# AOT ID: ['33_inference']
from ctypes import c_void_p, c_long
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
alloc_from_pool = torch.ops.inductor._alloc_from_pool
reinterpret_tensor = torch.ops.inductor._reinterpret_tensor
async_compile = AsyncCompile()
# kernel path: /tmp/torchinductor_root/br/cbr7fjds5qmgzovbdqrevfdihdswykwgukxhaykayhn7bgmqqug2.py
# Source Nodes: [_tgt, add, linear, tgt], Original ATen: [aten._to_copy, aten.add, aten.native_layer_norm]
# _tgt => add_2, add_3, clone, mul, mul_1, rsqrt, sub, var_mean
# add => add
# linear => convert_element_type_2
# tgt => add_1
triton_red_fused__to_copy_add_native_layer_norm_0 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[8192, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: '*fp16', 3: '*fp32', 4: '*fp32', 5: '*fp16', 6: 'i32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__to_copy_add_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr2, ks0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp7_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp7_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp7_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (ks0*r1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (256*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32)
tmp2 = tl.load(in_ptr2 + (r1 + (256*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32)
tmp3 = tmp1 + tmp2
tmp4 = tmp3.to(tl.float32)
tmp5 = tmp0 + tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7_mean_next, tmp7_m2_next, tmp7_weight_next = triton_helpers.welford_reduce(
tmp6, tmp7_mean, tmp7_m2, tmp7_weight, roffset == 0
)
tmp7_mean = tl.where(rmask & xmask, tmp7_mean_next, tmp7_mean)
tmp7_m2 = tl.where(rmask & xmask, tmp7_m2_next, tmp7_m2)
tmp7_weight = tl.where(rmask & xmask, tmp7_weight_next, tmp7_weight)
tmp7_tmp, tmp8_tmp, tmp9_tmp = triton_helpers.welford(
tmp7_mean, tmp7_m2, tmp7_weight, 1
)
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tmp9 = tmp9_tmp[:, None]
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (x0 + (ks0*r1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + (r1 + (256*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0).to(tl.float32)
tmp12 = tl.load(in_ptr2 + (r1 + (256*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0).to(tl.float32)
tmp23 = tl.load(in_ptr3 + (r1), rmask, eviction_policy='evict_last', other=0.0)
tmp25 = tl.load(in_ptr4 + (r1), rmask, eviction_policy='evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp10 + tmp14
tmp16 = tmp15 - tmp7
tmp17 = 256.0
tmp18 = tmp8 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp16 * tmp21
tmp24 = tmp22 * tmp23
tmp26 = tmp24 + tmp25
tmp27 = tmp26.to(tl.float32)
tl.store(out_ptr2 + (r1 + (256*x0)), tmp27, rmask & xmask)
''', device_str='cuda')
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
# kernel path: /tmp/torchinductor_root/as/caslnaz5ovc2w4ytfnlr2jibrkfgmcp4e7e42dxcuygano3oelsl.py
# Source Nodes: [linear], Original ATen: [aten._to_copy]
# linear => convert_element_type_1
triton_poi_fused__to_copy_1 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tmp0.to(tl.float32)
tl.store(out_ptr0 + (x0), tmp1, None)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/u5/cu5mqd37qiakh7ggv4hzgacxushskn45zxzaqsbu6gldtmqfkl4o.py
# Source Nodes: [linear], Original ATen: [aten._to_copy]
# linear => convert_element_type
triton_poi_fused__to_copy_2 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.float32)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/5r/c5rqir3b4ummvp3dbax5kpsr4hulfxafycpod4dkheor3erpp5e6.py
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
