# AOT ID: ['26_inference'] from ctypes import c_void_p, c_long import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda alloc_from_pool = torch.ops.inductor._alloc_from_pool reinterpret_tensor = torch.ops.inductor._reinterpret_tensor async_compile = AsyncCompile() # kernel path: /tmp/torchinductor_root/sg/csgsgqqbzmt6jtyc3vnwgpso7zdksh35zwdqmh7pk72kg34usst5.py # Source Nodes: [local_attn, mul_1, qk_1, qk_2], Original ATen: [aten._softmax, aten.add, aten.mul, aten.sub] # local_attn => amax, exp, sub_1, sum_1 # mul_1 => mul_1 # qk_1 => add # qk_2 => sub triton_red_fused__softmax_add_mul_sub_0 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[32768, 256], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp16', 1: '*fp16', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32', 7: 'i32', 8: 'i32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__softmax_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 2, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, ks0, ks1, ks2, ks3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): rnumel = 225 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp9 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (x0 + (ks0*ks1*r1)), rmask & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) tmp1 = tl.load(in_ptr1 + (x0 + (ks2*ks3*r1)), rmask & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32) tmp4 = tl.load(in_ptr2 + (x0 + (ks2*ks3*r1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tmp2.to(tl.float32) tmp5 = 10000.0 tmp6 = tmp4 * tmp5 tmp7 = tmp3 - tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = triton_helpers.maximum(_tmp9, tmp8) _tmp9 = tl.where(rmask & xmask, tmp10, _tmp9) tmp9 = triton_helpers.max2(_tmp9, 1)[:, None] tl.store(out_ptr0 + (x0), tmp9, xmask) _tmp22 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp11 = tl.load(in_ptr0 + (x0 + (ks0*ks1*r1)), rmask & xmask, eviction_policy='evict_first', other=0.0).to(tl.float32) tmp12 = tl.load(in_ptr1 + (x0 + (ks2*ks3*r1)), rmask & xmask, eviction_policy='evict_first', other=0.0).to(tl.float32) tmp15 = tl.load(in_ptr2 + (x0 + (ks2*ks3*r1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tmp13.to(tl.float32) tmp16 = 10000.0 tmp17 = tmp15 * tmp16 tmp18 = tmp14 - tmp17 tmp19 = tmp18 - tmp9 tmp20 = tl_math.exp(tmp19) tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = _tmp22 + tmp21 _tmp22 = tl.where(rmask & xmask, tmp23, _tmp22) tmp22 = tl.sum(_tmp22, 1)[:, None] tl.store(out_ptr1 + (x0), tmp22, xmask) ''', device_str='cuda') import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream # kernel path: /tmp/torchinductor_root/7f/c7fuseg36jgg54fecumm4pizka3fwr42e4xyp4xo3ftd5rr6okqu.py # Source Nodes: [agg_bias, local_attn, mul_1, qk_1, qk_2], Original ATen: [aten._softmax, aten._to_copy, aten.add, aten.mul, aten.sub] # agg_bias => convert_element_type_2 # local_attn => div, exp, sub_1 # mul_1 => mul_1 # qk_1 => add # qk_2 => sub triton_poi_fused__softmax__to_copy_add_mul_sub_1 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp16', 1: '*fp16', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp16', 7: 'i32', 8: 'i32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax__to_copy_add_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, ks0, ks1, ks2, xnumel, XBLOCK : tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % ks0 x1 = (xindex // ks0) tmp0 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last').to(tl.float32) tmp1 = tl.load(in_ptr1 + (x0 + (ks1*ks2*x1)), xmask, eviction_policy='evict_last').to(tl.float32) tmp4 = tl.load(in_ptr2 + (x0 + (ks1*ks2*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tmp2.to(tl.float32) tmp5 = 10000.0 tmp6 = tmp4 * tmp5 tmp7 = tmp3 - tmp6 tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp13 = tmp12.to(tl.float32) tl.store(out_ptr0 + (x2), tmp12, xmask) tl.store(out_ptr1 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/py/cpyqjwajutikoyeuyhba433hzr6zmluqq6nx3an5bccby5rf7iwd.py # Source Nodes: [global_attn], Original ATen: [aten.zeros] # global_attn => full triton_poi_fused_zeros_2 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[536870912], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(out_ptr0, xnumel, XBLOCK : tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/kf/ckfgchdutcceuwjqpyokd6l4izdspbrkyc6mhjvgeyk6nfedm34s.py # Source Nodes: [reshape], Original ATen: [aten.clone] # reshape => clone_1 triton_poi_fused_clone_3 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, out_ptr0, ks0, ks1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): xnumel = 225 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (ks0*ks1*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (225*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/ui/cuiveulgk75xcy2n74qmrq3to7yb3dq3omkyl6rclihspdvuiqhq.py # Source Nodes: [global_attn, setitem], Original ATen: [aten.index_put, aten.zeros] # global_attn => full # setitem => index_put triton_poi_fused_index_put_zeros_4 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_zeros_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, out_ptr0, ks0, ks1, xnumel, XBLOCK : tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (xindex % (225*ks0*ks1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/mg/cmgaq33si6wmzr7h4icntynss3oazfgtu7iparfdbzenw4pkqum7.py # Source Nodes: [agg_value], Original ATen: [aten._to_copy] # agg_value => convert_element_type_6 triton_poi_fused__to_copy_5 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[536870912], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32', 3: 'i32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, out_ptr0, ks0, ks1, ks2, xnumel, XBLOCK : tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % ks0 x1 = (xindex // ks0) x2 = xindex tmp0 = tl.load(in_ptr0 + (105 + x0 + (7*ks1) + (14*(x0 // ks1)) + (196*x1) + (14*ks1*x1) + (14*ks2*x1) + (ks1*ks2*x1)), xmask, eviction_policy='evict_last') tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + (x2), tmp1, xmask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/br/cbrvodbxo3uuxus5l5rzw54iumqpwsfow3foexkyib23rvh3ozek.py # Source Nodes: [agg_bias], Original ATen: [aten._to_copy] # agg_bias => convert_element_type_3 triton_poi_fused__to_copy_6 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/hl/chli7mk64wlsenbvviyzcycp5uoylq2bfzsronzdthk4ya4y6rd6.py # Source Nodes: [add_3], Original ATen: [aten.add] # add_3 => add_3 triton_poi_fused_add_7 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp16', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask).to(tl.float32) tmp1 = tl.load(in_ptr0 + (x0), xmask).to(tl.float32) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/ar/carcf7uwbqtj2hgalfjzpp5bdevfi2dvum5suqasnxet5yqes4d6.py # Source Nodes: [output_1], Original ATen: [aten._to_copy] # output_1 => convert_element_type_10 triton_poi_fused__to_copy_8 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + (x0), tmp1, None) ''', device_str='cuda') # kernel path: /tmp/torchinductor_root/jn/cjnrgvzsstwynldvwnljz5fk3ilroqn6fypn5dky5hgssitiob22.py # Source Nodes: [output_1], Original ATen: [aten._to_copy] # output_1 => convert_element_type_9 triton_poi_fused__to_copy_9 = async_compile.triton('triton_', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1 = args args.clear() s0 = arg0_1 s1 = arg1_1 s2 = arg3_1 s10 = arg4_1 s6 = arg8_1 s7 = arg9_1 s8 = arg10_1 assert_size_stride(arg2_1, (1, 15, 15, s0, s1), (225*s0*s1, 15*s0*s1, s0*s1, s1, 1)) assert_size_stride(arg5_1, (1, 1, 225, s0*s1), (225*s0*s1, 225*s0*s1, s0*s1, 1)) assert_size_stride(arg6_1, (1, 1, 225, s0*s1), (225*s0*s1, 225*s0*s1, s0*s1, 1)) assert_size_stride(arg7_1, (1, 256, 225), (57600, 225, 1)) assert_size_stride(arg11_1, (1, 1, s6, s7, s8), (s6*s7*s8, s6*s7*s8, s7*s8, s8, 1)) assert_size_stride(arg14_1, (1, 1, 256, s10*s2), (256*s10*s2, 256*s10*s2, s10*s2, 1)) assert_size_stride(arg15_1, (256, 256), (256, 1)) assert_size_stride(arg16_1, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 1, s10*s2), (s10*s2, s10*s2, s10*s2, 1), torch.float32) buf1 = empty_strided_cuda((1, 1, 1, s10*s2), (s10*s2, s10*s2, s10*s2, 1), torch.float32) # Source Nodes: [local_attn, mul_1, qk_1, qk_2], Original ATen: [aten._softmax, aten.add, aten.mul, aten.sub] triton_red_fused__softmax_add_mul_sub_0_xnumel = s10*s2 stream0 = get_raw_stream(0) triton_red_fused__softmax_add_mul_sub_0.run(arg2_1, arg5_1, arg6_1, buf0, buf1, s10, s2, s0, s1, triton_red_fused__softmax_add_mul_sub_0_xnumel, 225, grid=grid(triton_red_fused__softmax_add_mul_sub_0_xnumel), stream=stream0) ps0 = s10*s2 buf2 = empty_strided_cuda((1, 1, 225, s10*s2), (225*s10*s2, 225*s10*s2, s10*s2, 1), torch.float32) buf10 = empty_strided_cuda((1, 1, 225, s10*s2), (225*s10*s2, 1, s10*s2, 1), torch.float16) # Source Nodes: [agg_bias, local_attn, mul_1, qk_1, qk_2], Original ATen: [aten._softmax, aten._to_copy, aten.add, aten.mul, aten.sub] triton_poi_fused__softmax__to_copy_add_mul_sub_1_xnumel = 225*s10*s2 triton_poi_fused__softmax__to_copy_add_mul_sub_1.run(arg2_1, arg5_1, arg6_1, buf0, buf1, buf2, buf10, ps0, s0, s1, triton_poi_fused__softmax__to_copy_add_mul_sub_1_xnumel, grid=grid(triton_poi_fused__softmax__to_copy_add_mul_sub_1_xnumel), stream=stream0) del arg2_1 del arg5_1 del arg6_1 del buf0 del buf1 buf3 = empty_strided_cuda((1, 1, s10*s2, 14 + s2, 14 + s10), (((s10*s10)*(s2*s2)) + (14*s10*(s2*s2)) + (14*s2*(s10*s10)) + (196*s10*s2), ((s10*s10)*(s2*s2)) + (14*s10*(s2*s2)) + (14*s2*(s10*s10)) + (196*s10*s2), 196 + (14*s10) + (14*s2) + (s10*s2), 14 + s10, 1), torch.float32) # Source Nodes: [global_attn], Original ATen: [aten.zeros] triton_poi_fused_zeros_2_xnumel = ((s10*s10)*(s2*s2)) + (14*s10*(s2*s2)) + (14*s2*(s10*s10)) + (196*s10*s2) triton_poi_fused_zeros_2.run(buf3, triton_poi_fused_zeros_2_xnumel, grid=grid(triton_poi_fused_zeros_2_xnumel), stream=stream0) buf4 = empty_strided_cuda((1, 1, s10*s2, 225), (225*s10*s2, 1, 225, 1), torch.float32) # Source Nodes: [reshape], Original ATen: [aten.clone] triton_poi_fused_clone_3_ynumel = s10*s2 triton_poi_fused_clone_3.run(buf2, buf4, s10, s2, triton_poi_fused_clone_3_ynumel, 225, grid=grid(triton_poi_fused_clone_3_ynumel, 225), stream=stream0) buf5 = empty_strided_cuda((225*s0*s1, ), (1, ), torch.float32) # Source Nodes: [global_attn, setitem], Original ATen: [aten.index_put, aten.zeros] triton_poi_fused_index_put_zeros_4_xnumel = 225*s0*s1 triton_poi_fused_index_put_zeros_4.run(buf4, buf5, s10, s2, triton_poi_fused_index_put_zeros_4_xnumel, grid=grid(triton_poi_fused_index_put_zeros_4_xnumel), stream=stream0) del