
MIT 6.S890 — Topics in Multiagent Learning (F23) Thu, September 21st 2023

Lecture 5A

Optional Reading: Blackwell Approachability

Instructor: Gabriele Farina∗

The regret matching (RM) algorithm has a connection to an ancient (and very elegant!) construction,
called Blackwell approachability. Blackwell approachability is a precursor of the theory of regret minimization,
and played a fundamental role in the historical development of several efficient online optimization methods.
In particular, as we will show in a minute, the problem of minimizing regret on a simplex can be rewritten
as a Blackwell approachability game. The solution of the Blackwell approachability game will then recover
exactly RM.

A Blackwell approachability game
Blackwell approachability generalizes the problem of playing a repeated two-player game to games whose
utilites are vectors instead of scalars.

Definition A.1. A Blackwell approachability game is a tuple (X ,Y,f , S), where X ,Y are closed convex
sets, f : X × Y → ℝd is a biaffine function, and S ⊆ ℝd is a closed and convex target set. A Blackwell
approachability game represents a vector-valued repeated game between two players. At each time t, the
two payers interact in this order:

• first, Player 1 selects an action x(t) ∈ X ;

• then, Player 2 selects an action y(t) ∈ Y, which can depend adversarially on all the xt output so
far;

• finally, Player 1 incurs the vector-valued payoff f(xt,yt) ∈ ℝd, where f is a biaffine function.

Player 1’s objective is to guarantee that the average payoff converges to the target set S. Formally, given
target set S ⊆ ℝd, Player 1’s goal is to pick actions x(1),x(2), . . . ∈ X such that no matter the actions
y(1),y(2), . . . ∈ Y played by Player 2,

min
ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

f(x(t),y(t))
∥∥∥∥∥

2

→ 0 as T → ∞. (1)

B Regret minimization on the simplex via Blackwell approachability
Hart and Mas-Colell [2000] noted that the construction of a regret minimizer for a simplex domain ∆n can be
reduced to constructing an algorithm for a particular Blackwell approachability game Γ := (∆n,ℝn,f ,ℝn

≤0)
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which we now describe. For all i ∈ {1, . . . , n}, the i-th component of the vector-valued payoff function f
measures the change in regret incurred at time t, compared to always playing the i-th vertex ei of the simplex.
Formally, f : ∆n × ℝn → ℝn is defined as

f(x(t), g(t)) := g(t) − ⟨g(t),x(t)⟩1, (2)

where 1 is the n-dimensional vector whose components are all 1. (Note the connection with r(t) seen in
Lecture 5).

The following lemma establishes an important link between Blackwell approachability on Γ and external
regret minimization on the simplex ∆n.

Lemma B.1. The regret Reg(T ) = maxx̂∈∆n
1
T

∑T
t=1⟨g(t), x̂− x(t)⟩ cumulated up to any time T by any

sequence of decisions x(1), . . . ,x(T ) ∈ ∆n is related to the distance of the average Blackwell payoff from
the target cone ℝn

≤0 as

Reg(T )

T
≤ min

ŝ∈ℝn
≤0

∥∥∥∥∥ŝ− 1
T

T∑
t=1

f(x(t), g(t))
∥∥∥∥∥

2

. (3)

So, a strategy for the Blackwell approachability game Γ is a regret-minimizing strategy for the simplex
domain ∆n.

Proof. For any x̂ ∈ ∆n, the regret cumulated compared to always playing x̂ satisfies

1
T

Reg(T )(x̂) := 1
T

T∑
t=1

(
⟨g(t), x̂⟩ − ⟨g(t),x(t)⟩

)
= 1
T

T∑
t=1

(
⟨g(t), x̂⟩ − ⟨g(t),x(t)⟩⟨1, x̂⟩

)
=

〈
1
T

T∑
t=1

g(t) − ⟨g(t),x(t)⟩1, x̂
〉

=
〈

1
T

T∑
t=1

f(x(t), g(t)), x̂
〉

= min
ŝ∈ℝn

≤0

〈
−ŝ+ 1

T

T∑
t=1

f(x(t), g(t)), x̂
〉
, (4)

where we used the fact that x̂ ∈ ∆n in the second equality, and that minŝ∈ℝn
≤0

⟨−ŝ, x̂⟩ = 0 since x̂ ≥ 0.
Applying the Cauchy-Schwarz inequality to the right-hand side of (4), we obtain

1
T

Reg(T )(x̂) ≤ min
ŝ∈ℝn

≤0

∥∥∥∥∥−ŝ+ 1
T

T∑
t=1

f(x(t), g(t))
∥∥∥∥∥

2

∥x̂∥2.

