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Recent AI Breakthroughs

image recognition, 
reconstruction, generation, 
super-resolution,…

protein folding, molecule design,…

super-human play

speech recognition, forecasting text generation, translation, chatbots, 
text embeddings,…

images
molecules

games

natural languagetime-series data



A Dawn of Multi-Agent Applications

Generative Adversarial Networks  (GANs)
synthetic data generation

• Multi-robot interactions
• Autonomous driving
• Automated Economic policy design

Multi-player Game-Playing:
• Superhuman GO, Poker, Gran Turismo
• Human-level Starcraft, Diplomacy

𝑍 ∼ 𝒩(0, 𝐼) ∼ 𝑃!"#$%!

Adversarial Training 
robustifying models against adversarial attacks

boring randomness neural network interesting randomness



Example: Deep Generative Models

𝑍 ∼ 𝓝(𝟎, 𝑰) ∼ 𝑷𝐢𝐧𝐭𝐞𝐫𝐞𝐬𝐭𝐢𝐧𝐠

Deep Neural Network (DNN) 
with well-tuned parameters 

𝜃

𝐺! 𝑍

𝐺1 ⋅



How to train a Deep Generative Model?

[Goodfellow et al’14]: Set up a two-player zero-game between a player tuning the parameters 𝜃 of a  
Deep Neural Network (called the “generator”) and a player tuning the parameters 𝜔 of a Deep Neural 
Network (called the “discriminator”)

𝑍 ∼ 𝒩(0, 𝐼) 𝐺& ⋅ ∼ 𝑃'(!%#%)!'($

𝑍*, 𝑍+, … , 𝑍, ∼ 𝑁(0, 𝐼)
Simple 

Randomness

Generator: DNN w/ 
parameters 𝜃

Hallucinated Images  
       (from generator)

Real Images  
(from training set)

Real or Hallucinated?

… …

Discriminator: DNN w/ 
parameters 𝜔

- Reward discriminator for distinguishing 
real from fake images
- Reward generator for fooling the 
discriminator

Example: Deep Generative Models



Important notes and 
caveats…

A Dawn of Multi-Agent Applications



This is an inherent limitation for the standard Deep Learning paradigm 

(I) Strategic Behavior does not 
emerge from standard training



ChatGPT

(I) Strategic Behavior does not 
emerge from standard training 

(cont’d)



[Athalye, Engstrom, Ilyas, Kwok ICML’18] [Engstrom et al. 2019]

(II) Naively trained models can be manipulated



[Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic 
Pricing, and Collusion,” American Economic Review, 2020]

collusive price

competitive 
price

learned price

Example: AI for dynamic 
pricing  

Setting: Duopoly w/ two 
symmetric firms 

Independent Learning: 
firms cannot 

communicate other than 
setting prices, observing 
their profit and adjusting 

their price using some 
standard AI algorithm

(III) Combining agents that were trained in isolation 
can lead to undesirable behavior



How 
deviations 

are punished 
by the 

learned price 
policies

Example: AI for dynamic 
pricing 

Setting: Duopoly w/ two 
symmetric firms 

Independent Learning: 
firms cannot 

communicate other than 
setting prices, observing 
their profit and adjusting 

their price using some 
standard AI algorithm [Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic 

Pricing, and Collusion,” American Economic Review, 2020]

(III) Combining agents that were trained in isolation 
can lead to undesirable behavior



(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



Theoretical Guarantee: Even if ℓ	nonconvex, Gradient 
Descent efficiently computes local minima

[Lee et al 2017, Ge et al ‘15]
Empirical Finding: Local minima are good enough

𝜃: high-dimensional
ℓ: nonconvex
 essentially only accessible through ℓ 𝜃 	and	𝛻ℓ 𝜃  queries

𝜃!"# = 𝜃! − 𝜂 ⋅ 𝛻ℓ 𝜃!
Gradient Descent

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings

min) ℓ(𝜃) STANDARD DEEP LEARNING ESTIMATION PROBLEM



𝜃"#$ ← 𝜃" − 𝛻%ℓ(𝜃")+ + +

“Scale is all you need”

Prominent Paradigm:

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



Practical Experience: GD vs GD (vs GD…) is cyclic 
or chaotic, and it is a hard engineering challenge 

to make it identify a good solution

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



GAN training on MNIST Data:

GAN training on Gaussian Mixture Data:

Target:

Target:

pictures from [Metz et al ICLR’17]

𝜃!"# = 𝜃! − 𝜂 ⋅ ∇$ℓ% 𝜃! , 𝜔!
𝜔!"# = 𝜔! − 𝜂 ⋅ ∇&ℓ' 𝜃! , 𝜔!

