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Why treat multi-agent settings 
differently than single-agents?



This is an inherent limitation for the standard Deep Learning paradigm 

(I) Strategic Behavior does not emerge from standard 
training



Image result for turtle rifle

[Athalye, Engstrom, Ilyas, Kwok ICML’18] [Engstrom et al. 2019]

(II) Naively trained models can be manipulated

http://data/turtle_riffle.mp4


[Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic 
Pricing, and Collusion,” American Economic Review, 2020]

collusive price

competitive price

learned price

Example: AI for dynamic 
pricing  

Setting: Duopoly w/ two 
symmetric firms 

Independent Learning: 
firms cannot 

communicate other than 
setting prices, observing 
their profit and adjusting 

their price using some 
standard AI algorithm

(III) Combining agents that were trained in isolation 
can lead to undesirable behavior



How 
deviations 

are punished 
by the 

learned price 
policies

Example: AI for dynamic 
pricing 

Setting: Duopoly w/ two 
symmetric firms 

Independent Learning: 
firms cannot 

communicate other than 
setting prices, observing 
their profit and adjusting 

their price using some 
standard AI algorithm

[Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic 
Pricing, and Collusion,” American Economic Review, 2020]

(III) Combining agents that were trained in isolation 
can lead to undesirable behavior



(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



Theoretical Guarantee: Even if ℓ nonconvex, Gradient 
Descent efficiently computes local minima

[Lee et al 2017, Ge et al ‘15]
Empirical Finding: Local minima are good enough

𝜃: high-dimensional
ℓ: nonconvex
 essentially only accessible through ℓ 𝜃  and 𝛻ℓ 𝜃  queries

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝛻ℓ 𝜃𝑡

Gradient Descent

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings

min𝜃 ℓ(𝜃) STANDARD DEEP LEARNING ESTIMATION PROBLEM



𝜃𝑡+1 ← 𝜃𝑡 − 𝛻𝜃ℓ(𝜃𝑡)+ + +

“Scale is all you need”

Prominent Paradigm:

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



GAN training on MNIST Data:

GAN training on Gaussian Mixture Data:

Target:

Target:

pictures from [Metz et al ICLR’17]

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ ∇𝜃ℓ𝐺 𝜃𝑡, 𝜔𝑡

𝜔𝑡+1 = 𝜔𝑡 − 𝜂 ⋅ ∇𝜔ℓ𝐷 𝜃𝑡, 𝜔𝑡

Simultaneous Gradient Descent (GD) Dynamics:GANs: ℓ𝐷 𝜃, 𝜔 = −ℓ𝐺 𝜃, 𝜔
ℓ𝐺 , ℓ𝐷: nonconvex in 𝜃 & 𝜔 resp.; 

𝜃, 𝜔: high-dimensional

Gradient Descent Ascent (GDA) 
Dynamics

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



This course

How can we, and machines, systematically reason about the 
behavior, incentives, and outcomes of multiagent systems?

And as computer scientists, how can we teach machines to compute, 
predict, or learn such behavior?



Two pervasive concepts

• Equilibrium: a situation in which no player has incentives to change 
their policy
• Different types exist depending on what the players can communicate, 

observe, etc.

• Mental picture: multi-agent generalization of the concept of local optimum in 
optimization

• Typically being an equilibrium is a necessary condition for what you would 
consider a “solution” or “optimal strategy” in a game

• Learning in games: global equilibrium can be reached from local 
improvement steps



Today learning techniques are typically the fastest way to compute 
high-quality solutions for large strategic interactions 



Course goals

• By the end of this part, you should have acquired:

• A language to think about and describe different equilibrium points of 

multiagent interactions (Nash equilibrium, maxmin strategies, correlated 

equilibria, …)

• An appreciation for what is computationally tractable in every case, and what 

only in special cases

• The ability to implement learning dynamics to progressively refine strategies, 

including in imperfect-information domains

• A general understanding of what techniques are used to push scalability, and 

what major areas of investigation remain underexplored



A taste of the computational challenges

• By the end of the course, you should have a much clearer picture of 

how you could model and solve the following tasks computationally

1. Bluffing in poker

How can we mathematically quantify the optimal amount of bluffing?
Note that bluffing contradicts the idea that the optimal strategy can be computed inductively by 

traversing the game tree

Principle in imperfect-information games: need to be careful not to “leak secrets”.