So, using the fact that ∥x̂∥2 ≤ 1 for any x̂ ∈ ∆n,

1
T

Reg(T )(x̂) ≤ min
ŝ∈ℝn

≤0

∥∥∥∥∥−ŝ+ 1
T

T∑
t=1

f(x(t), g(t))
∥∥∥∥∥

2

.

Taking a max over x̂ ∈ ∆n yields the statement.

C Solving Blackwell games: Blackwell’s algorithm
A central concept in the theory of Blackwell approachability is the following.
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Definition C.1 (Forceable halfspace). Let (X ,Y,f , S) be a Blackwell approachability game and let
H ⊆ ℝd be a halfspace, that is, a set of the form H = {x ∈ ℝd : a⊤x ≤ b} for some a ∈ ℝd, b ∈ ℝ. The
halfspace H is said to be forceable if there exists a strategy of Player 1 that guarantees that the payoff is
in H no matter the actions played by Player 2, that is, if there exists x∗ ∈ X such that

f(x∗,y) ∈ H ∀y ∈ Y.

When that is the case, we call action x∗ a forcing action for H.

Blackwell’s approachability theorem [Blackwell, 1956] states the following.

Theorem C.1 (Blackwell’s theorem). Goal (1) can be attained if and only if every halfspace H ⊇ S is
forceable.

We constructively prove the direction that shows how forceability translates into a sequence of strategies
that guarantees that goal (1) is attained. Let (X ,Y,f , S) be the Blackwell game. The method is pretty
simple: at each time step t = 1, 2, . . . operate the following:

1. Compute the average payoff received so far, that is, ϕ(t) = 1
t

∑t−1
τ=1 f(x(τ),y(τ)).

2. Compute the Euclidean projection ψ(t) of ϕ(t) onto the target set S.

3. If ϕ(t) ∈ S (that is, goal (1) has already been met), pick and play any x(t) ∈ X , observe the opponent’s
action yt, and return.

4. Else, consider the halfspace H(t) tangent to S at the projection point ψ(t), that contains S. In symbols,

H(t) := {z ∈ ℝd : (ϕ(t) −ψ(t))⊤z ≤ (ϕ(t) −ψ(t))⊤ψ(t)}.

5. By hypothesis, H(t) is forceable. Pick x(t) to be a forcing action for H(t), observe the opponent’s action
y(t), and return.

The above method is summarized in Figure 1.

H(t)

S

×

ϕ(t)

ψ(t)

f(x(t),yt)

ϕ(t+1)

Figure 1: Construction of the approachability strategy described in Appendix C.

Let’s see how the average payoff ϕ(t) changes when we play as described above. Clearly,

ϕ(t+1) = 1
t

(t)∑
τ=1

f(x(τ),y(τ)) = t− 1
t
ϕ(t) + 1

t
f(x(t),y(t)).
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Hence, denoting with ρ(t+1) the squared Euclidean distance between ϕ(t+1) and the target set, that is,

ρ(t) := min
ŝ∈S

∥∥∥ŝ− ϕ(t)
∥∥∥2

2
,

we have

ρ(t+1) ≤
∥∥∥ψ(t) − ϕ(t+1)

∥∥∥2

2
=

∥∥∥∥ψ(t) − t− 1
t
ϕ(t) − 1

t
f(x(t),y(t))

∥∥∥∥2

2

=
∥∥∥∥ t− 1

t

(
ψ(t) − ϕ(t)

)
+ 1
t

(
ψ(t) − f(x(t),y(t))

)∥∥∥∥2

2

= (t− 1)2

t2
ρ(t) + 1

t2

∥∥∥ψ(t) − f(x(t),y(t))
∥∥∥2

2
+ 2(t− 1)

t2

〈
ψ(t) − ϕ(t),ψ(t) − f(x(t),y(t))

〉
. (5)

The proof so far does not use any particular assumption about how x(t) is picked. Here is where that enters
the picture. If ϕ(t) ∈ S, then ψ(t) = ϕ(t) and therefore the last inner product is equal to 0. Otherwise, we
have that ψ(t) − ϕ(t) ̸= 0. In that case, x(t) is constructed by forcing the halfspace H(t), and therefore, no
matter how y(t) is picked by the opponent we have

f(x(t),y(t)) ∈ H(t) ⇐⇒ (ϕ(t) −ψ(t))⊤f(x(t),y(t)) ≥ (ϕ(t) −ψ(t))⊤ψ(t)

⇐⇒
〈
ψ(t) − ϕ(t),ψ(t) − f(x(t),y(t))

〉
≤ 0.