# x_1 => var_mean_1
triton_red_fused_native_group_norm_3 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[32768, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp16', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32', 6: 'i32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 3, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_(in_ptr0, out_ptr0, out_ptr1, out_ptr2, ks0, ks1, ks2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 29088
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x1 = (xindex // 32) % 101
x2 = (xindex // 3232)
x0 = xindex % 32
tmp26_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp26_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp26_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
tmp0 = r3 + (x1*((100 + ((8 + (32*ks1*(ks0 // ks1))) // 9)) // 101))
tmp1 = ((8 + (32*ks1*(ks0 // ks1))) // 9)
tmp2 = tmp0 < tmp1
tmp3 = r3 + (x1*((100 + ((8 + (32*ks1*(ks0 // ks1))) // 9)) // 101)) + (x2*((8 + (32*ks1*(ks0 // ks1))) // 9))
tmp4 = tl.broadcast_to(32*ks1*(ks0 // ks1), [XBLOCK, RBLOCK])
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.load(in_ptr0 + ((32*x0) + (1024*(((r3 + (x1*((100 + ((8 + (32*ks1*(ks0 // ks1))) // 9)) // 101)) + (x2*((8 + (32*ks1*(ks0 // ks1))) // 9))) % (ks1*(ks0 // ks1))) % (ks1*ks2))) + (((r3 + (x1*((100 + ((8 + (32*ks1*(ks0 // ks1))) // 9)) // 101)) + (x2*((8 + (32*ks1*(ks0 // ks1))) // 9))) // (ks1*(ks0 // ks1))) % 32)), rmask & tmp6 & xmask, eviction_policy='evict_last', other=0.0).to(tl.float32)
tmp8 = tmp7.to(tl.float32)
tmp9 = tl.full(tmp8.shape, 0, tmp8.dtype)
tmp10 = tl.where(tmp6, tmp8, tmp9)
tmp11 = tl.full(tmp10.shape, 0, tmp10.dtype)
tmp12 = tl.where(tmp2, tmp10, tmp11)
tmp13 = 0.0
tmp14 = tl.full(tmp13.shape, 0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.full(tmp15.shape, 0, tmp15.dtype)
tmp17 = tl.where(tmp2, tmp15, tmp16)
tmp18 = 1.0
tmp19 = tl.full(tmp18.shape, 0, tmp18.dtype)
tmp20 = tl.where(tmp6, tmp18, tmp19)
tmp21 = tl.full(tmp20.shape, 0, tmp20.dtype)
tmp22 = tl.where(tmp2, tmp20, tmp21)
tmp23 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp24 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp25 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp26_mean_next, tmp26_m2_next, tmp26_weight_next = triton_helpers.welford_combine(
tmp26_mean, tmp26_m2, tmp26_weight,
tmp23, tmp24, tmp25
)
tmp26_mean = tl.where(rmask & xmask, tmp26_mean_next, tmp26_mean)
tmp26_m2 = tl.where(rmask & xmask, tmp26_m2_next, tmp26_m2)
tmp26_weight = tl.where(rmask & xmask, tmp26_weight_next, tmp26_weight)
tmp26_tmp, tmp27_tmp, tmp28_tmp = triton_helpers.welford(
tmp26_mean, tmp26_m2, tmp26_weight, 1
)
tmp26 = tmp26_tmp[:, None]
tmp27 = tmp27_tmp[:, None]
tmp28 = tmp28_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp26, xmask)
tl.store(out_ptr1 + (x4), tmp27, xmask)
tl.store(out_ptr2 + (x4), tmp28, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/ks/cksxkhgnvmc6ccwqfioq3t2x63adqm3fhur47kdsxwoby3o4lzkm.py
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
# x_1 => var_mean_1
triton_per_fused_native_group_norm_4 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 3, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 288
rnumel = 101
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r2 = rindex
x0 = xindex % 32
x1 = (xindex // 32)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (32*r2) + (3232*x1)), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + (32*r2) + (3232*x1)), rmask & xmask, other=0.0)
tmp2 = tl.load(in_ptr2 + (x0 + (32*r2) + (3232*x1)), rmask & xmask, other=0.0)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(rmask & xmask, tmp3, 0)
tmp8 = tl.where(rmask & xmask, tmp4, 0)
tmp9 = tl.where(rmask & xmask, tmp5, 0)
tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1)
tmp13 = tmp10[:, None]
tmp14 = tmp11[:, None]
tmp15 = tmp12[:, None]
tl.store(out_ptr0 + (x3), tmp13, xmask)
tl.store(out_ptr1 + (x3), tmp14, xmask)
