / 7; W_tensor = None ceil_1: "f32[][]cuda:0" = torch.ceil(truediv_1); truediv_1 = None Wp: "f32[][]cuda:0" = ceil_1 * 7; ceil_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:440 in forward, code: Hp = Hp.to(torch.int32) # Ensure Hp is an integer tensor Hp_1: "i32[][]cuda:0" = Hp.to(torch.int32); Hp = None # File: /workspace/networks/encoders/swin/swin_transformer.py:441 in forward, code: Wp = Wp.to(torch.int32) # Ensure Wp is an integer tensor Wp_1: "i32[][]cuda:0" = Wp.to(torch.int32); Wp = None # File: /workspace/networks/encoders/swin/swin_transformer.py:443 in forward, code: img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 img_mask: "f32[1, 273, 273, 1][74529, 273, 1, 1]cuda:0" = torch.zeros((1, Hp_1, Wp_1, 1), device = device(type='cuda', index=0)); Hp_1 = Wp_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:453 in forward, code: img_mask[:, h, w, :] = cnt img_mask[(slice(None, None, None), slice(0, -7, None), slice(0, -7, None), slice(None, None, None))] = 0; setitem = img_mask img_mask[(slice(None, None, None), slice(0, -7, None), slice(-7, -3, None), slice(None, None, None))] = 1; setitem_1 = img_mask img_mask[(slice(None, None, None), slice(0, -7, None), slice(-3, None, None), slice(None, None, None))] = 2; setitem_2 = img_mask img_mask[(slice(None, None, None), slice(-7, -3, None), slice(0, -7, None), slice(None, None, None))] = 3; setitem_3 = img_mask img_mask[(slice(None, None, None), slice(-7, -3, None), slice(-7, -3, None), slice(None, None, None))] = 4; setitem_4 = img_mask img_mask[(slice(None, None, None), slice(-7, -3, None), slice(-3, None, None), slice(None, None, None))] = 5; setitem_5 = img_mask img_mask[(slice(None, None, None), slice(-3, None, None), slice(0, -7, None), slice(None, None, None))] = 6; setitem_6 = img_mask img_mask[(slice(None, None, None), slice(-3, None, None), slice(-7, -3, None), slice(None, None, None))] = 7; setitem_7 = img_mask img_mask[(slice(None, None, None), slice(-3, None, None), slice(-3, None, None), slice(None, None, None))] = 8; setitem_8 = img_mask # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_6: "f32[1, 39, 7, 39, 7, 1][74529, 1911, 273, 7, 1, 1]cuda:0" = img_mask.view(1, 39, 7, 39, 7, 1); img_mask = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute: "f32[1, 39, 39, 7, 7, 1][74529, 1911, 7, 273, 1, 1]cuda:0" = x_6.permute(0, 1, 3, 2, 4, 5); x_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous: "f32[1, 39, 39, 7, 7, 1][74529, 1911, 49, 7, 1, 1]cuda:0" = permute.contiguous(); permute = None windows: "f32[1521, 7, 7, 1][49, 7, 1, 1]cuda:0" = contiguous.view(-1, 7, 7, 1); contiguous = None # File: /workspace/networks/encoders/swin/swin_transformer.py:458 in forward, code: mask_windows = mask_windows.view(-1, mask_windows: "f32[1521, 49][49, 1]cuda:0" = windows.view(-1, 49); windows = None # File: /workspace/networks/encoders/swin/swin_transformer.py:460 in forward, code: attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) unsqueeze: "f32[1521, 1, 49][49, 49, 1]cuda:0" = mask_windows.unsqueeze(1) unsqueeze_1: "f32[1521, 49, 1][49, 1, 1]cuda:0" = mask_windows.unsqueeze(2); mask_windows = None attn_mask: "f32[1521, 49, 49][2401, 49, 1]cuda:0" = unsqueeze - unsqueeze_1; unsqueeze = unsqueeze_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:461 in forward, code: attn_mask = attn_mask.masked_fill(attn_mask != 0, ne: "b8[1521, 49, 49][2401, 49, 1]cuda:0" = attn_mask != 0 masked_fill: "f32[1521, 49, 49][2401, 49, 1]cuda:0" = attn_mask.masked_fill(ne, -100.0); ne = None # File: /workspace/networks/encoders/swin/swin_transformer.py:463 in forward, code: attn_mask == 0, float(0.0)) eq: "b8[1521, 49, 49][2401, 49, 1]cuda:0" = attn_mask == 0; attn_mask = None # File: /workspace/networks/encoders/swin/swin_transformer.py:462 in forward, code: float(-100.0)).masked_fill( attn_mask_1: "f32[1521, 49, 49][2401, 49, 1]cuda:0" = masked_fill.masked_fill(eq, 0.0); masked_fill = eq = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_7: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.layer_norm(x_5, (128,), l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_8: "f32[1, 272, 272, 128][9469952, 34816, 128, 1]cuda:0" = x_7.view(1, 272, 272, 128); x_7 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_9: "f32[1, 273, 273, 128][9539712, 34944, 128, 1]cuda:0" = torch._C._nn.pad(x_8, (0, 0, 0, 1, 0, 1), 'constant', None); x_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_10: "f32[1, 39, 7, 39, 7, 128][9539712, 244608, 34944, 896, 128, 1]cuda:0" = x_9.view(1, 39, 7, 39, 7, 128); x_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_1: "f32[1, 39, 39, 7, 7, 128][9539712, 244608, 896, 34944, 128, 1]cuda:0" = x_10.permute(0, 1, 3, 2, 4, 5); x_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_1: "f32[1, 39, 39, 7, 7, 128][9539712, 244608, 6272, 896, 128, 1]cuda:0" = permute_1.contiguous(); permute_1 = None windows_1: "f32[1521, 7, 7, 128][6272, 896, 128, 1]cuda:0" = contiguous_1.view(-1, 7, 7, 128); contiguous_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows: "f32[1521, 49, 128][6272, 128, 1]cuda:0" = windows_1.view(-1, 49, 128); windows_1 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear: "f16[1521, 49, 384][18816, 384, 1]cuda:0" = torch._C._nn.linear(x_windows, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_); x_windows = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape: "f16[1521, 49, 3, 4, 32][18816, 384, 128, 32, 1]cuda:0" = linear.reshape(1521, 49, 3, 4, 32); linear = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv: "f16[3, 1521, 4, 49, 32][128, 18816, 32, 384, 1]cuda:0" = reshape.permute(2, 0, 3, 1, 4); reshape = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q: "f16[1521, 4, 49, 32][18816, 32, 384, 1]cuda:0" = qkv[0] k: "f16[1521, 4, 49, 32][18816, 32, 384, 1]cuda:0" = qkv[1] v: "f16[1521, 4, 49, 32][18816, 32, 384, 1]cuda:0" = qkv[2]; qkv = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_1: "f16[1521, 4, 49, 32][6272, 32, 128, 1]cuda:0" = q * 0.1767766952966369; q = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_3: "f16[1521, 4, 32, 49][18816, 32, 1, 384]cuda:0" = k.transpose(-2, -1); k = None attn: "f16[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = q_1 @ transpose_3; q_1 = transpose_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_8: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_3: "f32[2401, 4][4, 1]cuda:0" = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_[view_8]; l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ = view_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias: "f32[49, 49, 4][196, 4, 1]cuda:0" = getitem_3.view(49, 49, -1); getitem_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_3: "f32[4, 49, 49][1, 196, 4]cuda:0" = relative_position_bias.permute(2, 0, 1); relative_position_bias = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_1: "f32[4, 49, 49][2401, 49, 1]cuda:0" = permute_3.contiguous(); permute_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_2: "f32[1, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = relative_position_bias_1.unsqueeze(0); relative_position_bias_1 = None attn_1: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = attn + unsqueeze_2; attn = unsqueeze_2 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_2: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_1, -1, _stacklevel = 5); attn_1 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_3: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_2, 0.0, False, False); attn_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_1: "f16[1521, 4, 49, 32][6272, 1568, 32, 1]cuda:0" = attn_3 @ v; attn_3 = v = None transpose_4: "f16[1521, 49, 4, 32][6272, 32, 1568, 1]cuda:0" = matmul_1.transpose(1, 2); matmul_1 = None x_11: "f16[1521, 49, 128][6272, 128, 1]cuda:0" = transpose_4.reshape(1521, 49, 128); transpose_4 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_12: "f16[1521, 49, 128][6272, 128, 1]cuda:0" = torch._C._nn.linear(x_11, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_); x_11 = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_13: "f16[1521, 49, 128][6272, 128, 1]cuda:0" = torch.nn.functional.dropout(x_12, 0.0, False, False); x_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows: "f16[1521, 7, 7, 128][6272, 896, 128, 1]cuda:0" = x_13.view(-1, 7, 7, 128); x_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_14: "f16[1, 39, 39, 7, 7, 128][9539712, 244608, 6272, 896, 128, 1]cuda:0" = attn_windows.view(1, 39, 39, 7, 7, -1); attn_windows = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_4: "f16[1, 39, 7, 39, 7, 128][9539712, 244608, 896, 6272, 128, 1]cuda:0" = x_14.permute(0, 1, 3, 2, 4, 5); x_14 = None contiguous_3: "f16[1, 39, 7, 39, 7, 128][9539712, 244608, 34944, 896, 128, 1]cuda:0" = permute_4.contiguous(); permute_4 = None x_15: "f16[1, 273, 273, 128][9539712, 34944, 128, 1]cuda:0" = contiguous_3.view(1, 273, 273, -1); contiguous_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_4: "f16[1, 272, 272, 128][9539712, 34944, 128, 1]cuda:0" = x_15[(slice(None, None, None), slice(None, 272, None), slice(None, 272, None), slice(None, None, None))]; x_15 = None x_16: "f16[1, 272, 272, 128][9469952, 34816, 128, 1]cuda:0" = getitem_4.contiguous(); getitem_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_17: "f16[1, 73984, 128][9469952, 128, 1]cuda:0" = x_16.view(1, 73984, 128); x_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_18: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = x_5 + x_17; x_5 = x_17 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_2: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.layer_norm(x_18, (128,), l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_19: "f16[1, 73984, 512][37879808, 512, 1]cuda:0" = torch._C._nn.linear(layer_norm_2, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_); layer_norm_2 = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_20: "f16[1, 73984, 512][37879808, 512, 1]cuda:0" = torch._C._nn.gelu(x_19, approximate = 'none'); x_19 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_21: "f16[1, 73984, 512][37879808, 512, 1]cuda:0" = torch.nn.functional.dropout(x_20, 0.0, False, False); x_20 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_22: "f16[1, 73984, 128][9469952, 128, 1]cuda:0" = torch._C._nn.linear(x_21, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_); x_21 = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_23: "f16[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.dropout(x_22, 0.0, False, False); x_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_24: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = x_18 + x_23; x_18 = x_23 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_25: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.layer_norm(x_24, (128,), l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_26: "f32[1, 272, 272, 128][9469952, 34816, 128, 1]cuda:0" = x_25.view(1, 272, 272, 128); x_25 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_27: "f32[1, 273, 273, 128][9539712, 34944, 128, 1]cuda:0" = torch._C._nn.pad(x_26, (0, 0, 0, 1, 0, 1), 'constant', None); x_26 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x: "f32[1, 273, 273, 128][9539712, 34944, 128, 1]cuda:0" = torch.roll(x_27, shifts = (-3, -3), dims = (1, 2)); x_27 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_28: "f32[1, 39, 7, 39, 7, 128][9539712, 244608, 34944, 896, 128, 1]cuda:0" = shifted_x.view(1, 39, 7, 39, 7, 128); shifted_x = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_5: "f32[1, 39, 39, 7, 7, 128][9539712, 244608, 896, 34944, 128, 1]cuda:0" = x_28.permute(0, 1, 3, 2, 4, 5); x_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_5: "f32[1, 39, 39, 7, 7, 128][9539712, 244608, 6272, 896, 128, 1]cuda:0" = permute_5.contiguous(); permute_5 = None windows_2: "f32[1521, 7, 7, 128][6272, 896, 128, 1]cuda:0" = contiguous_5.view(-1, 7, 7, 128); contiguous_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_1: "f32[1521, 49, 128][6272, 128, 1]cuda:0" = windows_2.view(-1, 49, 128); windows_2 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_4: "f16[1521, 49, 384][18816, 384, 1]cuda:0" = torch._C._nn.linear(x_windows_1, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_); x_windows_1 = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_2: "f16[1521, 49, 3, 4, 32][18816, 384, 128, 32, 1]cuda:0" = linear_4.reshape(1521, 49, 3, 4, 32); linear_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_1: "f16[3, 1521, 4, 49, 32][128, 18816, 32, 384, 1]cuda:0" = reshape_2.permute(2, 0, 3, 1, 4); reshape_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_2: "f16[1521, 4, 49, 32][18816, 32, 384, 1]cuda:0" = qkv_1[0] k_1: "f16[1521, 4, 49, 32][18816, 32, 384, 1]cuda:0" = qkv_1[1] v_1: "f16[1521, 4, 49, 32][18816, 32, 384, 1]cuda:0" = qkv_1[2]; qkv_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_3: "f16[1521, 4, 49, 32][6272, 32, 128, 1]cuda:0" = q_2 * 0.1767766952966369; q_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_5: "f16[1521, 4, 32, 49][18816, 32, 1, 384]cuda:0" = k_1.transpose(-2, -1); k_1 = None attn_4: "f16[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = q_3 @ transpose_5; q_3 = transpose_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_18: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_8: "f32[2401, 4][4, 1]cuda:0" = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_[view_18]; l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ = view_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_2: "f32[49, 49, 4][196, 4, 1]cuda:0" = getitem_8.view(49, 49, -1); getitem_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_7: "f32[4, 49, 49][1, 196, 4]cuda:0" = relative_position_bias_2.permute(2, 0, 1); relative_position_bias_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_3: "f32[4, 49, 49][2401, 49, 1]cuda:0" = permute_7.contiguous(); permute_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_3: "f32[1, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = relative_position_bias_3.unsqueeze(0); relative_position_bias_3 = None attn_5: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = attn_4 + unsqueeze_3; attn_4 = unsqueeze_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_20: "f32[1, 1521, 4, 49, 49][14607684, 9604, 2401, 49, 1]cuda:0" = attn_5.view(1, 1521, 4, 49, 49); attn_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_4: "f32[1521, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_1.unsqueeze(1); attn_mask_1 = None unsqueeze_5: "f32[1, 1521, 1, 49, 49][3651921, 2401, 2401, 49, 1]cuda:0" = unsqueeze_4.unsqueeze(0); unsqueeze_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_6: "f32[1, 1521, 4, 49, 49][14607684, 9604, 2401, 49, 1]cuda:0" = view_20 + unsqueeze_5; view_20 = unsqueeze_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_7: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = attn_6.view(-1, 4, 49, 49); attn_6 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_8: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_7, -1, _stacklevel = 5); attn_7 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_9: "f32[1521, 4, 49, 49][9604, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_8, 0.0, False, False); attn_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_3: "f16[1521, 4, 49, 32][6272, 1568, 32, 1]cuda:0" = attn_9 @ v_1; attn_9 = v_1 = None transpose_6: "f16[1521, 49, 4, 32][6272, 32, 1568, 1]cuda:0" = matmul_3.transpose(1, 2); matmul_3 = None x_29: "f16[1521, 49, 128][6272, 128, 1]cuda:0" = transpose_6.reshape(1521, 49, 128); transpose_6 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_30: "f16[1521, 49, 128][6272, 128, 1]cuda:0" = torch._C._nn.linear(x_29, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_); x_29 = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_31: "f16[1521, 49, 128][6272, 128, 1]cuda:0" = torch.nn.functional.dropout(x_30, 0.0, False, False); x_30 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_1: "f16[1521, 7, 7, 128][6272, 896, 128, 1]cuda:0" = x_31.view(-1, 7, 7, 128); x_31 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_32: "f16[1, 39, 39, 7, 7, 128][9539712, 244608, 6272, 896, 128, 1]cuda:0" = attn_windows_1.view(1, 39, 39, 7, 7, -1); attn_windows_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_8: "f16[1, 39, 7, 39, 7, 128][9539712, 244608, 896, 6272, 128, 1]cuda:0" = x_32.permute(0, 1, 3, 2, 4, 5); x_32 = None contiguous_7: "f16[1, 39, 7, 39, 7, 128][9539712, 244608, 34944, 896, 128, 1]cuda:0" = permute_8.contiguous(); permute_8 = None x_33: "f16[1, 273, 273, 128][9539712, 34944, 128, 1]cuda:0" = contiguous_7.view(1, 273, 273, -1); contiguous_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_34: "f16[1, 273, 273, 128][9539712, 34944, 128, 1]cuda:0" = torch.roll(x_33, shifts = (3, 3), dims = (1, 2)); x_33 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_9: "f16[1, 272, 272, 128][9539712, 34944, 128, 1]cuda:0" = x_34[(slice(None, None, None), slice(None, 272, None), slice(None, 272, None), slice(None, None, None))]; x_34 = None x_35: "f16[1, 272, 272, 128][9469952, 34816, 128, 1]cuda:0" = getitem_9.contiguous(); getitem_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_36: "f16[1, 73984, 128][9469952, 128, 1]cuda:0" = x_35.view(1, 73984, 128); x_35 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_37: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = x_24 + x_36; x_24 = x_36 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_4: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.layer_norm(x_37, (128,), l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_38: "f16[1, 73984, 512][37879808, 512, 1]cuda:0" = torch._C._nn.linear(layer_norm_4, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_); layer_norm_4 = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_39: "f16[1, 73984, 512][37879808, 512, 1]cuda:0" = torch._C._nn.gelu(x_38, approximate = 'none'); x_38 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_40: "f16[1, 73984, 512][37879808, 512, 1]cuda:0" = torch.nn.functional.dropout(x_39, 0.0, False, False); x_39 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_41: "f16[1, 73984, 128][9469952, 128, 1]cuda:0" = torch._C._nn.linear(x_40, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_); x_40 = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_0_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_42: "f16[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.dropout(x_41, 0.0, False, False); x_41 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_43: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = x_37 + x_42; x_37 = x_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:344 in forward, code: x = x.view(B, H, W, C) x_44: "f32[1, 272, 272, 128][9469952, 34816, 128, 1]cuda:0" = x_43.view(1, 272, 272, 128) # File: /workspace/networks/encoders/swin/swin_transformer.py:351 in forward, code: x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x0: "f32[1, 136, 136, 128][9469952, 69632, 256, 1]cuda:0" = x_44[(slice(None, None, None), slice(0, None, 2), slice(0, None, 2), slice(None, None, None))] # File: /workspace/networks/encoders/swin/swin_transformer.py:352 in forward, code: x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x1: "f32[1, 136, 136, 128][9469952, 69632, 256, 1]cuda:0" = x_44[(slice(None, None, None), slice(1, None, 2), slice(0, None, 2), slice(None, None, None))] # File: /workspace/networks/encoders/swin/swin_transformer.py:353 in forward, code: x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x2: "f32[1, 136, 136, 128][9469952, 69632, 256, 1]cuda:0" = x_44[(slice(None, None, None), slice(0, None, 2), slice(1, None, 2), slice(None, None, None))] # File: /workspace/networks/encoders/swin/swin_transformer.py:354 in forward, code: x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x3: "f32[1, 136, 136, 128][9469952, 69632, 256, 1]cuda:0" = x_44[(slice(None, None, None), slice(1, None, 2), slice(1, None, 2), slice(None, None, None))]; x_44 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:355 in forward, code: x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x_45: "f32[1, 136, 136, 512][9469952, 69632, 512, 1]cuda:0" = torch.cat([x0, x1, x2, x3], -1); x0 = x1 = x2 = x3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:356 in forward, code: x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x_46: "f32[1, 18496, 512][9469952, 512, 1]cuda:0" = x_45.view(1, -1, 512); x_45 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_47: "f32[1, 18496, 512][9469952, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_46, (512,), l_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_weight_, l_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_bias_, 1e-05); x_46 = l_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_weight_ = l_self_modules_layers_modules_0_modules_downsample_modules_norm_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_48: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = torch._C._nn.linear(x_47, l_self_modules_layers_modules_0_modules_downsample_modules_reduction_parameters_weight_, None); x_47 = l_self_modules_layers_modules_0_modules_downsample_modules_reduction_parameters_weight_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_out: "f32[1, 73984, 128][9469952, 128, 1]cuda:0" = torch.nn.functional.layer_norm(x_43, (128,), l_self_modules_norm0_parameters_weight_, l_self_modules_norm0_parameters_bias_, 1e-05); x_43 = l_self_modules_norm0_parameters_weight_ = l_self_modules_norm0_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:715 in forward, code: out = x_out.view(-1, H, W, view_28: "f32[1, 272, 272, 128][9469952, 34816, 128, 1]cuda:0" = x_out.view(-1, 272, 272, 128); x_out = None # File: /workspace/networks/encoders/swin/swin_transformer.py:716 in forward, code: self.num_features[i]).permute(0, 3, 1, permute_9: "f32[1, 128, 272, 272][9469952, 1, 34816, 128]cuda:0" = view_28.permute(0, 3, 1, 2); view_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:717 in forward, code: 2).contiguous() out: "f32[1, 128, 272, 272][9469952, 73984, 272, 1]cuda:0" = permute_9.contiguous(); permute_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:435 in forward, code: H_tensor = torch.tensor(H, dtype=torch.float32, device=x.device) H_tensor_1: "f32[][]cuda:0" = torch.tensor(136, dtype = torch.float32, device = device(type='cuda', index=0)) # File: /workspace/networks/encoders/swin/swin_transformer.py:436 in forward, code: W_tensor = torch.tensor(W, dtype=torch.float32, device=x.device) W_tensor_1: "f32[][]cuda:0" = torch.tensor(136, dtype = torch.float32, device = device(type='cuda', index=0)) # File: /workspace/networks/encoders/swin/swin_transformer.py:437 in forward, code: Hp = torch.ceil(H_tensor / self.window_size) * self.window_size truediv_2: "f32[][]cuda:0" = H_tensor_1 / 7; H_tensor_1 = None ceil_2: "f32[][]cuda:0" = torch.ceil(truediv_2); truediv_2 = None Hp_2: "f32[][]cuda:0" = ceil_2 * 7; ceil_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:438 in forward, code: Wp = torch.ceil(W_tensor / self.window_size) * self.window_size truediv_3: "f32[][]cuda:0" = W_tensor_1 / 7; W_tensor_1 = None ceil_3: "f32[][]cuda:0" = torch.ceil(truediv_3); truediv_3 = None Wp_2: "f32[][]cuda:0" = ceil_3 * 7; ceil_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:440 in forward, code: Hp = Hp.to(torch.int32) # Ensure Hp is an integer tensor Hp_3: "i32[][]cuda:0" = Hp_2.to(torch.int32); Hp_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:441 in forward, code: Wp = Wp.to(torch.int32) # Ensure Wp is an integer tensor Wp_3: "i32[][]cuda:0" = Wp_2.to(torch.int32); Wp_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:443 in forward, code: img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 img_mask_1: "f32[1, 140, 140, 1][19600, 140, 1, 1]cuda:0" = torch.zeros((1, Hp_3, Wp_3, 1), device = device(type='cuda', index=0)); Hp_3 = Wp_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:453 in forward, code: img_mask[:, h, w, :] = cnt img_mask_1[(slice(None, None, None), slice(0, -7, None), slice(0, -7, None), slice(None, None, None))] = 0; setitem_9 = img_mask_1 img_mask_1[(slice(None, None, None), slice(0, -7, None), slice(-7, -3, None), slice(None, None, None))] = 1; setitem_10 = img_mask_1 img_mask_1[(slice(None, None, None), slice(0, -7, None), slice(-3, None, None), slice(None, None, None))] = 2; setitem_11 = img_mask_1 img_mask_1[(slice(None, None, None), slice(-7, -3, None), slice(0, -7, None), slice(None, None, None))] = 3; setitem_12 = img_mask_1 img_mask_1[(slice(None, None, None), slice(-7, -3, None), slice(-7, -3, None), slice(None, None, None))] = 4; setitem_13 = img_mask_1 img_mask_1[(slice(None, None, None), slice(-7, -3, None), slice(-3, None, None), slice(None, None, None))] = 5; setitem_14 = img_mask_1 img_mask_1[(slice(None, None, None), slice(-3, None, None), slice(0, -7, None), slice(None, None, None))] = 6; setitem_15 = img_mask_1 img_mask_1[(slice(None, None, None), slice(-3, None, None), slice(-7, -3, None), slice(None, None, None))] = 7; setitem_16 = img_mask_1 img_mask_1[(slice(None, None, None), slice(-3, None, None), slice(-3, None, None), slice(None, None, None))] = 8; setitem_17 = img_mask_1 # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_49: "f32[1, 20, 7, 20, 7, 1][19600, 980, 140, 7, 1, 1]cuda:0" = img_mask_1.view(1, 20, 7, 20, 7, 1); img_mask_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_10: "f32[1, 20, 20, 7, 7, 1][19600, 980, 7, 140, 1, 1]cuda:0" = x_49.permute(0, 1, 3, 2, 4, 5); x_49 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_10: "f32[1, 20, 20, 7, 7, 1][19600, 980, 49, 7, 1, 1]cuda:0" = permute_10.contiguous(); permute_10 = None windows_3: "f32[400, 7, 7, 1][49, 7, 1, 1]cuda:0" = contiguous_10.view(-1, 7, 7, 1); contiguous_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:458 in forward, code: mask_windows = mask_windows.view(-1, mask_windows_1: "f32[400, 49][49, 1]cuda:0" = windows_3.view(-1, 49); windows_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:460 in forward, code: attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) unsqueeze_6: "f32[400, 1, 49][49, 49, 1]cuda:0" = mask_windows_1.unsqueeze(1) unsqueeze_7: "f32[400, 49, 1][49, 1, 1]cuda:0" = mask_windows_1.unsqueeze(2); mask_windows_1 = None attn_mask_2: "f32[400, 49, 49][2401, 49, 1]cuda:0" = unsqueeze_6 - unsqueeze_7; unsqueeze_6 = unsqueeze_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:461 in forward, code: attn_mask = attn_mask.masked_fill(attn_mask != 0, ne_1: "b8[400, 49, 49][2401, 49, 1]cuda:0" = attn_mask_2 != 0 masked_fill_2: "f32[400, 49, 49][2401, 49, 1]cuda:0" = attn_mask_2.masked_fill(ne_1, -100.0); ne_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:463 in forward, code: attn_mask == 0, float(0.0)) eq_1: "b8[400, 49, 49][2401, 49, 1]cuda:0" = attn_mask_2 == 0; attn_mask_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:462 in forward, code: float(-100.0)).masked_fill( attn_mask_3: "f32[400, 49, 49][2401, 49, 1]cuda:0" = masked_fill_2.masked_fill(eq_1, 0.0); masked_fill_2 = eq_1 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_50: "f32[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.layer_norm(x_48, (256,), l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_51: "f32[1, 136, 136, 256][4734976, 34816, 256, 1]cuda:0" = x_50.view(1, 136, 136, 256); x_50 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_52: "f32[1, 140, 140, 256][5017600, 35840, 256, 1]cuda:0" = torch._C._nn.pad(x_51, (0, 0, 0, 4, 0, 4), 'constant', None); x_51 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_53: "f32[1, 20, 7, 20, 7, 256][5017600, 250880, 35840, 1792, 256, 1]cuda:0" = x_52.view(1, 20, 7, 20, 7, 256); x_52 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_11: "f32[1, 20, 20, 7, 7, 256][5017600, 250880, 1792, 35840, 256, 1]cuda:0" = x_53.permute(0, 1, 3, 2, 4, 5); x_53 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_11: "f32[1, 20, 20, 7, 7, 256][5017600, 250880, 12544, 1792, 256, 1]cuda:0" = permute_11.contiguous(); permute_11 = None windows_4: "f32[400, 7, 7, 256][12544, 1792, 256, 1]cuda:0" = contiguous_11.view(-1, 7, 7, 256); contiguous_11 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_2: "f32[400, 49, 256][12544, 256, 1]cuda:0" = windows_4.view(-1, 49, 256); windows_4 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_9: "f16[400, 49, 768][37632, 768, 1]cuda:0" = torch._C._nn.linear(x_windows_2, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_); x_windows_2 = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_4: "f16[400, 49, 3, 8, 32][37632, 768, 256, 32, 1]cuda:0" = linear_9.reshape(400, 49, 3, 8, 32); linear_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_2: "f16[3, 400, 8, 49, 32][256, 37632, 32, 768, 1]cuda:0" = reshape_4.permute(2, 0, 3, 1, 4); reshape_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_4: "f16[400, 8, 49, 32][37632, 32, 768, 1]cuda:0" = qkv_2[0] k_2: "f16[400, 8, 49, 32][37632, 32, 768, 1]cuda:0" = qkv_2[1] v_2: "f16[400, 8, 49, 32][37632, 32, 768, 1]cuda:0" = qkv_2[2]; qkv_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_5: "f16[400, 8, 49, 32][12544, 32, 256, 1]cuda:0" = q_4 * 0.1767766952966369; q_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_7: "f16[400, 8, 32, 49][37632, 32, 1, 768]cuda:0" = k_2.transpose(-2, -1); k_2 = None attn_10: "f16[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = q_5 @ transpose_7; q_5 = transpose_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_36: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_17: "f32[2401, 8][8, 1]cuda:0" = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_[view_36]; l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ = view_36 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_4: "f32[49, 49, 8][392, 8, 1]cuda:0" = getitem_17.view(49, 49, -1); getitem_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_13: "f32[8, 49, 49][1, 392, 8]cuda:0" = relative_position_bias_4.permute(2, 0, 1); relative_position_bias_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_5: "f32[8, 49, 49][2401, 49, 1]cuda:0" = permute_13.contiguous(); permute_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_8: "f32[1, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = relative_position_bias_5.unsqueeze(0); relative_position_bias_5 = None attn_11: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = attn_10 + unsqueeze_8; attn_10 = unsqueeze_8 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_12: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_11, -1, _stacklevel = 5); attn_11 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_13: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_12, 0.0, False, False); attn_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_5: "f16[400, 8, 49, 32][12544, 1568, 32, 1]cuda:0" = attn_13 @ v_2; attn_13 = v_2 = None transpose_8: "f16[400, 49, 8, 32][12544, 32, 1568, 1]cuda:0" = matmul_5.transpose(1, 2); matmul_5 = None x_54: "f16[400, 49, 256][12544, 256, 1]cuda:0" = transpose_8.reshape(400, 49, 256); transpose_8 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_55: "f16[400, 49, 256][12544, 256, 1]cuda:0" = torch._C._nn.linear(x_54, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_); x_54 = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_56: "f16[400, 49, 256][12544, 256, 1]cuda:0" = torch.nn.functional.dropout(x_55, 0.0, False, False); x_55 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_2: "f16[400, 7, 7, 256][12544, 1792, 256, 1]cuda:0" = x_56.view(-1, 7, 7, 256); x_56 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_57: "f16[1, 20, 20, 7, 7, 256][5017600, 250880, 12544, 1792, 256, 1]cuda:0" = attn_windows_2.view(1, 20, 20, 7, 7, -1); attn_windows_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_14: "f16[1, 20, 7, 20, 7, 256][5017600, 250880, 1792, 12544, 256, 1]cuda:0" = x_57.permute(0, 1, 3, 2, 4, 5); x_57 = None contiguous_13: "f16[1, 20, 7, 20, 7, 256][5017600, 250880, 35840, 1792, 256, 1]cuda:0" = permute_14.contiguous(); permute_14 = None x_58: "f16[1, 140, 140, 256][5017600, 35840, 256, 1]cuda:0" = contiguous_13.view(1, 140, 140, -1); contiguous_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_18: "f16[1, 136, 136, 256][5017600, 35840, 256, 1]cuda:0" = x_58[(slice(None, None, None), slice(None, 136, None), slice(None, 136, None), slice(None, None, None))]; x_58 = None x_59: "f16[1, 136, 136, 256][4734976, 34816, 256, 1]cuda:0" = getitem_18.contiguous(); getitem_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_60: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = x_59.view(1, 18496, 256); x_59 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_61: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = x_48 + x_60; x_48 = x_60 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_8: "f32[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.layer_norm(x_61, (256,), l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_62: "f16[1, 18496, 1024][18939904, 1024, 1]cuda:0" = torch._C._nn.linear(layer_norm_8, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_); layer_norm_8 = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_63: "f16[1, 18496, 1024][18939904, 1024, 1]cuda:0" = torch._C._nn.gelu(x_62, approximate = 'none'); x_62 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_64: "f16[1, 18496, 1024][18939904, 1024, 1]cuda:0" = torch.nn.functional.dropout(x_63, 0.0, False, False); x_63 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_65: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = torch._C._nn.linear(x_64, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_); x_64 = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_66: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.dropout(x_65, 0.0, False, False); x_65 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_67: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = x_61 + x_66; x_61 = x_66 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_68: "f32[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.layer_norm(x_67, (256,), l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_69: "f32[1, 136, 136, 256][4734976, 34816, 256, 1]cuda:0" = x_68.view(1, 136, 136, 256); x_68 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_70: "f32[1, 140, 140, 256][5017600, 35840, 256, 1]cuda:0" = torch._C._nn.pad(x_69, (0, 0, 0, 4, 0, 4), 'constant', None); x_69 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_1: "f32[1, 140, 140, 256][5017600, 35840, 256, 1]cuda:0" = torch.roll(x_70, shifts = (-3, -3), dims = (1, 2)); x_70 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_71: "f32[1, 20, 7, 20, 7, 256][5017600, 250880, 35840, 1792, 256, 1]cuda:0" = shifted_x_1.view(1, 20, 7, 20, 7, 256); shifted_x_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_15: "f32[1, 20, 20, 7, 7, 256][5017600, 250880, 1792, 35840, 256, 1]cuda:0" = x_71.permute(0, 1, 3, 2, 4, 5); x_71 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_15: "f32[1, 20, 20, 7, 7, 256][5017600, 250880, 12544, 1792, 256, 1]cuda:0" = permute_15.contiguous(); permute_15 = None windows_5: "f32[400, 7, 7, 256][12544, 1792, 256, 1]cuda:0" = contiguous_15.view(-1, 7, 7, 256); contiguous_15 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_3: "f32[400, 49, 256][12544, 256, 1]cuda:0" = windows_5.view(-1, 49, 256); windows_5 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_13: "f16[400, 49, 768][37632, 768, 1]cuda:0" = torch._C._nn.linear(x_windows_3, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_); x_windows_3 = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_6: "f16[400, 49, 3, 8, 32][37632, 768, 256, 32, 1]cuda:0" = linear_13.reshape(400, 49, 3, 8, 32); linear_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_3: "f16[3, 400, 8, 49, 32][256, 37632, 32, 768, 1]cuda:0" = reshape_6.permute(2, 0, 3, 1, 4); reshape_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_6: "f16[400, 8, 49, 32][37632, 32, 768, 1]cuda:0" = qkv_3[0] k_3: "f16[400, 8, 49, 32][37632, 32, 768, 1]cuda:0" = qkv_3[1] v_3: "f16[400, 8, 49, 32][37632, 32, 768, 1]cuda:0" = qkv_3[2]; qkv_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_7: "f16[400, 8, 49, 32][12544, 32, 256, 1]cuda:0" = q_6 * 0.1767766952966369; q_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_9: "f16[400, 8, 32, 49][37632, 32, 1, 768]cuda:0" = k_3.transpose(-2, -1); k_3 = None attn_14: "f16[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = q_7 @ transpose_9; q_7 = transpose_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_46: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_22: "f32[2401, 8][8, 1]cuda:0" = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_[view_46]; l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ = view_46 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_6: "f32[49, 49, 8][392, 8, 1]cuda:0" = getitem_22.view(49, 49, -1); getitem_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_17: "f32[8, 49, 49][1, 392, 8]cuda:0" = relative_position_bias_6.permute(2, 0, 1); relative_position_bias_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_7: "f32[8, 49, 49][2401, 49, 1]cuda:0" = permute_17.contiguous(); permute_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_9: "f32[1, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = relative_position_bias_7.unsqueeze(0); relative_position_bias_7 = None attn_15: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = attn_14 + unsqueeze_9; attn_14 = unsqueeze_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_48: "f32[1, 400, 8, 49, 49][7683200, 19208, 2401, 49, 1]cuda:0" = attn_15.view(1, 400, 8, 49, 49); attn_15 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_10: "f32[400, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_3.unsqueeze(1); attn_mask_3 = None unsqueeze_11: "f32[1, 400, 1, 49, 49][960400, 2401, 2401, 49, 1]cuda:0" = unsqueeze_10.unsqueeze(0); unsqueeze_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_16: "f32[1, 400, 8, 49, 49][7683200, 19208, 2401, 49, 1]cuda:0" = view_48 + unsqueeze_11; view_48 = unsqueeze_11 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_17: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = attn_16.view(-1, 8, 49, 49); attn_16 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_18: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_17, -1, _stacklevel = 5); attn_17 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_19: "f32[400, 8, 49, 49][19208, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_18, 0.0, False, False); attn_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_7: "f16[400, 8, 49, 32][12544, 1568, 32, 1]cuda:0" = attn_19 @ v_3; attn_19 = v_3 = None transpose_10: "f16[400, 49, 8, 32][12544, 32, 1568, 1]cuda:0" = matmul_7.transpose(1, 2); matmul_7 = None x_72: "f16[400, 49, 256][12544, 256, 1]cuda:0" = transpose_10.reshape(400, 49, 256); transpose_10 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_73: "f16[400, 49, 256][12544, 256, 1]cuda:0" = torch._C._nn.linear(x_72, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_); x_72 = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_74: "f16[400, 49, 256][12544, 256, 1]cuda:0" = torch.nn.functional.dropout(x_73, 0.0, False, False); x_73 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_3: "f16[400, 7, 7, 256][12544, 1792, 256, 1]cuda:0" = x_74.view(-1, 7, 7, 256); x_74 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_75: "f16[1, 20, 20, 7, 7, 256][5017600, 250880, 12544, 1792, 256, 1]cuda:0" = attn_windows_3.view(1, 20, 20, 7, 7, -1); attn_windows_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_18: "f16[1, 20, 7, 20, 7, 256][5017600, 250880, 1792, 12544, 256, 1]cuda:0" = x_75.permute(0, 1, 3, 2, 4, 5); x_75 = None contiguous_17: "f16[1, 20, 7, 20, 7, 256][5017600, 250880, 35840, 1792, 256, 1]cuda:0" = permute_18.contiguous(); permute_18 = None x_76: "f16[1, 140, 140, 256][5017600, 35840, 256, 1]cuda:0" = contiguous_17.view(1, 140, 140, -1); contiguous_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_77: "f16[1, 140, 140, 256][5017600, 35840, 256, 1]cuda:0" = torch.roll(x_76, shifts = (3, 3), dims = (1, 2)); x_76 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_23: "f16[1, 136, 136, 256][5017600, 35840, 256, 1]cuda:0" = x_77[(slice(None, None, None), slice(None, 136, None), slice(None, 136, None), slice(None, None, None))]; x_77 = None x_78: "f16[1, 136, 136, 256][4734976, 34816, 256, 1]cuda:0" = getitem_23.contiguous(); getitem_23 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_79: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = x_78.view(1, 18496, 256); x_78 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_80: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = x_67 + x_79; x_67 = x_79 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_10: "f32[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.layer_norm(x_80, (256,), l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_81: "f16[1, 18496, 1024][18939904, 1024, 1]cuda:0" = torch._C._nn.linear(layer_norm_10, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_); layer_norm_10 = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_82: "f16[1, 18496, 1024][18939904, 1024, 1]cuda:0" = torch._C._nn.gelu(x_81, approximate = 'none'); x_81 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_83: "f16[1, 18496, 1024][18939904, 1024, 1]cuda:0" = torch.nn.functional.dropout(x_82, 0.0, False, False); x_82 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_84: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = torch._C._nn.linear(x_83, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_); x_83 = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_1_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_85: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.dropout(x_84, 0.0, False, False); x_84 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_86: "f16[1, 18496, 256][4734976, 256, 1]cuda:0" = x_80 + x_85; x_80 = x_85 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:344 in forward, code: x = x.view(B, H, W, C) x_87: "f16[1, 136, 136, 256][4734976, 34816, 256, 1]cuda:0" = x_86.view(1, 136, 136, 256) # File: /workspace/networks/encoders/swin/swin_transformer.py:351 in forward, code: x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x0_1: "f16[1, 68, 68, 256][4734976, 69632, 512, 1]cuda:0" = x_87[(slice(None, None, None), slice(0, None, 2), slice(0, None, 2), slice(None, None, None))] # File: /workspace/networks/encoders/swin/swin_transformer.py:352 in forward, code: x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x1_1: "f16[1, 68, 68, 256][4734976, 69632, 512, 1]cuda:0" = x_87[(slice(None, None, None), slice(1, None, 2), slice(0, None, 2), slice(None, None, None))] # File: /workspace/networks/encoders/swin/swin_transformer.py:353 in forward, code: x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x2_1: "f16[1, 68, 68, 256][4734976, 69632, 512, 1]cuda:0" = x_87[(slice(None, None, None), slice(0, None, 2), slice(1, None, 2), slice(None, None, None))] # File: /workspace/networks/encoders/swin/swin_transformer.py:354 in forward, code: x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x3_1: "f16[1, 68, 68, 256][4734976, 69632, 512, 1]cuda:0" = x_87[(slice(None, None, None), slice(1, None, 2), slice(1, None, 2), slice(None, None, None))]; x_87 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:355 in forward, code: x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x_88: "f16[1, 68, 68, 1024][4734976, 69632, 1024, 1]cuda:0" = torch.cat([x0_1, x1_1, x2_1, x3_1], -1); x0_1 = x1_1 = x2_1 = x3_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:356 in forward, code: x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x_89: "f16[1, 4624, 1024][4734976, 1024, 1]cuda:0" = x_88.view(1, -1, 1024); x_88 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_90: "f32[1, 4624, 1024][4734976, 1024, 1]cuda:0" = torch.nn.functional.layer_norm(x_89, (1024,), l_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_weight_, l_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_bias_, 1e-05); x_89 = l_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_weight_ = l_self_modules_layers_modules_1_modules_downsample_modules_norm_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_91: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_90, l_self_modules_layers_modules_1_modules_downsample_modules_reduction_parameters_weight_, None); x_90 = l_self_modules_layers_modules_1_modules_downsample_modules_reduction_parameters_weight_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_out_1: "f32[1, 18496, 256][4734976, 256, 1]cuda:0" = torch.nn.functional.layer_norm(x_86, (256,), l_self_modules_norm1_parameters_weight_, l_self_modules_norm1_parameters_bias_, 1e-05); x_86 = l_self_modules_norm1_parameters_weight_ = l_self_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:715 in forward, code: out = x_out.view(-1, H, W, view_56: "f32[1, 136, 136, 256][4734976, 34816, 256, 1]cuda:0" = x_out_1.view(-1, 136, 136, 256); x_out_1 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:716 in forward, code: self.num_features[i]).permute(0, 3, 1, permute_19: "f32[1, 256, 136, 136][4734976, 1, 34816, 256]cuda:0" = view_56.permute(0, 3, 1, 2); view_56 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:717 in forward, code: 2).contiguous() out_1: "f32[1, 256, 136, 136][4734976, 18496, 136, 1]cuda:0" = permute_19.contiguous(); permute_19 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:435 