buf4 aten.index_put_(buf3, [reinterpret_tensor(arg11_1, (1, 1, s6, s7, s8), (0, 0, s7*s8, s8, 1), 0)], buf5, False) del arg11_1 del buf5 buf8 = empty_strided_cuda((1, 1, s10*s2, s10*s2), ((s10*s10)*(s2*s2), 1, s10*s2, 1), torch.float16) # Source Nodes: [agg_value], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_5_xnumel = (s10*s10)*(s2*s2) triton_poi_fused__to_copy_5.run(buf3, buf8, ps0, s10, s2, triton_poi_fused__to_copy_5_xnumel, grid=grid(triton_poi_fused__to_copy_5_xnumel), stream=stream0) del buf3 buf9 = empty_strided_cuda((1, s10*s2, 256), (256*s10*s2, 256, 1), torch.float16) # Source Nodes: [agg_value], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (1, s10*s2, s10*s2), (0, s10*s2, 1), 0), reinterpret_tensor(arg14_1, (1, s10*s2, 256), (0, 1, s10*s2), 0), out=buf9) del arg14_1 del buf8 buf11 = empty_strided_cuda((1, 256, 225), (57600, 225, 1), torch.float16) # Source Nodes: [agg_bias], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_6.run(arg7_1, buf11, 57600, grid=grid(57600), stream=stream0) del arg7_1 buf12 = empty_strided_cuda((1, s0*s1, 256), (256*s0*s1, 256, 1), torch.float16) # Source Nodes: [agg_bias], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf10, (1, s0*s1, 225), (0, 1, s10*s2), 0), reinterpret_tensor(buf11, (1, 225, 256), (0, 1, 225), 0), out=buf12) del buf10 del buf11 buf13 = reinterpret_tensor(buf9, (1, 1, s10*s2, 256), (256*s10*s2, 1, 256, 1), 0); del buf9 # reuse # Source Nodes: [add_3], Original ATen: [aten.add] triton_poi_fused_add_7_xnumel = 256*s10*s2 triton_poi_fused_add_7.run(buf13, buf12, triton_poi_fused_add_7_xnumel, grid=grid(triton_poi_fused_add_7_xnumel), stream=stream0) del buf12 buf14 = empty_strided_cuda((256, 256), (256, 1), torch.float16) # Source Nodes: [output_1], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_8.run(arg15_1, buf14, 65536, grid=grid(65536), stream=stream0) del arg15_1 buf15 = empty_strided_cuda((256, ), (1, ), torch.float16) # Source Nodes: [output_1], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_9.run(arg16_1, buf15, 256, grid=grid(256), stream=stream0) del arg16_1 buf16 = empty_strided_cuda((s10*s2, 256), (256, 1), torch.float16) # Source Nodes: [output_1], Original ATen: [aten._to_copy, aten.addmm] extern_kernels.addmm(buf15, reinterpret_tensor(buf13, (s10*s2, 256), (256, 1), 0), reinterpret_tensor(buf14, (256, 256), (1, 256), 0), alpha=1, beta=1, out=buf16) del buf13 del buf14 del buf15 return (reinterpret_tensor(buf16, (s10*s2, 1, 256), (256, 256, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = 136 arg1_1 = 136 arg2_1 = rand_strided((1, 15, 15, 136, 136), (4161600, 277440, 18496, 136, 1), device='cuda:0', dtype=torch.float16) arg3_1 = 136 arg4_1 = 136 arg5_1 = rand_strided((1, 1, 225, 18496), (4161600, 4161600, 18496, 1), device='cuda:0', dtype=torch.float16) arg6_1 = rand_strided((1, 1, 225, 18496), (4161600, 4161600, 18496, 1), device='cuda:0', dtype=torch.float32) arg7_1 = rand_strided((1, 256, 225), (57600, 225, 1), device='cuda:0', dtype=torch.float32) arg8_1 = 18496 arg9_1 = 150 arg10_1 = 150 arg11_1 = rand_strided((1, 1, 18496, 150, 150), (416160000, 416160000, 22500, 150, 1), device='cuda:0', dtype=torch.bool) arg12_1 = 136 arg13_1 = 136 arg14_1 = rand_strided((1, 1, 256, 18496), (4734976, 4734976, 18496, 1), device='cuda:0', dtype=torch.float16) arg15_1 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) arg16_1 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)