tl.store(out_ptr2 + (x3), tmp15, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/ww/cwwibayh32mzv6evkfclh2nkvq4lvkbltjy5isuqogmaqhq62oxb.py
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
# x_1 => var_mean_1
triton_per_fused_native_group_norm_5 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[32, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 32
rnumel = 9
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (32*r1)), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + (32*r1)), rmask & xmask, other=0.0)
tmp2 = tl.load(in_ptr2 + (x0 + (32*r1)), rmask & xmask, other=0.0)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(rmask & xmask, tmp3, 0)
tmp8 = tl.where(rmask & xmask, tmp4, 0)
tmp9 = tl.where(rmask & xmask, tmp5, 0)
tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1)
tmp13 = tmp10[:, None]
tmp14 = tmp11[:, None]
tmp15 = tmp12[:, None]
tl.store(out_ptr0 + (x0), tmp13, xmask)
tl.store(out_ptr1 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/lc/clcelukvshbghkivgbfkrtkllhfbqsximpu4gxwvqarqeqogapek.py
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
# x_1 => add_5, mul_4
triton_poi_fused_native_group_norm_6 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp16', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32', 8: 'i32', 9: 'i32', 10: 'i32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ks0, ks1, ks2, ks3, ks4, xnumel, XBLOCK : tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 1024
x1 = (xindex // 1024) % ks0
x2 = (xindex // ks1)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (1024*((x1 + (x2*(ks2 // ks3))) % (ks3*ks4)))), xmask, eviction_policy='evict_last').to(tl.float32)
tmp2 = tl.load(in_ptr1 + ((x0 // 32)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + ((x0 // 32)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tmp0.to(tl.float32)
tmp3 = tmp1 - tmp2
tmp5 = tl.maximum(0.0, 32*ks3*ks0)
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp4 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp3 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x4), tmp15, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/pi/cpiu3nuk7cgh3s6xvfo2lwlnlg3ff2rbobfsvpvnwb3prrjrchzu.py
# Source Nodes: [x_2, x_3], Original ATen: [aten._to_copy, aten.convolution, aten.gelu]
# x_2 => add_6, erf, mul_5, mul_6, mul_7
# x_3 => convert_element_type_7, convert_element_type_8, convolution
triton_poi_fused__to_copy_convolution_gelu_7 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 8192], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32', 3: 'i32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_convolution_gelu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_(in_ptr0, out_ptr0, ks0, ks1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (1024*x1)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tmp9 = tmp8.to(tl.float32)
tl.store(out_ptr0 + (x1 + (ks1*ks0*y0)), tmp9, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/lr/clrufemzzqgb3hgkvhlnyqecelmlg66hi27x4m6nrnw3ogibcq62.py
# Source Nodes: [x_2, x_3], Original ATen: [aten._to_copy, aten.convolution, aten.gelu]
# x_2 => add_6, erf, mul_5, mul_6, mul_7
# x_3 => convert_element_type_7, convert_element_type_8, convolution
triton_poi_fused__to_copy_convolution_gelu_8 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_convolution_gelu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.float32)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: /tmp/torchinductor_root/zj/czje75vwerpvois4mut62vedc6xfv4cxiqb5vdjw7x2572zbxi7v.py