in forward, code: H_tensor = torch.tensor(H, dtype=torch.float32, device=x.device) H_tensor_2: "f32[][]cuda:0" = torch.tensor(68, dtype = torch.float32, device = device(type='cuda', index=0)) # File: /workspace/networks/encoders/swin/swin_transformer.py:436 in forward, code: W_tensor = torch.tensor(W, dtype=torch.float32, device=x.device) W_tensor_2: "f32[][]cuda:0" = torch.tensor(68, dtype = torch.float32, device = device(type='cuda', index=0)) # File: /workspace/networks/encoders/swin/swin_transformer.py:437 in forward, code: Hp = torch.ceil(H_tensor / self.window_size) * self.window_size truediv_4: "f32[][]cuda:0" = H_tensor_2 / 7; H_tensor_2 = None ceil_4: "f32[][]cuda:0" = torch.ceil(truediv_4); truediv_4 = None Hp_4: "f32[][]cuda:0" = ceil_4 * 7; ceil_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:438 in forward, code: Wp = torch.ceil(W_tensor / self.window_size) * self.window_size truediv_5: "f32[][]cuda:0" = W_tensor_2 / 7; W_tensor_2 = None ceil_5: "f32[][]cuda:0" = torch.ceil(truediv_5); truediv_5 = None Wp_4: "f32[][]cuda:0" = ceil_5 * 7; ceil_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:440 in forward, code: Hp = Hp.to(torch.int32) # Ensure Hp is an integer tensor Hp_5: "i32[][]cuda:0" = Hp_4.to(torch.int32); Hp_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:441 in forward, code: Wp = Wp.to(torch.int32) # Ensure Wp is an integer tensor Wp_5: "i32[][]cuda:0" = Wp_4.to(torch.int32); Wp_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:443 in forward, code: img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 img_mask_2: "f32[1, 70, 70, 1][4900, 70, 1, 1]cuda:0" = torch.zeros((1, Hp_5, Wp_5, 1), device = device(type='cuda', index=0)); Hp_5 = Wp_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:453 in forward, code: img_mask[:, h, w, :] = cnt img_mask_2[(slice(None, None, None), slice(0, -7, None), slice(0, -7, None), slice(None, None, None))] = 0; setitem_18 = img_mask_2 img_mask_2[(slice(None, None, None), slice(0, -7, None), slice(-7, -3, None), slice(None, None, None))] = 1; setitem_19 = img_mask_2 img_mask_2[(slice(None, None, None), slice(0, -7, None), slice(-3, None, None), slice(None, None, None))] = 2; setitem_20 = img_mask_2 img_mask_2[(slice(None, None, None), slice(-7, -3, None), slice(0, -7, None), slice(None, None, None))] = 3; setitem_21 = img_mask_2 img_mask_2[(slice(None, None, None), slice(-7, -3, None), slice(-7, -3, None), slice(None, None, None))] = 4; setitem_22 = img_mask_2 img_mask_2[(slice(None, None, None), slice(-7, -3, None), slice(-3, None, None), slice(None, None, None))] = 5; setitem_23 = img_mask_2 img_mask_2[(slice(None, None, None), slice(-3, None, None), slice(0, -7, None), slice(None, None, None))] = 6; setitem_24 = img_mask_2 img_mask_2[(slice(None, None, None), slice(-3, None, None), slice(-7, -3, None), slice(None, None, None))] = 7; setitem_25 = img_mask_2 img_mask_2[(slice(None, None, None), slice(-3, None, None), slice(-3, None, None), slice(None, None, None))] = 8; setitem_26 = img_mask_2 # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_92: "f32[1, 10, 7, 10, 7, 1][4900, 490, 70, 7, 1, 1]cuda:0" = img_mask_2.view(1, 10, 7, 10, 7, 1); img_mask_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_20: "f32[1, 10, 10, 7, 7, 1][4900, 490, 7, 70, 1, 1]cuda:0" = x_92.permute(0, 1, 3, 2, 4, 5); x_92 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_20: "f32[1, 10, 10, 7, 7, 1][4900, 490, 49, 7, 1, 1]cuda:0" = permute_20.contiguous(); permute_20 = None windows_6: "f32[100, 7, 7, 1][49, 7, 1, 1]cuda:0" = contiguous_20.view(-1, 7, 7, 1); contiguous_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:458 in forward, code: mask_windows = mask_windows.view(-1, mask_windows_2: "f32[100, 49][49, 1]cuda:0" = windows_6.view(-1, 49); windows_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:460 in forward, code: attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) unsqueeze_12: "f32[100, 1, 49][49, 49, 1]cuda:0" = mask_windows_2.unsqueeze(1) unsqueeze_13: "f32[100, 49, 1][49, 1, 1]cuda:0" = mask_windows_2.unsqueeze(2); mask_windows_2 = None attn_mask_4: "f32[100, 49, 49][2401, 49, 1]cuda:0" = unsqueeze_12 - unsqueeze_13; unsqueeze_12 = unsqueeze_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:461 in forward, code: attn_mask = attn_mask.masked_fill(attn_mask != 0, ne_2: "b8[100, 49, 49][2401, 49, 1]cuda:0" = attn_mask_4 != 0 masked_fill_4: "f32[100, 49, 49][2401, 49, 1]cuda:0" = attn_mask_4.masked_fill(ne_2, -100.0); ne_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:463 in forward, code: attn_mask == 0, float(0.0)) eq_2: "b8[100, 49, 49][2401, 49, 1]cuda:0" = attn_mask_4 == 0; attn_mask_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:462 in forward, code: float(-100.0)).masked_fill( attn_mask_5: "f32[100, 49, 49][2401, 49, 1]cuda:0" = masked_fill_4.masked_fill(eq_2, 0.0); masked_fill_4 = eq_2 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_93: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_91, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_94: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_93.view(1, 68, 68, 512); x_93 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_95: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_94, (0, 0, 0, 2, 0, 2), 'constant', None); x_94 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_96: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_95.view(1, 10, 7, 10, 7, 512); x_95 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_21: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_96.permute(0, 1, 3, 2, 4, 5); x_96 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_21: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_21.contiguous(); permute_21 = None windows_7: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_21.view(-1, 7, 7, 512); contiguous_21 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_4: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_7.view(-1, 49, 512); windows_7 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_18: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_4, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_); x_windows_4 = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_8: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_18.reshape(100, 49, 3, 16, 32); linear_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_4: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_8.permute(2, 0, 3, 1, 4); reshape_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_8: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_4[0] k_4: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_4[1] v_4: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_4[2]; qkv_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_9: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_8 * 0.1767766952966369; q_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_11: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_4.transpose(-2, -1); k_4 = None attn_20: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_9 @ transpose_11; q_9 = transpose_11 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_64: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_31: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_[view_64]; l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_parameters_relative_position_bias_table_ = view_64 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_8: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_31.view(49, 49, -1); getitem_31 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_23: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_8.permute(2, 0, 1); relative_position_bias_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_9: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_23.contiguous(); permute_23 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_14: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_9.unsqueeze(0); relative_position_bias_9 = None attn_21: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_20 + unsqueeze_14; attn_20 = unsqueeze_14 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_22: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_21, -1, _stacklevel = 5); attn_21 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_23: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_22, 0.0, False, False); attn_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_9: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_23 @ v_4; attn_23 = v_4 = None transpose_12: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_9.transpose(1, 2); matmul_9 = None x_97: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_12.reshape(100, 49, 512); transpose_12 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_98: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_97, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_); x_97 = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_99: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_98, 0.0, False, False); x_98 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_4: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_99.view(-1, 7, 7, 512); x_99 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_100: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_4.view(1, 10, 10, 7, 7, -1); attn_windows_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_24: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_100.permute(0, 1, 3, 2, 4, 5); x_100 = None contiguous_23: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_24.contiguous(); permute_24 = None x_101: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_23.view(1, 70, 70, -1); contiguous_23 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_32: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_101[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_101 = None x_102: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_32.contiguous(); getitem_32 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_103: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_102.view(1, 4624, 512); x_102 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_104: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_91 + x_103; x_91 = x_103 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_14: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_104, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_105: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_14, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_); layer_norm_14 = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_106: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_105, approximate = 'none'); x_105 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_107: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_106, 0.0, False, False); x_106 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_108: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_107, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_); x_107 = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_0_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_109: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_108, 0.0, False, False); x_108 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_110: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_104 + x_109; x_104 = x_109 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_111: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_110, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_112: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_111.view(1, 68, 68, 512); x_111 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_113: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_112, (0, 0, 0, 2, 0, 2), 'constant', None); x_112 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_2: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_113, shifts = (-3, -3), dims = (1, 2)); x_113 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_114: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_2.view(1, 10, 7, 10, 7, 512); shifted_x_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_25: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_114.permute(0, 1, 3, 2, 4, 5); x_114 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_25: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_25.contiguous(); permute_25 = None windows_8: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_25.view(-1, 7, 7, 512); contiguous_25 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_5: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_8.view(-1, 49, 512); windows_8 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_22: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_5, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_); x_windows_5 = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_10: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_22.reshape(100, 49, 3, 16, 32); linear_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_5: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_10.permute(2, 0, 3, 1, 4); reshape_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_10: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_5[0] k_5: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_5[1] v_5: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_5[2]; qkv_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_11: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_10 * 0.1767766952966369; q_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_13: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_5.transpose(-2, -1); k_5 = None attn_24: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_11 @ transpose_13; q_11 = transpose_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_74: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_36: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_[view_74]; l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_parameters_relative_position_bias_table_ = view_74 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_10: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_36.view(49, 49, -1); getitem_36 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_27: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_10.permute(2, 0, 1); relative_position_bias_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_11: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_27.contiguous(); permute_27 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_15: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_11.unsqueeze(0); relative_position_bias_11 = None attn_25: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_24 + unsqueeze_15; attn_24 = unsqueeze_15 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_76: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_25.view(1, 100, 16, 49, 49); attn_25 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_16: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_17: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_16.unsqueeze(0); unsqueeze_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_26: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_76 + unsqueeze_17; view_76 = unsqueeze_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_27: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_26.view(-1, 16, 49, 49); attn_26 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_28: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_27, -1, _stacklevel = 5); attn_27 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_29: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_28, 0.0, False, False); attn_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_11: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_29 @ v_5; attn_29 = v_5 = None transpose_14: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_11.transpose(1, 2); matmul_11 = None x_115: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_14.reshape(100, 49, 512); transpose_14 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_116: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_115, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_); x_115 = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_117: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_116, 0.0, False, False); x_116 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_5: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_117.view(-1, 7, 7, 512); x_117 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_118: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_5.view(1, 10, 10, 7, 7, -1); attn_windows_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_28: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_118.permute(0, 1, 3, 2, 4, 5); x_118 = None contiguous_27: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_28.contiguous(); permute_28 = None x_119: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_27.view(1, 70, 70, -1); contiguous_27 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_120: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_119, shifts = (3, 3), dims = (1, 2)); x_119 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_37: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_120[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_120 = None x_121: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_37.contiguous(); getitem_37 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_122: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_121.view(1, 4624, 512); x_121 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_123: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_110 + x_122; x_110 = x_122 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_16: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_123, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_124: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_16, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_); layer_norm_16 = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_125: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_124, approximate = 'none'); x_124 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_126: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_125, 0.0, False, False); x_125 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_127: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_126, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_); x_126 = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_1_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_128: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_127, 0.0, False, False); x_127 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_129: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_123 + x_128; x_123 = x_128 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_130: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_129, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_131: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_130.view(1, 68, 68, 512); x_130 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_132: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_131, (0, 0, 0, 2, 0, 2), 'constant', None); x_131 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_133: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_132.view(1, 10, 7, 10, 7, 512); x_132 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_29: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_133.permute(0, 1, 3, 2, 4, 5); x_133 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_29: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_29.contiguous(); permute_29 = None windows_9: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_29.view(-1, 7, 7, 512); contiguous_29 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_6: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_9.view(-1, 49, 512); windows_9 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_26: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_6, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_bias_); x_windows_6 = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_12: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_26.reshape(100, 49, 3, 16, 32); linear_26 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_6: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_12.permute(2, 0, 3, 1, 4); reshape_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_12: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_6[0] k_6: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_6[1] v_6: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_6[2]; qkv_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_13: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_12 * 0.1767766952966369; q_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_15: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_6.transpose(-2, -1); k_6 = None attn_30: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_13 @ transpose_15; q_13 = transpose_15 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_86: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_41: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_parameters_relative_position_bias_table_[view_86]; l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_parameters_relative_position_bias_table_ = view_86 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_12: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_41.view(49, 49, -1); getitem_41 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_31: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_12.permute(2, 0, 1); relative_position_bias_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_13: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_31.contiguous(); permute_31 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_18: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_13.unsqueeze(0); relative_position_bias_13 = None attn_31: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_30 + unsqueeze_18; attn_30 = unsqueeze_18 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_32: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_31, -1, _stacklevel = 5); attn_31 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_33: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_32, 0.0, False, False); attn_32 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_13: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_33 @ v_6; attn_33 = v_6 = None transpose_16: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_13.transpose(1, 2); matmul_13 = None x_134: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_16.reshape(100, 49, 512); transpose_16 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_135: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_134, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_bias_); x_134 = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_136: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_135, 0.0, False, False); x_135 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_6: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_136.view(-1, 7, 7, 512); x_136 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_137: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_6.view(1, 10, 10, 7, 7, -1); attn_windows_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_32: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_137.permute(0, 1, 3, 2, 4, 5); x_137 = None contiguous_31: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_32.contiguous(); permute_32 = None x_138: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_31.view(1, 70, 70, -1); contiguous_31 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_42: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_138[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_138 = None x_139: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_42.contiguous(); getitem_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_140: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_139.view(1, 4624, 512); x_139 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_141: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_129 + x_140; x_129 = x_140 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_18: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_141, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_142: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_18, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_bias_); layer_norm_18 = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_143: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_142, approximate = 'none'); x_142 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_144: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_143, 0.0, False, False); x_143 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_145: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_144, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_bias_); x_144 = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_2_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_146: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_145, 0.0, False, False); x_145 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_147: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_141 + x_146; x_141 = x_146 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_148: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_147, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_149: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_148.view(1, 68, 68, 512); x_148 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_150: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_149, (0, 0, 0, 2, 0, 2), 'constant', None); x_149 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_3: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_150, shifts = (-3, -3), dims = (1, 2)); x_150 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_151: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_3.view(1, 10, 7, 10, 7, 512); shifted_x_3 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_33: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_151.permute(0, 1, 3, 2, 4, 5); x_151 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_33: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_33.contiguous(); permute_33 = None windows_10: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_33.view(-1, 7, 7, 512); contiguous_33 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_7: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_10.view(-1, 49, 512); windows_10 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_30: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_7, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_bias_); x_windows_7 = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_14: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_30.reshape(100, 49, 3, 16, 32); linear_30 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_7: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_14.permute(2, 0, 3, 1, 4); reshape_14 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_14: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_7[0] k_7: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_7[1] v_7: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_7[2]; qkv_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_15: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_14 * 0.1767766952966369; q_14 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_17: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_7.transpose(-2, -1); k_7 = None attn_34: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_15 @ transpose_17; q_15 = transpose_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_96: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_46: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_parameters_relative_position_bias_table_[view_96]; l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_parameters_relative_position_bias_table_ = view_96 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_14: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_46.view(49, 49, -1); getitem_46 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_35: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_14.permute(2, 0, 1); relative_position_bias_14 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_15: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_35.contiguous(); permute_35 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_19: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_15.unsqueeze(0); relative_position_bias_15 = None attn_35: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_34 + unsqueeze_19; attn_34 = unsqueeze_19 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_98: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_35.view(1, 100, 16, 49, 49); attn_35 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_20: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_21: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_20.unsqueeze(0); unsqueeze_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_36: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_98 + unsqueeze_21; view_98 = unsqueeze_21 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_37: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_36.view(-1, 16, 49, 49); attn_36 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_38: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_37, -1, _stacklevel = 5); attn_37 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_39: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_38, 0.0, False, False); attn_38 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_15: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_39 @ v_7; attn_39 = v_7 = None transpose_18: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_15.transpose(1, 2); matmul_15 = None x_152: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_18.reshape(100, 49, 512); transpose_18 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_153: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_152, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_bias_); x_152 = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_154: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_153, 0.0, False, False); x_153 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_7: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_154.view(-1, 7, 7, 512); x_154 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_155: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_7.view(1, 10, 10, 7, 7, -1); attn_windows_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_36: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_155.permute(0, 1, 3, 2, 4, 5); x_155 = None contiguous_35: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_36.contiguous(); permute_36 = None x_156: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_35.view(1, 70, 70, -1); contiguous_35 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_157: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_156, shifts = (3, 3), dims = (1, 2)); x_156 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_47: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_157[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_157 = None x_158: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_47.contiguous(); getitem_47 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_159: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_158.view(1, 4624, 512); x_158 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_160: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_147 + x_159; x_147 = x_159 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_20: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_160, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_161: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_20, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_bias_); layer_norm_20 = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_162: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_161, approximate = 'none'); x_161 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_163: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_162, 0.0, False, False); x_162 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_164: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_163, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_bias_); x_163 = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_3_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_165: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_164, 0.0, False, False); x_164 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_166: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_160 + x_165; x_160 = x_165 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_167: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_166, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_168: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_167.view(1, 68, 68, 512); x_167 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_169: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_168, (0, 0, 0, 2, 0, 2), 'constant', None); x_168 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_170: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_169.view(1, 10, 7, 10, 7, 512); x_169 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_37: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_170.permute(0, 1, 3, 2, 4, 5); x_170 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_37: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_37.contiguous(); permute_37 = None windows_11: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_37.view(-1, 7, 7, 512); contiguous_37 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_8: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_11.view(-1, 49, 512); windows_11 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_34: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_8, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_bias_); x_windows_8 = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_16: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_34.reshape(100, 49, 3, 16, 32); linear_34 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_8: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_16.permute(2, 0, 3, 1, 4); reshape_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_16: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_8[0] k_8: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_8[1] v_8: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_8[2]; qkv_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_17: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_16 * 0.1767766952966369; q_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_19: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_8.transpose(-2, -1); k_8 = None attn_40: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_17 @ transpose_19; q_17 = transpose_19 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_108: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_51: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_parameters_relative_position_bias_table_[view_108]; l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_parameters_relative_position_bias_table_ = view_108 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_16: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_51.view(49, 49, -1); getitem_51 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_39: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_16.permute(2, 0, 1); relative_position_bias_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_17: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_39.contiguous(); permute_39 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_22: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_17.unsqueeze(0); relative_position_bias_17 = None attn_41: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_40 + unsqueeze_22; attn_40 = unsqueeze_22 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_42: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_41, -1, _stacklevel = 5); attn_41 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_43: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_42, 0.0, False, False); attn_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_17: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_43 @ v_8; attn_43 = v_8 = None transpose_20: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_17.transpose(1, 2); matmul_17 = None x_171: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_20.reshape(100, 49, 512); transpose_20 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_172: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_171, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_bias_); x_171 = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_173: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_172, 0.0, False, False); x_172 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_8: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_173.view(-1, 7, 7, 512); x_173 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_174: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_8.view(1, 10, 10, 7, 7, -1); attn_windows_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_40: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_174.permute(0, 1, 3, 2, 4, 5); x_174 = None contiguous_39: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_40.contiguous(); permute_40 = None x_175: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_39.view(1, 70, 70, -1); contiguous_39 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_52: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_175[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_175 = None x_176: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_52.contiguous(); getitem_52 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_177: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_176.view(1, 4624, 512); x_176 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_178: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_166 + x_177; x_166 = x_177 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_22: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_178, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_179: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_22, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_bias_); layer_norm_22 = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_180: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_179, approximate = 'none'); x_179 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_181: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_180, 0.0, False, False); x_180 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_182: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_181, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_bias_); x_181 = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_4_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_183: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_182, 0.0, False, False); x_182 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_184: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_178 + x_183; x_178 = x_183 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_185: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_184, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_186: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_185.view(1, 68, 68, 512); x_185 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_187: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_186, (0, 0, 0, 2, 0, 2), 'constant', None); x_186 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_4: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_187, shifts = (-3, -3), dims = (1, 2)); x_187 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_188: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_4.view(1, 10, 7, 10, 7, 512); shifted_x_4 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_41: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_188.permute(0, 1, 3, 2, 4, 5); x_188 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_41: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_41.contiguous(); permute_41 = None windows_12: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_41.view(-1, 7, 7, 512); contiguous_41 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_9: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_12.view(-1, 49, 512); windows_12 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_38: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_9, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_bias_); x_windows_9 = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_18: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_38.reshape(100, 49, 3, 16, 32); linear_38 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_9: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_18.permute(2, 0, 3, 1, 4); reshape_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_18: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_9[0] k_9: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_9[1] v_9: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_9[2]; qkv_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_19: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_18 * 0.1767766952966369; q_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_21: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_9.transpose(-2, -1); k_9 = None attn_44: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_19 @ transpose_21; q_19 = transpose_21 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_118: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_56: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_parameters_relative_position_bias_table_[view_118]; l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_parameters_relative_position_bias_table_ = view_118 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_18: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_56.view(49, 49, -1); getitem_56 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_43: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_18.permute(2, 0, 1); relative_position_bias_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_19: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_43.contiguous(); permute_43 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_23: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_19.unsqueeze(0); relative_position_bias_19 = None attn_45: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_44 + unsqueeze_23; attn_44 = unsqueeze_23 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_120: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_45.view(1, 100, 16, 49, 49); attn_45 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_24: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_25: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_24.unsqueeze(0); unsqueeze_24 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_46: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_120 + unsqueeze_25; view_120 = unsqueeze_25 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_47: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_46.view(-1, 16, 49, 49); attn_46 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_48: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_47, -1, _stacklevel = 5); attn_47 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_49: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_48, 0.0, False, False); attn_48 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_19: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_49 @ v_9; attn_49 = v_9 = None transpose_22: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_19.transpose(1, 2); matmul_19 = None x_189: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_22.reshape(100, 49, 512); transpose_22 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_190: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_189, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_bias_); x_189 = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_191: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_190, 0.0, False, False); x_190 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_9: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_191.view(-1, 7, 7, 512); x_191 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_192: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_9.view(1, 10, 10, 7, 7, -1); attn_windows_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_44: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_192.permute(0, 1, 3, 2, 4, 5); x_192 = None contiguous_43: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_44.contiguous(); permute_44 = None x_193: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_43.view(1, 70, 70, -1); contiguous_43 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_194: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_193, shifts = (3, 3), dims = (1, 2)); x_193 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_57: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_194[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_194 = None x_195: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_57.contiguous(); getitem_57 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_196: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_195.view(1, 