2. The value of cooperation

How do we model and solve a cooperative but imperfect-information game like Hanabi?

How do we model and solve the following situation (described in a paper co-authored by game 
theorist Peter Bro Miltersen)?

Image and description: https:// en.wikipedia.org/wiki/100_prisoners_problem

The director of a prison offers 100 death row prisoners, who are 
numbered from 1 to 100, a last chance. A room contains a 
cupboard with 100 drawers. The director randomly puts one 
prisoner's number in each closed drawer. The prisoners enter the 
room, one after another. Each prisoner may open and look into 50 
drawers in any order. The drawers are closed again afterwards. If, 
during this search, every prisoner finds their number in one of the 
drawers, all prisoners are pardoned. If even one prisoner does not 
find their number, all prisoners die. Before the first prisoner enters 
the room, the prisoners may discuss strategy — but may not 
communicate once the first prisoner enters to look in the drawers. 
What is the prisoners' best strategy?



Prisoners puzzle

• Single agent solution: look at random -> 50% win probability

• With 100 prisoners:
• Since the prisoners cannot communicate, (50%)^100 = 10^(-30) win probability?

• Turns out there is a strategy with 30% win probability

• Remember: players cannot communicate during the game. If even one player fails, 
everyone fails.

• The important question: Computationally, how would you approach this 
strategy computation problem?

• What about variants: for example, an adversarial prison guard might swap 
two drawers. How does the value of the game change?



3. Computation of optimal mechanisms

How can we model the task of computing an optimal auction mechanism as an 
imperfect-information game? We want to make sure that no player would be 

better off by misreporting their evaluation of an item

• This is a game between the player and the mechanism

• Like all the other examples, it can be reformulated as an optimization 

problem

• It can also be solved using learning techniques, like the other settings



The Concept of Game

Games are thought experiments to help us learn how to predict rational behavior in 
situations of conflict.

Rational Behavior: The players want to maximize their own expected utility.  No altruism, 
envy, masochism, or externalities (if my neighbor gets the money, he will buy louder 
stereo, so I will hurt a little myself...).  

Situation of conflict:  Everybody's actions affect others.

Predict: We want to know what happens in a game.  Such predictions are called solution 
concepts (e.g., Nash equilibrium).



Situations Modeled as Games

• Recreational games
• Rock paper scissors 

• Diplomacy

• Poker

• Go

• …

• Non-recreational settings
• Auctions
• Markets
• Logistics
• Budget allocation (e.g., political 

campaigns)
• Generative networks
• Multi-robot interactions
• Fraud detection systems
• …



Administrivia

• The course will use Canvas

• Lecturers: Gabriele Farina

• TA: Zhiyuan Fan

• Attendance: Everyone is welcome! If auditing please register as a 
listener

• Office hours: TBD



Projects

• Problem sets: 3 problems sets, two weeks to solve each (weight: 50%)

• Project: proposal due October 18th (weight: 50%)
• Project brainstorming class on 10/10

• Project break on the week of 10/22-24 and 11/26-28

• Project presentations starting 12/3

• Project can be theoretical, practical, or a mix

• We encourage creativity!