Simultaneous Gradient Descent (GD) Dynamics:GANs: ℓ" 𝜃, 𝜔 = −ℓ# 𝜃, 𝜔
ℓ# , ℓ": nonconvex in 𝜃 & 𝜔 resp.; 

𝜃, 𝜔: high-dimensional

Gradient Descent Ascent (GDA) 
Dynamics

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



(V) Finally Game Theory May Break

𝑍*, 𝑍+, … , 𝑍, ∼ 𝑁(0, 𝐼)
Simple 

Randomness

Generator: DNN w/ 
parameters 𝜃

Hallucinated Images  
       (from generator)

Real Images  
(from training set)

Real or Hallucinated?

… …

Discriminator: DNN w/ 
parameters 𝜔

In applications involving DNNs, agents’ losses are non-
convex (a.k.a. their utilities are non-concave)

Without further structure, this is trouble for Game 
Theory, in that standard ways to solve the game are not 
applicable.



• (I) Strategic Behavior does not emerge from standard training
• (II) Naively trained models can be manipulated
• (III) Combining agents that were trained in isolation can lead to 

undesirable (e.g. collusive) behavior
• (IV) The optimization workhorse of Deep Learning (namely gradient 

descent) struggles in multi-agent settings
• (V) Finally Game Theory (namely standard models and solutions) are 

inadequate to address non-convexity

Summary so far…



Game Theory

Computation

Learning

to incorporate models of 
strategic behavior

to tackle 
complexity

to incorporate 
models of 

uncertainty, and 
learning

This class: lay modern foundations of multi-agent learning

Humans



Today’s Menu

• Motivation
• Administrivia
• Course Overview



Administrivia

• Course website: 
https://web.mit.edu/~gfarina/www/6S890/
• We will use the website as the public face of the 

course, and to post lecture notes and slides
• Private discussions, questions, grading, etc. will be 

arranged on Canvas

• Lecturers: Costis Daskalakis, Gabriele Farina
• TA? tbd

• Attendance: Everyone is welcome! If just 
auditing please register as a listener
• Office hours are flexible: email us to schedule

https://web.mit.edu/~gfarina/www/6S890/


If Registered for Credit:

• Solve problem sets: 2-3 problems sets, two weeks to 
solve each (weight: 40%)
• Project: proposal due end of September

(weight: 50%)
• Project brainstorming class on 9/26
• Project break on the week of 11/13-17
• Project presentations starting 11/30
• Project can be theoretical, practical, or a mix
• We encourage creativity!
• Feel free to run your ideas by us
• Feel free to apply ideas from this class to your own area of 

interest
• Project can be done in teams

• No exams



Any questions regarding
logistics and projects?



Today’s Menu

• Motivation
• Administrivia
• Course Overview



Our goal in this class, revisited

How can we, and machines, systematically reason about the 
behavior, incentives, and outcomes of multiagent systems?

And as computer scientists, how can we teach machines to compute, 
predict, or learn such behavior?



The Concept of Game

Games are thought experiments to help us learn how to predict rational
behavior in situations of conflict.

Rational Behavior: The players want to maximize their own expected 
utility.  No altruism, envy, masochism, or externalities (if my neighbor 
gets the money, he will buy louder stereo, so I will hurt a little myself...).  

Situation of conflict:  Everybody's actions affect others.

Predict: We want to know what happens in a game.  Such predictions 
are called solution concepts (e.g., Nash equilibrium).