4624, 512); x_195 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_197: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_184 + x_196; x_184 = x_196 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_24: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_197, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_198: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_24, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_bias_); layer_norm_24 = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_199: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_198, approximate = 'none'); x_198 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_200: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_199, 0.0, False, False); x_199 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_201: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_200, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_bias_); x_200 = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_5_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_202: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_201, 0.0, False, False); x_201 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_203: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_197 + x_202; x_197 = x_202 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_204: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_203, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_205: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_204.view(1, 68, 68, 512); x_204 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_206: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_205, (0, 0, 0, 2, 0, 2), 'constant', None); x_205 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_207: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_206.view(1, 10, 7, 10, 7, 512); x_206 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_45: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_207.permute(0, 1, 3, 2, 4, 5); x_207 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_45: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_45.contiguous(); permute_45 = None windows_13: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_45.view(-1, 7, 7, 512); contiguous_45 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_10: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_13.view(-1, 49, 512); windows_13 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_42: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_10, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_bias_); x_windows_10 = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_20: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_42.reshape(100, 49, 3, 16, 32); linear_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_10: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_20.permute(2, 0, 3, 1, 4); reshape_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_20: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_10[0] k_10: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_10[1] v_10: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_10[2]; qkv_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_21: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_20 * 0.1767766952966369; q_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_23: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_10.transpose(-2, -1); k_10 = None attn_50: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_21 @ transpose_23; q_21 = transpose_23 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_130: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_61: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_parameters_relative_position_bias_table_[view_130]; l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_parameters_relative_position_bias_table_ = view_130 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_20: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_61.view(49, 49, -1); getitem_61 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_47: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_20.permute(2, 0, 1); relative_position_bias_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_21: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_47.contiguous(); permute_47 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_26: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_21.unsqueeze(0); relative_position_bias_21 = None attn_51: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_50 + unsqueeze_26; attn_50 = unsqueeze_26 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_52: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_51, -1, _stacklevel = 5); attn_51 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_53: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_52, 0.0, False, False); attn_52 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_21: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_53 @ v_10; attn_53 = v_10 = None transpose_24: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_21.transpose(1, 2); matmul_21 = None x_208: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_24.reshape(100, 49, 512); transpose_24 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_209: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_208, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_bias_); x_208 = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_210: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_209, 0.0, False, False); x_209 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_10: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_210.view(-1, 7, 7, 512); x_210 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_211: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_10.view(1, 10, 10, 7, 7, -1); attn_windows_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_48: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_211.permute(0, 1, 3, 2, 4, 5); x_211 = None contiguous_47: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_48.contiguous(); permute_48 = None x_212: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_47.view(1, 70, 70, -1); contiguous_47 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_62: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_212[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_212 = None x_213: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_62.contiguous(); getitem_62 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_214: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_213.view(1, 4624, 512); x_213 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_215: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_203 + x_214; x_203 = x_214 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_26: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_215, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_216: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_26, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_bias_); layer_norm_26 = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_217: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_216, approximate = 'none'); x_216 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_218: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_217, 0.0, False, False); x_217 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_219: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_218, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_bias_); x_218 = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_6_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_220: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_219, 0.0, False, False); x_219 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_221: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_215 + x_220; x_215 = x_220 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_222: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_221, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_223: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_222.view(1, 68, 68, 512); x_222 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_224: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_223, (0, 0, 0, 2, 0, 2), 'constant', None); x_223 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_5: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_224, shifts = (-3, -3), dims = (1, 2)); x_224 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_225: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_5.view(1, 10, 7, 10, 7, 512); shifted_x_5 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_49: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_225.permute(0, 1, 3, 2, 4, 5); x_225 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_49: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_49.contiguous(); permute_49 = None windows_14: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_49.view(-1, 7, 7, 512); contiguous_49 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_11: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_14.view(-1, 49, 512); windows_14 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_46: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_11, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_bias_); x_windows_11 = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_22: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_46.reshape(100, 49, 3, 16, 32); linear_46 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_11: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_22.permute(2, 0, 3, 1, 4); reshape_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_22: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_11[0] k_11: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_11[1] v_11: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_11[2]; qkv_11 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_23: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_22 * 0.1767766952966369; q_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_25: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_11.transpose(-2, -1); k_11 = None attn_54: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_23 @ transpose_25; q_23 = transpose_25 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_140: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_66: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_parameters_relative_position_bias_table_[view_140]; l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_parameters_relative_position_bias_table_ = view_140 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_22: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_66.view(49, 49, -1); getitem_66 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_51: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_22.permute(2, 0, 1); relative_position_bias_22 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_23: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_51.contiguous(); permute_51 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_27: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_23.unsqueeze(0); relative_position_bias_23 = None attn_55: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_54 + unsqueeze_27; attn_54 = unsqueeze_27 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_142: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_55.view(1, 100, 16, 49, 49); attn_55 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_28: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_29: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_28.unsqueeze(0); unsqueeze_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_56: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_142 + unsqueeze_29; view_142 = unsqueeze_29 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_57: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_56.view(-1, 16, 49, 49); attn_56 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_58: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_57, -1, _stacklevel = 5); attn_57 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_59: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_58, 0.0, False, False); attn_58 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_23: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_59 @ v_11; attn_59 = v_11 = None transpose_26: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_23.transpose(1, 2); matmul_23 = None x_226: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_26.reshape(100, 49, 512); transpose_26 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_227: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_226, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_bias_); x_226 = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_228: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_227, 0.0, False, False); x_227 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_11: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_228.view(-1, 7, 7, 512); x_228 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_229: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_11.view(1, 10, 10, 7, 7, -1); attn_windows_11 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_52: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_229.permute(0, 1, 3, 2, 4, 5); x_229 = None contiguous_51: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_52.contiguous(); permute_52 = None x_230: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_51.view(1, 70, 70, -1); contiguous_51 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_231: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_230, shifts = (3, 3), dims = (1, 2)); x_230 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_67: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_231[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_231 = None x_232: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_67.contiguous(); getitem_67 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_233: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_232.view(1, 4624, 512); x_232 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_234: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_221 + x_233; x_221 = x_233 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_28: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_234, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_235: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_28, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_bias_); layer_norm_28 = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_236: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_235, approximate = 'none'); x_235 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_237: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_236, 0.0, False, False); x_236 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_238: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_237, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_bias_); x_237 = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_7_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_239: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_238, 0.0, False, False); x_238 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_240: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_234 + x_239; x_234 = x_239 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_241: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_240, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_242: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_241.view(1, 68, 68, 512); x_241 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_243: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_242, (0, 0, 0, 2, 0, 2), 'constant', None); x_242 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_244: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_243.view(1, 10, 7, 10, 7, 512); x_243 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_53: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_244.permute(0, 1, 3, 2, 4, 5); x_244 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_53: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_53.contiguous(); permute_53 = None windows_15: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_53.view(-1, 7, 7, 512); contiguous_53 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_12: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_15.view(-1, 49, 512); windows_15 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_50: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_12, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_bias_); x_windows_12 = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_24: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_50.reshape(100, 49, 3, 16, 32); linear_50 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_12: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_24.permute(2, 0, 3, 1, 4); reshape_24 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_24: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_12[0] k_12: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_12[1] v_12: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_12[2]; qkv_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_25: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_24 * 0.1767766952966369; q_24 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_27: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_12.transpose(-2, -1); k_12 = None attn_60: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_25 @ transpose_27; q_25 = transpose_27 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_152: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_71: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_parameters_relative_position_bias_table_[view_152]; l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_parameters_relative_position_bias_table_ = view_152 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_24: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_71.view(49, 49, -1); getitem_71 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_55: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_24.permute(2, 0, 1); relative_position_bias_24 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_25: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_55.contiguous(); permute_55 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_30: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_25.unsqueeze(0); relative_position_bias_25 = None attn_61: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_60 + unsqueeze_30; attn_60 = unsqueeze_30 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_62: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_61, -1, _stacklevel = 5); attn_61 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_63: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_62, 0.0, False, False); attn_62 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_25: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_63 @ v_12; attn_63 = v_12 = None transpose_28: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_25.transpose(1, 2); matmul_25 = None x_245: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_28.reshape(100, 49, 512); transpose_28 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_246: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_245, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_bias_); x_245 = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_247: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_246, 0.0, False, False); x_246 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_12: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_247.view(-1, 7, 7, 512); x_247 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_248: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_12.view(1, 10, 10, 7, 7, -1); attn_windows_12 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_56: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_248.permute(0, 1, 3, 2, 4, 5); x_248 = None contiguous_55: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_56.contiguous(); permute_56 = None x_249: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_55.view(1, 70, 70, -1); contiguous_55 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_72: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_249[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_249 = None x_250: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_72.contiguous(); getitem_72 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_251: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_250.view(1, 4624, 512); x_250 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_252: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_240 + x_251; x_240 = x_251 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_30: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_252, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_253: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_30, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_bias_); layer_norm_30 = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_254: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_253, approximate = 'none'); x_253 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_255: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_254, 0.0, False, False); x_254 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_256: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_255, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_bias_); x_255 = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_8_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_257: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_256, 0.0, False, False); x_256 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_258: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_252 + x_257; x_252 = x_257 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_259: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_258, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_260: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_259.view(1, 68, 68, 512); x_259 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_261: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_260, (0, 0, 0, 2, 0, 2), 'constant', None); x_260 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_6: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_261, shifts = (-3, -3), dims = (1, 2)); x_261 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_262: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_6.view(1, 10, 7, 10, 7, 512); shifted_x_6 