# Source Nodes: [add, tgt, tgt2, tgt_1], Original ATen: [aten._to_copy, aten.add]
# add => add
# tgt => add_1
# tgt2 => add_7, convert_element_type_9
# tgt_1 => add_8
triton_poi_fused__to_copy_add_9 = async_compile.triton('triton_', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: '*fp16', 3: '*fp16', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, multi_processor_count=58), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': '72c34bdb145549777ca2f0838f26abe42bb446cf528c78d229508b5a55e67a78', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': False, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ks0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
xnumel = 256
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (ks0*x1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + (256*y0)), xmask & ymask, eviction_policy='evict_last').to(tl.float32)
tmp2 = tl.load(in_ptr2 + (x1 + (256*y0)), xmask & ymask, eviction_policy='evict_last').to(tl.float32)
tmp6 = tl.load(in_ptr3 + (x1 + (256*y0)), xmask & ymask, eviction_policy='evict_last').to(tl.float32)
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp3.to(tl.float32)
tmp5 = tmp0 + tmp4
tmp8 = tmp7.to(tl.float32)
tmp9 = tmp6 + tmp8
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp5 + tmp10
tl.store(out_ptr0 + (y0 + (ks0*x1)), tmp11, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1 = args
args.clear()
s0 = arg0_1
s3 = arg8_1
s4 = arg9_1
assert_size_stride(arg1_1, (s0, 1, 256), (256, 256, 1))
assert_size_stride(arg2_1, (s0, 1, 256), (256, 256, 1))
assert_size_stride(arg3_1, (s0, 1, 256), (1, 256*s0, s0))
assert_size_stride(arg4_1, (256, ), (1, ))
assert_size_stride(arg5_1, (256, ), (1, ))
assert_size_stride(arg6_1, (1024, 256), (256, 1))
assert_size_stride(arg7_1, (1024, ), (1, ))
assert_size_stride(arg10_1, (1024, ), (1, ))
assert_size_stride(arg11_1, (1024, ), (1, ))
assert_size_stride(arg12_1, (1024, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(arg13_1, (256, 1024), (1024, 1))
assert_size_stride(arg14_1, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((s0, 1, 256), (256, 256, 1), torch.float16)
# Source Nodes: [_tgt, add, linear, tgt], Original ATen: [aten._to_copy, aten.add, aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_red_fused__to_copy_add_native_layer_norm_0.run(arg3_1, arg2_1, arg1_1, arg4_1, arg5_1, buf3, s0, s0, 256, grid=grid(s0), stream=stream0)
del arg4_1
del arg5_1
buf4 = empty_strided_cuda((1024, 256), (256, 1), torch.float16)
# Source Nodes: [linear], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_1.run(arg6_1, buf4, 262144, grid=grid(262144), stream=stream0)
del arg6_1
buf5 = empty_strided_cuda((1024, ), (1, ), torch.float16)
# Source Nodes: [linear], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_2.run(arg7_1, buf5, 1024, grid=grid(1024), stream=stream0)
del arg7_1
buf6 = empty_strided_cuda((s0, 1024), (1024, 1), torch.float16)
# Source Nodes: [linear], Original ATen: [aten._to_copy, aten.addmm]
extern_kernels.addmm(buf5, reinterpret_tensor(buf3, (s0, 256), (256, 1), 0), reinterpret_tensor(buf4, (256, 1024), (1, 256), 0), alpha=1, beta=1, out=buf6)
del buf3
del buf5
buf7 = empty_strided_cuda((1, 32, 1, 1, 9, 101), (29088, 1, 29088, 29088, 3232, 32), torch.float32)
buf8 = empty_strided_cuda((1, 32, 1, 1, 9, 101), (29088, 1, 29088, 29088, 3232, 32), torch.float32)
buf9 = empty_strided_cuda((1, 32, 1, 1, 9, 101), (29088, 1, 29088, 29088, 3232, 32), torch.float32)
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_3_rnumel = ((100 + ((8 + (32*s3*(s0 // s3))) // 9)) // 101)
triton_red_fused_native_group_norm_3.run(buf6, buf7, buf8, buf9, s0, s3, s4, 29088, triton_red_fused_native_group_norm_3_rnumel, grid=grid(29088), stream=stream0)
buf10 = empty_strided_cuda((1, 32, 1, 1, 9), (288, 1, 288, 288, 32), torch.float32)
buf11 = empty_strided_cuda((1, 32, 1, 1, 9), (288, 1, 288, 288, 32), torch.float32)
buf12 = empty_strided_cuda((1, 32, 1, 1, 9), (288, 1, 288, 288, 32), torch.float32)
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_4.run(buf7, buf8, buf9, buf10, buf11, buf12, 288, 101, grid=grid(288), stream=stream0)
