
1 Counterfactual Regret Minimization
We have seen in Lecture 2 that a sequence-form strategy space can be characterized recursively by composing
convex hulls and Cartesian products operations. By applying the regret circuits described above, we can
then construct a regret minimizers for any sequence-form strategy space. The resulting regret minimizer is
called CFR. In a nutshell, CFR decomposes the problem of minimizing regret on the whole tree-form decision
problem into local regret minimization problems at each of the individual decision points j ∈ J . Any regret
minimizer Rj for simplex domains can be used to solve the local regret minimization problems. Popular
options are the regret matching algorithm, and the regret matching plus algorithm (Lecture 4).

Before giving pseudocode, we recall and introduce a bit of notation to deal with tree-form sequential
decision processes.

Notation for tree-form sequential decision processes We use the following notation for dealing with
tree-form sequential decision processes (TFSDPs), most of which was already introduced in Lecture 2. The
notation is also summarized in ??.

k1

j1 j2 j3

k2 k3 k4

j4 j5 j6

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1: Tree-form sequential decision making process of the first acting player in the game of Kuhn poker.

• We denote the set of decision points in the TFSDP as J , and the set of observation points as K. At
each decision point j ∈ J , the agent selects an action from the set Aj of available actions. At each
observation point k ∈ K, the agent observes a signal sk from the environment out of a set of possible
signals Sk.

• (new!) We denote by ρ the transition function of the process. Picking action a ∈ Aj at decision point
j ∈ J results in the process transitioning to ρ(j, a) ∈ J ∪ K ∪ {⊥}, where ⊥ denotes the end of the
decision process. Similarly, the process transitions to ρ(k, s) ∈ J ∪ K ∪ {⊥} after the agent observes
signal s ∈ Sk at observation point k ∈ K.

• A pair (j, a) where j ∈ J and a ∈ Aj is called a sequence. The set of all sequences is denoted as
Σ := {(j, a) : j ∈ J , a ∈ Aj}. For notational convenience, we will often denote an element (j, a) in Σ as
ja without using parentheses.

• Given a decision point j ∈ J , we denote by pj its parent sequence, defined as the last sequence (that
is, decision point-action pair) encountered on the path from the root of the decision process to j. If
the agent does not act before j (that is, j is the root of the process or only observation points are
encountered on the path from the root to j), we let pj = ∅.

1

Symbol Description
J Set of decision points
Aj Set of legal actions at decision point j ∈ J
K Set of observation points
Sk Set of possible signals at observation point k ∈ K
ρ Transition function:

• given j ∈ J and a ∈ Aj , ρ(j, a) returns the next point v ∈ J ∪K in the decision tree that
is reached after selecting legal action a in j, or ⊥ if the decision process ends;

• given k ∈ K and s ∈ Sk, ρ(k, s) returns the next point v ∈ J ∪K in the decision tree that
is reached after observing signal s in k, or ⊥ if the decision process ends

Σ Set of sequences, defined as Σ := {(j, a) : j ∈ J , a ∈ Aj}
pj Parent sequence of decision point j ∈ J , defined as the last sequence (decision point-action

pair) on the path from the root of the TFSDP to decision point j; if the agent does not act
before j, pj = ∅

Table 1: Summary of notation in TFSDPs.

As an example, consider the TFSDP faced by Player 1 in the game of Kuhn poker (?), depicted in ??,
which we already introduced in Lecture 2. There, we have that J = {j1, . . . , j6} and K = {k1, . . . , k4}.
Aj1 = Sk4 = {check, raise}. Aj5 = {fold, call}. Sk1 = {jack, queen, king}. ρ(k3, check) = ρ(j2, raise) = ⊥.
ρ(k1, king) = j3. ρ(j2, check) = k3. pj4 = (j1, check). pj6 = (j3, check). pj1 = pj2 = pj3 = ∅.

Notation for the components of vectors Any vector x ∈ ℝ|Σ| has, by definition, as many components as
sequences Σ. The component corresponding to a specific sequence ja ∈ Σ is denoted as x[ja]. Similarly,
given any decision point j ∈ J , any vector x ∈ ℝ|Aj | has as many components as the number of actions at j.
The component corresponding to a specific action a ∈ Aj is denoted x[a].

CFR algorithm Pseudocode for CFR is given in ??. Note that the implementation is parametric on the
regret minimization algorithms Rj run locally at each decision point. Any regret minimizer Rj for simplex
domains can be used to solve the local regret minimization problems. Popular options are the regret matching
algorithm, and the regret matching plus algorithm (Lecture 4).

It can be shown that the regret cumulated by the CFR algorithm satisfies the following bound.

Proposition 1.1. Let RT
j (j ∈ J) denote the regret cumulated up to time T by each of the regret

minimizers Rj . Then, the regret RT cumulated by ?? up to time T satisfies

RT ≤
∑
j∈J

max{0, RT
j }.

It is then immediate to see that if each RT
j grows sublinearly in T , then so does RT .

2

Algorithm 1: CFR regret minimizer
Data: Rj , one regret minimizer for ∆|Aj |; one for each decision point j ∈ J of the TFSDP.

1 function NextStrategy()
[▷ Step 1: we ask each of the Rj for their next strategy local at each decision point]

2 for each decision point j ∈ J do
3 bt

j ∈ ∆|Aj | ← Rj .NextStrategy()
[▷ Step 2: we construct the sequence-form representation of the strategy that plays according to

the distribution bt
j at each decision point j ∈ J]

4 xt = 0 ∈ ℝ|Σ|

5 for each decision point j ∈ J in top-down traversal order in the TFSDP do
6 for each action a ∈ Aj do
7 if pj = ∅ then
8 xt[ja]← bt

j [a]
9 else

10 xt[ja]← xt[pj] · bt
j [a]

[▷ You should convince yourself that the vector xt we just filled in above is a valid sequence-form
strategy, that is, it satisfies the required consistency constraints we saw in Lecture 2. In symbols,
xt ∈ Q]

11 return xt

12 function ObserveUtility(ℓt ∈ ℝ|Σ|)
[▷ Step 1: we compute the expected utility for each subtree rooted at each node v ∈ J ∪ K]

13 V t ← empty dictionary [▷ eventually, it will map keys J ∪ K ∪ {⊥} to real numbers]
14 V t[⊥]← 0
15 for each node in the tree v ∈ J ∪ K in bottom-up traversal order in the TFSDP do
16 if v ∈ J then
17 Let j = v

18 V t[j]←
∑

a∈Aj

bt
j [a] ·

(
ℓt[ja] + V t[ρ(j, a)]

)
19 else
20 Let k = v

21 V t[k]←
∑

s∈Sk

V t[ρ(k, s)]

[▷ Step 2: at each decision point j ∈ J , we now construct a local utility vector ℓt
j called

counterfactual utility]
22 for each decision point j ∈ J do
23 ℓt

j ← 0 ∈ ℝ|Aj |

24 for each action a ∈ Aj do
25 ℓt

j [a]← ℓt[ja] + V t[ρ(j, a)]
26 Rj .ObserveUtility(ℓt

j)

3