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_57: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_262.permute(0, 1, 3, 2, 4, 5); x_262 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_57: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_57.contiguous(); permute_57 = None windows_16: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_57.view(-1, 7, 7, 512); contiguous_57 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_13: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_16.view(-1, 49, 512); windows_16 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_54: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_13, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_bias_); x_windows_13 = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_26: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_54.reshape(100, 49, 3, 16, 32); linear_54 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_13: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_26.permute(2, 0, 3, 1, 4); reshape_26 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_26: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_13[0] k_13: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_13[1] v_13: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_13[2]; qkv_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_27: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_26 * 0.1767766952966369; q_26 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_29: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_13.transpose(-2, -1); k_13 = None attn_64: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_27 @ transpose_29; q_27 = transpose_29 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_162: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_76: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_parameters_relative_position_bias_table_[view_162]; l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_parameters_relative_position_bias_table_ = view_162 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_26: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_76.view(49, 49, -1); getitem_76 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_59: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_26.permute(2, 0, 1); relative_position_bias_26 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_27: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_59.contiguous(); permute_59 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_31: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_27.unsqueeze(0); relative_position_bias_27 = None attn_65: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_64 + unsqueeze_31; attn_64 = unsqueeze_31 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_164: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_65.view(1, 100, 16, 49, 49); attn_65 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_32: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_33: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_32.unsqueeze(0); unsqueeze_32 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_66: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_164 + unsqueeze_33; view_164 = unsqueeze_33 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_67: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_66.view(-1, 16, 49, 49); attn_66 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_68: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_67, -1, _stacklevel = 5); attn_67 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_69: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_68, 0.0, False, False); attn_68 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_27: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_69 @ v_13; attn_69 = v_13 = None transpose_30: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_27.transpose(1, 2); matmul_27 = None x_263: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_30.reshape(100, 49, 512); transpose_30 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_264: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_263, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_bias_); x_263 = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_265: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_264, 0.0, False, False); x_264 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_13: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_265.view(-1, 7, 7, 512); x_265 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_266: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_13.view(1, 10, 10, 7, 7, -1); attn_windows_13 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_60: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_266.permute(0, 1, 3, 2, 4, 5); x_266 = None contiguous_59: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_60.contiguous(); permute_60 = None x_267: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_59.view(1, 70, 70, -1); contiguous_59 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_268: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_267, shifts = (3, 3), dims = (1, 2)); x_267 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_77: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_268[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_268 = None x_269: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_77.contiguous(); getitem_77 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_270: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_269.view(1, 4624, 512); x_269 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_271: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_258 + x_270; x_258 = x_270 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_32: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_271, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_272: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_32, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_bias_); layer_norm_32 = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_273: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_272, approximate = 'none'); x_272 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_274: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_273, 0.0, False, False); x_273 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_275: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_274, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_bias_); x_274 = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_9_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_276: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_275, 0.0, False, False); x_275 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_277: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_271 + x_276; x_271 = x_276 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_278: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_277, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_279: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_278.view(1, 68, 68, 512); x_278 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_280: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_279, (0, 0, 0, 2, 0, 2), 'constant', None); x_279 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_281: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_280.view(1, 10, 7, 10, 7, 512); x_280 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_61: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_281.permute(0, 1, 3, 2, 4, 5); x_281 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_61: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_61.contiguous(); permute_61 = None windows_17: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_61.view(-1, 7, 7, 512); contiguous_61 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_14: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_17.view(-1, 49, 512); windows_17 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_58: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_14, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_bias_); x_windows_14 = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_28: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_58.reshape(100, 49, 3, 16, 32); linear_58 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_14: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_28.permute(2, 0, 3, 1, 4); reshape_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_28: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_14[0] k_14: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_14[1] v_14: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_14[2]; qkv_14 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_29: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_28 * 0.1767766952966369; q_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_31: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_14.transpose(-2, -1); k_14 = None attn_70: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_29 @ transpose_31; q_29 = transpose_31 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_174: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_81: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_parameters_relative_position_bias_table_[view_174]; l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_parameters_relative_position_bias_table_ = view_174 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_28: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_81.view(49, 49, -1); getitem_81 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_63: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_28.permute(2, 0, 1); relative_position_bias_28 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_29: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_63.contiguous(); permute_63 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_34: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_29.unsqueeze(0); relative_position_bias_29 = None attn_71: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_70 + unsqueeze_34; attn_70 = unsqueeze_34 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_72: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_71, -1, _stacklevel = 5); attn_71 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_73: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_72, 0.0, False, False); attn_72 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_29: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_73 @ v_14; attn_73 = v_14 = None transpose_32: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_29.transpose(1, 2); matmul_29 = None x_282: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_32.reshape(100, 49, 512); transpose_32 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_283: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_282, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_bias_); x_282 = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_284: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_283, 0.0, False, False); x_283 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_14: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_284.view(-1, 7, 7, 512); x_284 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_285: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_14.view(1, 10, 10, 7, 7, -1); attn_windows_14 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_64: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_285.permute(0, 1, 3, 2, 4, 5); x_285 = None contiguous_63: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_64.contiguous(); permute_64 = None x_286: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_63.view(1, 70, 70, -1); contiguous_63 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_82: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_286[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_286 = None x_287: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_82.contiguous(); getitem_82 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_288: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_287.view(1, 4624, 512); x_287 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_289: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_277 + x_288; x_277 = x_288 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_34: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_289, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_290: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_34, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_bias_); layer_norm_34 = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_291: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_290, approximate = 'none'); x_290 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_292: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_291, 0.0, False, False); x_291 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_293: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_292, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_bias_); x_292 = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_10_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_294: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_293, 0.0, False, False); x_293 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_295: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_289 + x_294; x_289 = x_294 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_296: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_295, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_297: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_296.view(1, 68, 68, 512); x_296 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_298: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_297, (0, 0, 0, 2, 0, 2), 'constant', None); x_297 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_7: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_298, shifts = (-3, -3), dims = (1, 2)); x_298 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_299: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_7.view(1, 10, 7, 10, 7, 512); shifted_x_7 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_65: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_299.permute(0, 1, 3, 2, 4, 5); x_299 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_65: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_65.contiguous(); permute_65 = None windows_18: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_65.view(-1, 7, 7, 512); contiguous_65 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_15: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_18.view(-1, 49, 512); windows_18 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_62: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_15, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_bias_); x_windows_15 = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_30: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_62.reshape(100, 49, 3, 16, 32); linear_62 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_15: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_30.permute(2, 0, 3, 1, 4); reshape_30 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_30: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_15[0] k_15: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_15[1] v_15: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_15[2]; qkv_15 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_31: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_30 * 0.1767766952966369; q_30 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_33: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_15.transpose(-2, -1); k_15 = None attn_74: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_31 @ transpose_33; q_31 = transpose_33 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_184: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_86: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_parameters_relative_position_bias_table_[view_184]; l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_parameters_relative_position_bias_table_ = view_184 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_30: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_86.view(49, 49, -1); getitem_86 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_67: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_30.permute(2, 0, 1); relative_position_bias_30 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_31: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_67.contiguous(); permute_67 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_35: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_31.unsqueeze(0); relative_position_bias_31 = None attn_75: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_74 + unsqueeze_35; attn_74 = unsqueeze_35 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_186: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_75.view(1, 100, 16, 49, 49); attn_75 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_36: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_37: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_36.unsqueeze(0); unsqueeze_36 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_76: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_186 + unsqueeze_37; view_186 = unsqueeze_37 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_77: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_76.view(-1, 16, 49, 49); attn_76 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_78: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_77, -1, _stacklevel = 5); attn_77 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_79: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_78, 0.0, False, False); attn_78 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_31: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_79 @ v_15; attn_79 = v_15 = None transpose_34: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_31.transpose(1, 2); matmul_31 = None x_300: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_34.reshape(100, 49, 512); transpose_34 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_301: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_300, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_bias_); x_300 = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_302: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_301, 0.0, False, False); x_301 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_15: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_302.view(-1, 7, 7, 512); x_302 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_303: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_15.view(1, 10, 10, 7, 7, -1); attn_windows_15 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_68: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_303.permute(0, 1, 3, 2, 4, 5); x_303 = None contiguous_67: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_68.contiguous(); permute_68 = None x_304: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_67.view(1, 70, 70, -1); contiguous_67 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_305: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_304, shifts = (3, 3), dims = (1, 2)); x_304 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_87: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_305[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_305 = None x_306: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_87.contiguous(); getitem_87 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_307: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_306.view(1, 4624, 512); x_306 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_308: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_295 + x_307; x_295 = x_307 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_36: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_308, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_309: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_36, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_bias_); layer_norm_36 = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_310: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_309, approximate = 'none'); x_309 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_311: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_310, 0.0, False, False); x_310 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_312: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_311, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_bias_); x_311 = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_11_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_313: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_312, 0.0, False, False); x_312 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_314: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_308 + x_313; x_308 = x_313 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_315: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_314, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_316: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_315.view(1, 68, 68, 512); x_315 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_317: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_316, (0, 0, 0, 2, 0, 2), 'constant', None); x_316 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_318: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_317.view(1, 10, 7, 10, 7, 512); x_317 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_69: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_318.permute(0, 1, 3, 2, 4, 5); x_318 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_69: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_69.contiguous(); permute_69 = None windows_19: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_69.view(-1, 7, 7, 512); contiguous_69 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_16: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_19.view(-1, 49, 512); windows_19 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_66: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_16, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_bias_); x_windows_16 = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_32: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_66.reshape(100, 49, 3, 16, 32); linear_66 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_16: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_32.permute(2, 0, 3, 1, 4); reshape_32 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_32: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_16[0] k_16: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_16[1] v_16: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_16[2]; qkv_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_33: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_32 * 0.1767766952966369; q_32 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_35: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_16.transpose(-2, -1); k_16 = None attn_80: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_33 @ transpose_35; q_33 = transpose_35 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_196: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_91: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_parameters_relative_position_bias_table_[view_196]; l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_parameters_relative_position_bias_table_ = view_196 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_32: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_91.view(49, 49, -1); getitem_91 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_71: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_32.permute(2, 0, 1); relative_position_bias_32 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_33: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_71.contiguous(); permute_71 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_38: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_33.unsqueeze(0); relative_position_bias_33 = None attn_81: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_80 + unsqueeze_38; attn_80 = unsqueeze_38 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_82: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_81, -1, _stacklevel = 5); attn_81 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_83: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_82, 0.0, False, False); attn_82 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_33: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_83 @ v_16; attn_83 = v_16 = None transpose_36: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_33.transpose(1, 2); matmul_33 = None x_319: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_36.reshape(100, 49, 512); transpose_36 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_320: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_319, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_bias_); x_319 = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_321: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_320, 0.0, False, False); x_320 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_16: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_321.view(-1, 7, 7, 512); x_321 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_322: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_16.view(1, 10, 10, 7, 7, -1); attn_windows_16 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_72: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_322.permute(0, 1, 3, 2, 4, 5); x_322 = None contiguous_71: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_72.contiguous(); permute_72 = None x_323: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_71.view(1, 70, 70, -1); contiguous_71 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_92: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_323[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_323 = None x_324: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_92.contiguous(); getitem_92 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_325: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_324.view(1, 4624, 512); x_324 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_326: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_314 + x_325; x_314 = x_325 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_38: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_326, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_327: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_38, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_bias_); layer_norm_38 = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_328: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_327, approximate = 'none'); x_327 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_329: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_328, 0.0, False, False); x_328 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_330: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_329, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_bias_); x_329 = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_12_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_331: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_330, 0.0, False, False); x_330 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_332: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_326 + x_331; x_326 = x_331 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_333: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_332, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_334: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_333.view(1, 68, 68, 512); x_333 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_335: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_334, (0, 0, 0, 2, 0, 2), 'constant', None); x_334 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_8: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_335, shifts = (-3, -3), dims = (1, 2)); x_335 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_336: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_8.view(1, 10, 7, 10, 7, 512); shifted_x_8 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_73: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_336.permute(0, 1, 3, 2, 4, 5); x_336 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_73: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_73.contiguous(); permute_73 = None windows_20: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_73.view(-1, 7, 7, 512); contiguous_73 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_17: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_20.view(-1, 49, 512); windows_20 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_70: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_17, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_bias_); x_windows_17 = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_34: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_70.reshape(100, 49, 3, 16, 32); linear_70 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_17: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_34.permute(2, 0, 3, 1, 4); reshape_34 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_34: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_17[0] k_17: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_17[1] v_17: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_17[2]; qkv_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_35: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_34 * 0.1767766952966369; q_34 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_37: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_17.transpose(-2, -1); k_17 = None attn_84: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_35 @ transpose_37; q_35 = transpose_37 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_206: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_96: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_parameters_relative_position_bias_table_[view_206]; l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_parameters_relative_position_bias_table_ = view_206 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_34: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_96.view(49, 49, -1); getitem_96 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_75: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_34.permute(2, 0, 1); relative_position_bias_34 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_35: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_75.contiguous(); permute_75 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_39: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_35.unsqueeze(0); relative_position_bias_35 = None attn_85: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_84 + unsqueeze_39; attn_84 = unsqueeze_39 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_208: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_85.view(1, 100, 16, 49, 49); attn_85 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_40: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_41: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_40.unsqueeze(0); unsqueeze_40 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_86: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_208 + unsqueeze_41; view_208 = unsqueeze_41 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_87: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_86.view(-1, 16, 49, 49); attn_86 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_88: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_87, -1, _stacklevel = 5); attn_87 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_89: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_88, 0.0, False, False); attn_88 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_35: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_89 @ v_17; attn_89 = v_17 = None transpose_38: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_35.transpose(1, 2); matmul_35 = None x_337: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_38.reshape(100, 49, 512); transpose_38 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_338: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_337, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_bias_); x_337 = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_339: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_338, 0.0, False, False); x_338 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_17: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_339.view(-1, 7, 7, 512); x_339 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_340: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_17.view(1, 10, 10, 7, 7, -1); attn_windows_17 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_76: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_340.permute(0, 1, 3, 2, 4, 5); x_340 = None contiguous_75: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_76.contiguous(); permute_76 = None x_341: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_75.view(1, 70, 70, -1); contiguous_75 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_342: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_341, shifts = (3, 3), dims = (1, 2)); x_341 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_97: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_342[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_342 = None x_343: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_97.contiguous(); getitem_97 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_344: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_343.view(1, 4624, 512); x_343 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_345: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_332 + x_344; x_332 = x_344 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_40: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_345, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_346: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_40, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_bias_); layer_norm_40 = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_347: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_346, approximate = 'none'); x_346 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_348: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_347, 0.0, False, False); x_347 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_349: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_348, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_bias_); x_348 = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_13_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_350: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_349, 0.0, False, False); x_349 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_351: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_345 + x_350; x_345 = x_350 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_352: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_351, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_353: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_352.view(1, 68, 68, 512); x_352 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_354: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_353, (0, 0, 0, 2, 0, 2), 'constant', None); x_353 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_355: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_354.view(1, 10, 7, 10, 7, 512); x_354 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_77: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_355.permute(0, 1, 3, 2, 4, 5); x_355 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_77: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_77.contiguous(); permute_77 = None windows_21: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_77.view(-1, 7, 7, 512); contiguous_77 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_18: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_21.view(-1, 49, 512); windows_21 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_74: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_18, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_bias_); x_windows_18 = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_36: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_74.reshape(100, 49, 3, 16, 32); linear_74 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_18: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_36.permute(2, 0, 3, 1, 4); reshape_36 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_36: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_18[0] k_18: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_18[1] v_18: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_18[2]; qkv_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_37: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_36 * 0.1767766952966369; q_36 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_39: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_18.transpose(-2, -1); k_18 = None attn_90: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_37 @ transpose_39; q_37 = transpose_39 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_218: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_101: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_parameters_relative_position_bias_table_[view_218]; l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_parameters_relative_position_bias_table_ = view_218 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_36: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_101.view(49, 49, -1); getitem_101 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_79: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_36.permute(2, 0, 1); relative_position_bias_36 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_37: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_79.contiguous(); permute_79 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_42: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_37.unsqueeze(0); relative_position_bias_37 = None attn_91: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_90 + unsqueeze_42; attn_90 = unsqueeze_42 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_92: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_91, -1, _stacklevel = 5); attn_91 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_93: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_92, 0.0, False, False); attn_92 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_37: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_93 @ v_18; attn_93 = v_18 = None transpose_40: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_37.transpose(1, 2); matmul_37 = None x_356: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_40.reshape(100, 49, 512); transpose_40 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_357: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_356, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_bias_); x_356 = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_358: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_357, 0.0, False, False); x_357 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_18: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_358.view(-1, 7, 7, 512); x_358 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_359: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_18.view(1, 10, 10, 7, 7, -1); attn_windows_18 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_80: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_359.permute(0, 1, 3, 2, 4, 5); x_359 = None contiguous_79: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_80.contiguous(); permute_80 = None x_360: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_79.view(1, 70, 70, -1); contiguous_79 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_102: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_360[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_360 = None x_361: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_102.contiguous(); getitem_102 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_362: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_361.view(1, 4624, 512); x_361 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_363: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_351 + x_362; x_351 = x_362 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_42: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_363, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_364: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_42, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_bias_); layer_norm_42 = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_365: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_364, approximate = 'none'); x_364 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_366: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_365, 0.0, False, False); x_365 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_367: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_366, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_bias_); x_366 = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_14_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_368: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_367, 0.0, False, False); x_367 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_369: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_363 + x_368; x_363 = x_368 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_370: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_369, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_371: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_370.view(1, 68, 68, 512); x_370 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_372: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_371, (0, 0, 0, 2, 0, 2), 'constant', None); x_371 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_9: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_372, shifts = (-3, -3), dims = (1, 2)); x_372 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_373: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_9.view(1, 10, 7, 10, 7, 512); shifted_x_9 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_81: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_373.permute(0, 1, 3, 2, 4, 5); x_373 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_81: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_81.contiguous(); permute_81 = None windows_22: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_81.view(-1, 7, 7, 512); contiguous_81 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_19: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_22.view(-1, 49, 512); windows_22 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_78: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_19, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_bias_); x_windows_19 = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_38: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_78.reshape(100, 49, 3, 16, 32); linear_78 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_19: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_38.permute(2, 0, 3, 1, 4); reshape_38 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_38: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_19[0] k_19: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_19[1] v_19: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_19[2]; qkv_19 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_39: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_38 * 0.1767766952966369; q_38 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_41: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_19.transpose(-2, -1); k_19 = None attn_94: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_39 @ transpose_41; q_39 = transpose_41 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_228: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_106: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_parameters_relative_position_bias_table_[view_228]; l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_parameters_relative_position_bias_table_ = view_228 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_38: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_106.view(49, 49, -1); getitem_106 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_83: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_38.permute(2, 0, 1); relative_position_bias_38 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_39: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_83.contiguous(); permute_83 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_43: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_39.unsqueeze(0); relative_position_bias_39 = None attn_95: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_94 + unsqueeze_43; attn_94 = unsqueeze_43 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_230: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_95.view(1, 100, 16, 49, 49); attn_95 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_44: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1) unsqueeze_45: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_44.unsqueeze(0); unsqueeze_44 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_96: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_230 + unsqueeze_45; view_230 = unsqueeze_45 