Plugging in the last inequality into (5) and bounding ∥ψ(t) − f(x(t),y(t))∥2
2 ≤ Ω2 where Ω2 is a diameter

parameter of the game (which only depends on f and S), we obtain

ρ(t+1) ≤ (t− 1)2

t2
ρ(t) + Ω2

t2
=⇒ t2ρ(t+1) − (t− 1)2ρ(t) ≤ Ω2 ∀ t = 1, 2, . . . .

Summing the inequality above for t = 0, . . . , T − 1 and removing the telescoping terms, we obtain

T 2ρ(T +1) ≤ TΩ2 =⇒ ρ(T +1) ≤ Ω2

T
=⇒ min

ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

f(x(t),y(t))
∥∥∥∥∥

2

≤ Ω√
T
, (6)

which implies that the average payoff in the Blackwell game converges to S at a rate of O(1/
√
T ).

D The regret matching (RM) algorithm as an instance of Blackwell’s
algorithm

First, recall from Appendix B that the external regret minimization on the simplex can be solved via the
Blackwell game Γ := (∆n,ℝn,f ,ℝn

≤0) where f : ∆n × ℝn → ℝn is defined as

f(x(t), g(t)) = g(t) − ⟨g(t),x(t)⟩1, (7)

where 1 is the n-dimensional vector whose components are all 1. We will solve this Blackwell approachability
game using the strategy explained in Appendix C.

Computation of ψt (Step 2). Let’s start from looking at how to compute the projection ψt of ϕt onto
S = ℝ≤0. Projection onto the nonpositive orthant amounts to a component-wise minimum with 0, that is,
ψt = [ϕt]−. Hence,

ϕ(t) −ψ(t) = [ϕ(t)]+ =⇒ (ϕ(t) −ψ(t))⊤ψ(t) = 0.
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Halfspace to be forced (Step 4). Following on with Blackwell’s algorithm, when [ϕ(t)]+ ̸= 0, the
halfspace to be forced at each time t is

H(t) := {z ∈ ℝn : ⟨[ϕ(t)]+, z⟩ ≤ 0}.

Forcing action for H(t) (Step 5). We now show that a forcing action for H(t) indeed exists. Remember
that by definition, that is an action x∗ ∈ ∆n such that no matter the g ∈ ℝn, f(x∗, g) ∈ H(t). Expanding
the definition of H(t) and f , we are looking for a x∗ ∈ ∆n such that

⟨[ϕ(t)], g − ⟨g,x∗⟩1⟩ ≤ 0 ∀ g ∈ ℝn ⇐⇒ ⟨[ϕ(t)], g⟩ − ⟨g,x∗⟩⟨[ϕ(t)]+,1⟩ ≤ 0 ∀ g ∈ ℝn

⇐⇒ ⟨[ϕ(t)], g⟩ − ⟨g,x∗⟩∥[ϕ(t)]+∥1 ≤ 0 ∀ g ∈ ℝn

⇐⇒
〈
g,

[ϕ(t)]
∥[ϕ(t)]+∥1

〉
− ⟨g,x∗⟩ ≤ 0 ∀ g ∈ ℝn

⇐⇒
〈
g,

[ϕ(t)]
∥[ϕ(t)]+∥1

− x∗
〉

≤ 0 ∀ g ∈ ℝn.

Note that we are lucky: [ϕ(t)]+/∥[ϕ(t)]∥1 is a nonnegative vector whose entries sum to 1. So, the above
inequality can be satisfied with equality for the choice

x∗ = [ϕ(t)]+
∥[ϕ(t)]+∥1

∈ ∆n.

In other words, we have that Blackwell’s algorithm in this case picks

x(t+1) = [ϕ(t)]+
∥[ϕ(t)]+∥1

∈ ∆n ⇐⇒ x(t+1) ∝ [ϕ(t)]+ ∝
[
r(t)

]+
,where r(t) :=

t∑
τ=1

g(τ) − ⟨g(τ),x(τ)⟩1.

This is exactly the regret matching algorithm seen in Lecture 5.
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