• Feel free to run your ideas by us

• Feel free to apply ideas from this class to your own area of interest

• Project can be done in teams

• No exams



Project type #1: Wildcard

• You pick the project

• It can be theoretical or empirical

• We will give out some ideas to get you started, but feel free to 
propose anything else



Project type #2: Tic-Tac-Toe Competition

• OK not that easy. It will be an imperfect-information variant: there is 
a fog of war on the board

• You can pick a cell
• If the cell is empty, you are in luck: place your mark there

• If the cell is occupied: the move will fail (you will observe that) and the turn 
passes to your opponent.

• Goal: Compute an optimal (maxmin) strategy for this game

• We will keep a leaderboard of attempts and results (But don’t worry, 
your grade depends on the final report, it is not a problem to end up 
last as long as what you tried made sense!)



Project type #2: Tic-Tac-Toe Competition

• You can pick any method you want:

• Deep RL

• Tabular no-regret learning algorithms

• Convex optimization techniques

• …

• You will produce a policy for the game and we will compute the 

expected value and exploitability

• Your report should explain what you tried and what you found



Project type #3: Team poker

• This project is about exploring games with a mix between cooperative 
and competitive aspects

• We will use a small 4-player poker variant
• You will control a team of players facing each other

• The payoff of the team is the sum of the players’ returns in the game

• The players cannot communicate during the game, but they can discuss any 
tactics before the game begins, which allows some form of “tacit collusion”

• Similar mechanics as the previous project



Tentative schedule



Part I: Normal-Form Games

0,0 -1,1 1,-1

1,-1 0,0 -1,1

-1,1 1,-1 0,0

Deny 
(cooperate)

Confess 
(betray)

Deny 
(cooperate) -1, -1 -3, 0

Confess 
(betray) 0, -3 -2, -2

Rock-paper-scissors

Prisoner’s dilemma

(-1 = 1 year in jail)

These are “matrix” games
- Simultaneous actions

- Single move per player

Simple model but already captures 
several important aspects

Rock

Paper

Scissors

Rock Paper Scissors





• Solution concepts and equilibria (Nash, maxmin, correlated, …)

• Learning from repeated play
• Learning enables iteratively refining strategies to become stronger and stronger, and it has 

been a key component in all recent game AI breakthroughs

• Local learning of each agent can often be connected to global notion of equilibrium

• ≈ Mental model: “reinforcement learning but also works in nonstationary settings”

• Deep connection between equilibria and other important concepts in computer 
science

• After that, we will move on to notions of games that capture more interesting / 
real-world phenomena, especially sequential moves and imperfect information

Despite their simplicity, normal-form games will provide the
ground to start looking into the following key concepts in multiagent settings:



Part II: Imperfect-Information Games

Example:
poker



Difficulties with Imperfect Information

• Compared to normal-form games, imperfect-information extensive-form games 
bring many conceptual challenges

• Nonetheless: many positive results
• In fact, we live in a world where machines bluff at poker better than humans

The number of (deterministic) strategies grows exponentially in the game tree

Other players have control over what part of the game tree is visited/explored

1

3

Imperfect information makes backward induction and local reasoning not viable2

Think about poker: need to reason about misdirection. General principle: you need to think about what the 
opponents don’t know about you and leverage that to your advantage







Part III: Other structures





Part IV: Complexity of equilibrium



[John Nash ’50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.

Proof highly non-constructive (uses Brouwer’s fixed point thm)

No simpler proof has been discovered

[Daskalakis-Goldberg-Papadimitriou’06]: no simpler proof exists

i.e. 

Nash’s Theorem

Nash 
Equilibrium

Brouwer’s Fixed 
Point Theorem





And finally…



Course goals (again)

• By the end of this part, you should have acquired:

• A language to think about and describe different equilibrium points of 

multiagent interactions (Nash equilibrium, maxmin strategies, correlated 

equilibria, …)

• An appreciation for what is computationally tractable in every case, and what 

only in special cases

• The ability to implement learning dynamics to progressively refine strategies, 

including in imperfect-information domains

• A general understanding of what techniques are used to push scalability, and 

what major areas of investigation remain underexplored



Questions?
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