del buf7
del buf8
del buf9
buf13 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32)
buf14 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32)
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_5.run(buf10, buf11, buf12, buf13, buf14, 32, 9, grid=grid(32), stream=stream0)
del buf10
del buf11
del buf12
ps0 = (s0 // s3)
ps1 = 1024*(s0 // s3)
buf16 = empty_strided_cuda((1, 1024, s3, (s0 // s3)), (1024*s3*(s0 // s3), 1, 1024*(s0 // s3), 1024), torch.float32)
# Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_6_xnumel = 1024*s3*(s0 // s3)
triton_poi_fused_native_group_norm_6.run(buf6, buf13, buf14, arg10_1, arg11_1, buf16, ps0, ps1, s0, s3, s4, triton_poi_fused_native_group_norm_6_xnumel, grid=grid(triton_poi_fused_native_group_norm_6_xnumel), stream=stream0)
del arg10_1
del arg11_1
del buf13
del buf14
del buf6
buf17 = empty_strided_cuda((1, 1024, s3, (s0 // s3)), (1024*s3*(s0 // s3), s3*(s0 // s3), (s0 // s3), 1), torch.float16)
# Source Nodes: [x_2, x_3], Original ATen: [aten._to_copy, aten.convolution, aten.gelu]
triton_poi_fused__to_copy_convolution_gelu_7_xnumel = s3*(s0 // s3)
triton_poi_fused__to_copy_convolution_gelu_7.run(buf16, buf17, ps0, s3, 1024, triton_poi_fused__to_copy_convolution_gelu_7_xnumel, grid=grid(1024, triton_poi_fused__to_copy_convolution_gelu_7_xnumel), stream=stream0)
del buf16
buf18 = empty_strided_cuda((1024, 1, 5, 5), (25, 25, 5, 1), torch.float16)
# Source Nodes: [x_2, x_3], Original ATen: [aten._to_copy, aten.convolution, aten.gelu]
triton_poi_fused__to_copy_convolution_gelu_8.run(arg12_1, buf18, 25600, grid=grid(25600), stream=stream0)
del arg12_1
# Source Nodes: [x_2, x_3], Original ATen: [aten._to_copy, aten.convolution, aten.gelu]
buf19 = extern_kernels.convolution(buf17, buf18, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1024, bias=None)
assert_size_stride(buf19, (1, 1024, s3, (s0 // s3)), (1024*s3*(s0 // s3), s3*(s0 // s3), (s0 // s3), 1))
del buf17
del buf18
buf20 = reinterpret_tensor(buf4, (256, 1024), (1024, 1), 0); del buf4 # reuse
# Source Nodes: [tgt2], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_1.run(arg13_1, buf20, 262144, grid=grid(262144), stream=stream0)
del arg13_1
buf21 = empty_strided_cuda((s3*(s0 // s3), 1, 256), (256, 256, 1), torch.float16)
# Source Nodes: [tgt2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf19, (s3*(s0 // s3), 1, 1024), (1, 0, s3*s4), 0), reinterpret_tensor(buf20, (s3*(s0 // s3), 1024, 256), (0, 1, 1024), 0), out=buf21)
del buf19
del buf20
buf22 = empty_strided_cuda((s0, 1, 256), (1, 256*s0, s0), torch.float32)
# Source Nodes: [add, tgt, tgt2, tgt_1], Original ATen: [aten._to_copy, aten.add]
triton_poi_fused__to_copy_add_9.run(arg3_1, arg2_1, arg1_1, buf21, arg14_1, buf22, s0, s0, 256, grid=grid(s0, 256), stream=stream0)
del arg14_1
del arg1_1
del arg2_1
del arg3_1
del buf21
return (buf22, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = 4624
arg1_1 = rand_strided((4624, 1, 256), (256, 256, 1), device='cuda:0', dtype=torch.float16)
arg2_1 = rand_strided((4624, 1, 256), (256, 256, 1), device='cuda:0', dtype=torch.float16)
arg3_1 = rand_strided((4624, 1, 256), (1, 1183744, 4624), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
arg5_1 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
arg6_1 = rand_strided((1024, 256), (256, 1), device='cuda:0', dtype=torch.float32)
arg7_1 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
arg8_1 = 68
arg9_1 = 68
arg10_1 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
arg11_1 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
arg12_1 = rand_strided((1024, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32)
arg13_1 = rand_strided((256, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
arg14_1 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)