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_97: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_96.view(-1, 16, 49, 49); attn_96 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_98: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_97, -1, _stacklevel = 5); attn_97 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_99: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_98, 0.0, False, False); attn_98 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_39: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_99 @ v_19; attn_99 = v_19 = None transpose_42: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_39.transpose(1, 2); matmul_39 = None x_374: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_42.reshape(100, 49, 512); transpose_42 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_375: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_374, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_bias_); x_374 = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_376: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_375, 0.0, False, False); x_375 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_19: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_376.view(-1, 7, 7, 512); x_376 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_377: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_19.view(1, 10, 10, 7, 7, -1); attn_windows_19 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_84: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_377.permute(0, 1, 3, 2, 4, 5); x_377 = None contiguous_83: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_84.contiguous(); permute_84 = None x_378: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_83.view(1, 70, 70, -1); contiguous_83 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_379: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_378, shifts = (3, 3), dims = (1, 2)); x_378 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_107: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_379[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_379 = None x_380: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_107.contiguous(); getitem_107 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_381: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_380.view(1, 4624, 512); x_380 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_382: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_369 + x_381; x_369 = x_381 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_44: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_382, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_383: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_44, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_bias_); layer_norm_44 = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_384: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_383, approximate = 'none'); x_383 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_385: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_384, 0.0, False, False); x_384 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_386: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_385, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_bias_); x_385 = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_15_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_387: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_386, 0.0, False, False); x_386 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_388: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_382 + x_387; x_382 = x_387 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_389: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_388, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_390: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_389.view(1, 68, 68, 512); x_389 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_391: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_390, (0, 0, 0, 2, 0, 2), 'constant', None); x_390 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_392: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = x_391.view(1, 10, 7, 10, 7, 512); x_391 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_85: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_392.permute(0, 1, 3, 2, 4, 5); x_392 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_85: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_85.contiguous(); permute_85 = None windows_23: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_85.view(-1, 7, 7, 512); contiguous_85 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_20: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_23.view(-1, 49, 512); windows_23 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_82: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_20, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_bias_); x_windows_20 = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_40: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_82.reshape(100, 49, 3, 16, 32); linear_82 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_20: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_40.permute(2, 0, 3, 1, 4); reshape_40 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_40: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_20[0] k_20: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_20[1] v_20: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_20[2]; qkv_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_41: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_40 * 0.1767766952966369; q_40 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_43: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_20.transpose(-2, -1); k_20 = None attn_100: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_41 @ transpose_43; q_41 = transpose_43 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_240: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_111: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_parameters_relative_position_bias_table_[view_240]; l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_parameters_relative_position_bias_table_ = view_240 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_40: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_111.view(49, 49, -1); getitem_111 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_87: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_40.permute(2, 0, 1); relative_position_bias_40 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_41: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_87.contiguous(); permute_87 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_46: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_41.unsqueeze(0); relative_position_bias_41 = None attn_101: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_100 + unsqueeze_46; attn_100 = unsqueeze_46 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_102: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_101, -1, _stacklevel = 5); attn_101 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_103: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_102, 0.0, False, False); attn_102 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_41: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_103 @ v_20; attn_103 = v_20 = None transpose_44: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_41.transpose(1, 2); matmul_41 = None x_393: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_44.reshape(100, 49, 512); transpose_44 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_394: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_393, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_bias_); x_393 = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_395: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_394, 0.0, False, False); x_394 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_20: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_395.view(-1, 7, 7, 512); x_395 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_396: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_20.view(1, 10, 10, 7, 7, -1); attn_windows_20 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_88: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_396.permute(0, 1, 3, 2, 4, 5); x_396 = None contiguous_87: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_88.contiguous(); permute_88 = None x_397: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_87.view(1, 70, 70, -1); contiguous_87 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_112: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_397[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_397 = None x_398: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_112.contiguous(); getitem_112 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_399: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_398.view(1, 4624, 512); x_398 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_400: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_388 + x_399; x_388 = x_399 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_46: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_400, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_401: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_46, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_bias_); layer_norm_46 = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_402: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_401, approximate = 'none'); x_401 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_403: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_402, 0.0, False, False); x_402 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_404: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_403, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_bias_); x_403 = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_16_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_405: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_404, 0.0, False, False); x_404 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_406: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_400 + x_405; x_400 = x_405 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_407: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_406, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm1_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:269 in forward, code: x = x.view(B, H, W, C) x_408: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_407.view(1, 68, 68, 512); x_407 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/functional.py:4552 in pad, code: return torch._C._nn.pad(input, pad, mode, value) x_409: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch._C._nn.pad(x_408, (0, 0, 0, 2, 0, 2), 'constant', None); x_408 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:280 in forward, code: shifted_x = torch.roll(x, shifted_x_10: "f32[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_409, shifts = (-3, -3), dims = (1, 2)); x_409 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:75 in window_partition, code: x = x.view(B, H // window_size, window_size, W // window_size, window_size, x_410: "f32[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = shifted_x_10.view(1, 10, 7, 10, 7, 512); shifted_x_10 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:77 in window_partition, code: windows = x.permute(0, 1, 3, 2, 4, permute_89: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 3584, 35840, 512, 1]cuda:0" = x_410.permute(0, 1, 3, 2, 4, 5); x_410 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:78 in window_partition, code: 5).contiguous().view(-1, window_size, window_size, C) contiguous_89: "f32[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = permute_89.contiguous(); permute_89 = None windows_24: "f32[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = contiguous_89.view(-1, 7, 7, 512); contiguous_89 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:291 in forward, code: x_windows = x_windows.view(-1, self.window_size * self.window_size, x_windows_21: "f32[100, 49, 512][25088, 512, 1]cuda:0" = windows_24.view(-1, 49, 512); windows_24 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) linear_86: "f16[100, 49, 1536][75264, 1536, 1]cuda:0" = torch._C._nn.linear(x_windows_21, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_bias_); x_windows_21 = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_qkv_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:164 in forward, code: qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, reshape_42: "f16[100, 49, 3, 16, 32][75264, 1536, 512, 32, 1]cuda:0" = linear_86.reshape(100, 49, 3, 16, 32); linear_86 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:165 in forward, code: C // self.num_heads).permute(2, 0, 3, 1, 4) qkv_21: "f16[3, 100, 16, 49, 32][512, 75264, 32, 1536, 1]cuda:0" = reshape_42.permute(2, 0, 3, 1, 4); reshape_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:166 in forward, code: q, k, v = qkv[0], qkv[1], qkv[ q_42: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_21[0] k_21: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_21[1] v_21: "f16[100, 16, 49, 32][75264, 32, 1536, 1]cuda:0" = qkv_21[2]; qkv_21 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:169 in forward, code: q = q * self.scale q_43: "f16[100, 16, 49, 32][25088, 32, 512, 1]cuda:0" = q_42 * 0.1767766952966369; q_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:170 in forward, code: attn = (q @ k.transpose(-2, -1)) transpose_45: "f16[100, 16, 32, 49][75264, 32, 1, 1536]cuda:0" = k_21.transpose(-2, -1); k_21 = None attn_104: "f16[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = q_43 @ transpose_45; q_43 = transpose_45 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( view_250: "i64[2401][1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_buffers_relative_position_index_.view(-1); l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_buffers_relative_position_index_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:172 in forward, code: relative_position_bias = self.relative_position_bias_table[ getitem_116: "f32[2401, 16][16, 1]cuda:0" = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_parameters_relative_position_bias_table_[view_250]; l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_parameters_relative_position_bias_table_ = view_250 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:173 in forward, code: self.relative_position_index.view(-1)].view( relative_position_bias_42: "f32[49, 49, 16][784, 16, 1]cuda:0" = getitem_116.view(49, 49, -1); getitem_116 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:177 in forward, code: relative_position_bias = relative_position_bias.permute( permute_91: "f32[16, 49, 49][1, 784, 16]cuda:0" = relative_position_bias_42.permute(2, 0, 1); relative_position_bias_42 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:178 in forward, code: 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias_43: "f32[16, 49, 49][2401, 49, 1]cuda:0" = permute_91.contiguous(); permute_91 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:179 in forward, code: attn = attn + relative_position_bias.unsqueeze(0) unsqueeze_47: "f32[1, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = relative_position_bias_43.unsqueeze(0); relative_position_bias_43 = None attn_105: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_104 + unsqueeze_47; attn_104 = unsqueeze_47 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, view_252: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = attn_105.view(1, 100, 16, 49, 49); attn_105 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:184 in forward, code: N) + mask.unsqueeze(1).unsqueeze(0) unsqueeze_48: "f32[100, 1, 49, 49][2401, 2401, 49, 1]cuda:0" = attn_mask_5.unsqueeze(1); attn_mask_5 = None unsqueeze_49: "f32[1, 100, 1, 49, 49][240100, 2401, 2401, 49, 1]cuda:0" = unsqueeze_48.unsqueeze(0); unsqueeze_48 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:183 in forward, code: attn = attn.view(B_ // nW, nW, self.num_heads, N, attn_106: "f32[1, 100, 16, 49, 49][3841600, 38416, 2401, 49, 1]cuda:0" = view_252 + unsqueeze_49; view_252 = unsqueeze_49 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:185 in forward, code: attn = attn.view(-1, self.num_heads, N, N) attn_107: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = attn_106.view(-1, 16, 49, 49); attn_106 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:1553 in forward, code: return F.softmax(input, self.dim, _stacklevel=5) attn_108: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.softmax(attn_107, -1, _stacklevel = 5); attn_107 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) attn_109: "f32[100, 16, 49, 49][38416, 2401, 49, 1]cuda:0" = torch.nn.functional.dropout(attn_108, 0.0, False, False); attn_108 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:192 in forward, code: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) matmul_43: "f16[100, 16, 49, 32][25088, 1568, 32, 1]cuda:0" = attn_109 @ v_21; attn_109 = v_21 = None transpose_46: "f16[100, 49, 16, 32][25088, 32, 1568, 1]cuda:0" = matmul_43.transpose(1, 2); matmul_43 = None x_411: "f16[100, 49, 512][25088, 512, 1]cuda:0" = transpose_46.reshape(100, 49, 512); transpose_46 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_412: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch._C._nn.linear(x_411, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_bias_); x_411 = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_attn_modules_proj_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_413: "f16[100, 49, 512][25088, 512, 1]cuda:0" = torch.nn.functional.dropout(x_412, 0.0, False, False); x_412 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:299 in forward, code: attn_windows = attn_windows.view(-1, self.window_size, attn_windows_21: "f16[100, 7, 7, 512][25088, 3584, 512, 1]cuda:0" = x_413.view(-1, 7, 7, 512); x_413 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:93 in window_reverse, code: x = windows.view(B, H // window_size, W // window_size, window_size, x_414: "f16[1, 10, 10, 7, 7, 512][2508800, 250880, 25088, 3584, 512, 1]cuda:0" = attn_windows_21.view(1, 10, 10, 7, 7, -1); attn_windows_21 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:95 in window_reverse, code: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) permute_92: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 3584, 25088, 512, 1]cuda:0" = x_414.permute(0, 1, 3, 2, 4, 5); x_414 = None contiguous_91: "f16[1, 10, 7, 10, 7, 512][2508800, 250880, 35840, 3584, 512, 1]cuda:0" = permute_92.contiguous(); permute_92 = None x_415: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = contiguous_91.view(1, 70, 70, -1); contiguous_91 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:306 in forward, code: x = torch.roll(shifted_x, x_416: "f16[1, 70, 70, 512][2508800, 35840, 512, 1]cuda:0" = torch.roll(x_415, shifts = (3, 3), dims = (1, 2)); x_415 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:313 in forward, code: x = x[:, :H, :W, :].contiguous() getitem_117: "f16[1, 68, 68, 512][2508800, 35840, 512, 1]cuda:0" = x_416[(slice(None, None, None), slice(None, 68, None), slice(None, 68, None), slice(None, None, None))]; x_416 = None x_417: "f16[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = getitem_117.contiguous(); getitem_117 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:315 in forward, code: x = x.view(B, H * W, C) x_418: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_417.view(1, 4624, 512); x_417 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:318 in forward, code: x = shortcut + self.drop_path(x) x_419: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_406 + x_418; x_406 = x_418 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( layer_norm_48: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_419, (512,), l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_bias_, 1e-05); l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_norm2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_420: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.linear(layer_norm_48, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_bias_); layer_norm_48 = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc1_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/activation.py:704 in forward, code: return F.gelu(input, approximate=self.approximate) x_421: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch._C._nn.gelu(x_420, approximate = 'none'); x_420 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_422: "f16[1, 4624, 2048][9469952, 2048, 1]cuda:0" = torch.nn.functional.dropout(x_421, 0.0, False, False); x_421 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/linear.py:116 in forward, code: return F.linear(input, self.weight, self.bias) x_423: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch._C._nn.linear(x_422, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_weight_, l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_bias_); x_422 = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_weight_ = l_self_modules_layers_modules_2_modules_blocks_modules_17_modules_mlp_modules_fc2_parameters_bias_ = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/dropout.py:59 in forward, code: return F.dropout(input, self.p, self.training, self.inplace) x_424: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.dropout(x_423, 0.0, False, False); x_423 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:319 in forward, code: x = x + self.drop_path(self.mlp(self.norm2(x))) x_425: "f16[1, 4624, 512][2367488, 512, 1]cuda:0" = x_419 + x_424; x_419 = x_424 = None # File: /opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py:201 in forward, code: return F.layer_norm( x_out_2: "f32[1, 4624, 512][2367488, 512, 1]cuda:0" = torch.nn.functional.layer_norm(x_425, (512,), l_self_modules_norm2_parameters_weight_, l_self_modules_norm2_parameters_bias_, 1e-05); x_425 = l_self_modules_norm2_parameters_weight_ = l_self_modules_norm2_parameters_bias_ = None # File: /workspace/networks/encoders/swin/swin_transformer.py:715 in forward, code: out = x_out.view(-1, H, W, view_258: "f32[1, 68, 68, 512][2367488, 34816, 512, 1]cuda:0" = x_out_2.view(-1, 68, 68, 512); x_out_2 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:716 in forward, code: self.num_features[i]).permute(0, 3, 1, permute_93: "f32[1, 512, 68, 68][2367488, 1, 34816, 512]cuda:0" = view_258.permute(0, 3, 1, 2); view_258 = None # File: /workspace/networks/encoders/swin/swin_transformer.py:717 in forward, code: 2).contiguous() out_2: "f32[1, 512, 68, 68][2367488, 4624, 68, 1]cuda:0" = permute_93.contiguous(); permute_93 = None return (out, out_1, out_2)