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Lecture BA

Optional Reading: Blackwell Approachability

Instructor: Gabriele Farina*

The regret matching (RM) algorithm has a connection to an ancient (and very elegant!) construction,
called Blackwell approachability. Blackwell approachability is a precursor of the theory of regret minimization,
and played a fundamental role in the historical development of several efficient online optimization methods.
In particular, as we will show in a minute, the problem of minimizing regret on a simplex can be rewritten
as a Blackwell approachability game. The solution of the Blackwell approachability game will then recover
exactly RM.

A Blackwell approachability game

Blackwell approachability generalizes the problem of playing a repeated two-player game to games whose
utilites are vectors instead of scalars.

Definition A.1. A Blackwell approachability game is a tuple (X, ), f,S), where X', are closed convex
sets, f : X x Y — R% is a biaffine function, and S C R? is a closed and convex target set. A Blackwell
approachability game represents a vector-valued repeated game between two players. At each time ¢, the
two payers interact in this order:

o first, Player 1 selects an action (*) € X’;

« then, Player 2 selects an action y*) € ), which can depend adversarially on all the ' output so
far;

« finally, Player 1 incurs the vector-valued payoff f(x?,y?) € R?, where f is a biaffine function.

Player 1’s objective is to guarantee that the average payoff converges to the target set S. Formally, given
target set S C R?, Player 1’s goal is to pick actions "), 2 ... € X such that no matter the actions
yW y®@ €Y played by Player 2,
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B Regret minimization on the simplex via Blackwell approachability

Hart and Mas-Colell [2000] noted that the construction of a regret minimizer for a simplex domain A™ can be
reduced to constructing an algorithm for a particular Blackwell approachability game I' :== (A™ R"™, f, Rgo)
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which we now describe. For all i € {1,...,n}, the i-th component of the vector-valued payoff function f
measures the change in regret incurred at time ¢, compared to always playing the i-th vertex e; of the simplex.
Formally, f: A™ x R™ — R" is defined as

F@",g") = g" — (g, a")1, (2)

where 1 is the n-dimensional vector whose components are all 1. (Note the connection with ) seen in

Lecture 5).
The following lemma establishes an important link between Blackwell approachability on I' and external
regret minimization on the simplex A".

Lemma B.1. The regret Reg!™) = maxgzean % Zf:1<g(t), & — x®) cumulated up to any time T' by any
sequence of decisions £, . .., (™) € A" is related to the distance of the average Blackwell payoff from
the target cone RZ, as
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So, a strategy for the Blackwell approachability game I is a regret-minimizing strategy for the simplex
domain A".

Proof. For any & € A", the regret cumulated compared to always playing & satisfies

~Reg™(2) :=}i(<g<t> 2) — (g, 2)) = 1i(g<t #) (g, 2")(1,2))
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where we used the fact that & € A™ in the second equality, and that mingeR%(fs, &) = 0 since & > 0.
Applying the Cauchy-Schwarz inequality to the right-hand side of (4), we obtain
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So, using the fact that ||&]|2 <1 for any & € A,
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Taking a max over & € A™ yields the statement. O

C Solving Blackwell games: Blackwell’s algorithm

A central concept in the theory of Blackwell approachability is the following.



Definition C.1 (Forceable halfspace). Let (X,), f,S) be a Blackwell approachability game and let
H C R? be a halfspace, that is, a set of the form H = {x € R?: a'z < b} for some a € R% b € R. The
halfspace H is said to be forceable if there exists a strategy of Player 1 that guarantees that the payoff is
in H no matter the actions played by Player 2, that is, if there exists * € X such that

Flz*,y)eH Vyel.

When that is the case, we call action * a forcing action for H.

Blackwell’s approachability theorem [Blackwell, 1956] states the following.

Theorem C.1 (Blackwell's theorem). Goal (1) can be attained if and only if every halfspace H D S is
forceable.

We constructively prove the direction that shows how forceability translates into a sequence of strategies
that guarantees that goal (1) is attained. Let (X,), f,S) be the Blackwell game. The method is pretty
simple: at each time step t = 1,2, ... operate the following:

1. Compute the average payoff received so far, that is, ¢(*) = % 23;11 Fz(™,yM).
2. Compute the Euclidean projection 9®) of ¢® onto the target set S.

3. If¢p® e S (that is, goal (1) has already been met), pick and play any x(t) € X, observe the opponent’s
action ¢!, and return.

4. Else, consider the halfspace #(*) tangent to S at the projection point ¥(*), that contains S. In symbols,
HO = {zeR: (¢ —p) T2z < (¢ — p®)Typ},

5. By hypothesis, H® is forceable. Pick (*) to be a forcing action for H®), observe the opponent’s action
y® | and return.

The above method is summarized in Figure 1.

Figure 1: Construction of the approachability strategy described in Appendix C.

Let’s see how the average payoff ¢(*) changes when we play as described above. Clearly,

®
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Hence, denoting with p(**1) the squared Euclidean distance between ¢(**1) and the target set, that is,

we have
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The proof so far does not use any particular assumption about how x(*) is picked. Here is where that enters
the picture. If ¢ € S, then () = ¢(Y) and therefore the last inner product is equal to 0. Otherwise, we
have that 1(*) — ¢(®) =£ 0. In that case, (*) is constructed by forcing the halfspace H®), and therefore, no
matter how y® is picked by the opponent we have
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Plugging in the last inequality into (5) and bounding || — f(x®,y®)||3 < Q2 where Q2 is a diameter
parameter of the game (which only depends on f and S), we obtain
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Summing the inequality above for t = 0,...,T — 1 and removing the telescoping terms, we obtain

2
T2p(T+1) <T0? e p(T'H) < % — min

Q
58 = VT’ (6)

T
1
s_ 1 (t) ()
5 T;:lf(w ;y')

2

which implies that the average payoff in the Blackwell game converges to S at a rate of O(1/ VT ).

D The regret matching (RM) algorithm as an instance of Blackwell’s
algorithm

First, recall from Appendix B that the external regret minimization on the simplex can be solved via the
Blackwell game I' := (A", R", f,RZ;) where f : A" x R" — R" is defined as

F(z,g®) = g — (g0, 21, (7)

where 1 is the n-dimensional vector whose components are all 1. We will solve this Blackwell approachability
game using the strategy explained in Appendix C.

Computation of ¢! (Step 2). Let’s start from looking at how to compute the projection 1! of ¢ onto
S = R<p. Projection onto the nonpositive orthant amounts to a component-wise minimum with 0, that is,
t = [¢']”. Hence,

¢(t) _ ,lp(t) — [¢(t)]+ — (¢)(t) _ ¢(t))T¢(t) —0.



Halfspace to be forced (Step 4). Following on with Blackwell’s algorithm, when [¢p()]t # 0, the
halfspace to be forced at each time t is

HY = {zeR": (W], 2) <O}

Forcing action for #(*) (Step 5). We now show that a forcing action for #*) indeed exists. Remember
that by definition, that is an action * € A™ such that no matter the g € R", f(x*, g) € H¥). Expanding
the definition of H¥) and f, we are looking for a * € A™ such that
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Note that we are lucky: [¢®]*/[|[¢®]]; is a nonnegative vector whose entries sum to 1. So, the above
inequality can be satisfied with equality for the choice

1+
¥ = 7[(;5 ] e A",
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In other words, we have that Blackwell’s algorithm in this case picks

) .
D) = ||[[€Z)(t)]]+|| €A" = 2D x [t {r(t)} , where r) := E g™ — (g™, 1.
1 =1

This is exactly the regret matching algorithm seen in Lecture 5.
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