Situations Modeled as Games

• Recreational games
• Rock paper scissors 
• Diplomacy
• Poker
• Go
• …

• Non-recreational settings
• Auctions
• Markets
• Logistics
• Budget allocation (e.g., political 

campaigns)
• Generative networks
• Multi-robot interactions
• Fraud detection systems
• …



Scenic Tour



Part I: Normal-Form Games

0,0 -1,1 1,-1

1,-1 0,0 -1,1

-1,1 1,-1 0,0

Deny 
(cooperate)

Confess 
(betray)

Deny 
(cooperate) -1, -1 -3, 0

Confess 
(betray) 0, -3 -2, -2

Rock-paper-scissors

Prisoner’s dilemma

(-1 = 1 year in jail)

These are “matrix” games
- Simultaneous actions

- Single move per player

Simple model but already captures 
several important aspects

Rock

Paper

Scissors

Rock Paper Scissors



• Solution concepts and equilibria (Nash, maxmin, correlated, …)
• Learning from repeated play

• Learning enables iteratively refining strategies to become stronger and stronger, and 
it has been a key component in all recent game AI breakthroughs

• Local learning of each agent can often be connected to global notion of equilibrium
• ≈ Mental model: “reinforcement learning but also works in nonstationary settings”

• Deep connection between equilibria and other important concepts in 
computer science

• After that, we will move on to notions of games that capture more 
interesting / real-world phenomena, especially:
• Sequential moves, Imperfect information, nonconvexity

Despite their simplicity, normal-form games will provide the
ground to start looking into the following key concepts in multiagent 

settings:



Example: What should happen in prisoner’s dilemma?

• From blue player’s point of view, Confess dominates 
Deny, i.e. no matter what orange plays blue is better 
off by playing Confess.

• Likewise, From orange’s point of view, Confess 
dominates Deny.

• So the rational strategy for both is to play Confess.

• It is a dominant strategy equilibrium.

• It is worse for both compared to (Deny, Deny)…

Deny 
(cooperate)

Confess 
(betray)

Deny 
(cooperate) -1, -1 -3, 0

Confess 
(betray) 0, -3 -2, -2

What is “rational play” for the agents?

Benefit of dominant strategy 
equilibrium: requires no 

”counterspeculation”



In general, counterspeculation cannot be avoided
• Dominant strategy equilibrium is the exception, not the norm: no 

strategies in general might be dominated

0,0 -1,1 1,-1

1,-1 0,0 -1,1

-1,1 1,-1 0,0

Rock-paper-scissors

Rock

Paper

Scissors

Rock Paper Scissors

General principle: randomization is generally 
required to play “optimally”

Furthermore, this example shows that it is 
generally a bad idea for any player to stick to a 
single action

Instead, players should play from a distribution 
over actions



• Idea: Ideally, we would want a strategy that we are comfortable 
playing over and over
• Even if the opponent learned about our distribution, and computed an 

optimal counterstrategy, we would not want to change our strategy

• In zero-sum games are lucky: if we settle on a strategy x, we know 
that an “expert” will maximize their own utility, which is the opposite 
of ours. So, if we play against an expert we can predict that our utility 
will be

𝑣 𝑥 = min
$
𝐸%~',)~$[𝑢 𝑎, 𝑏 ]

• We then want to select a strategy x with maximum return:
𝑥∗ ∈ argmax 𝑣(𝑥)

Strategy of opponent Action of opponentOur strategy
Payoff associated with actions



Maxmin strategies

• The notion we just introduced is called a maxmin 
strategy
• Natural when playing against a strong player in a 

two-player zero-sum game
• E.g. was used to beat top poker pros in Head’s Up No 

Limit Hold’em
• Does not require human data
• Might not be the most natural choice against a weak 

opponent though



Maxmin strategies

• Computation of maximin strategies is tractable
• Convex optimization problem
• In fact, linear -> We can use the simplex algorithm or interior point methods

• Even better: there exist very attractive learning algorithm
• Start by playing the game
• After every round, refine the strategy according to the learning algorithm
• Repeat
• Many algorithms known: hedge, optimistic multiplicative weights, regret 

matching, online gradient ascent, …
• Extremely scalable and practical algorithm



Nash equilibria
• An assignment of maxmin strategies for each player 

in two-player zero-sum games forms a Nash 
equilibrium
• That is, an assignment of independent strategies for each 

player, so that no player has any incentive to unilaterally 
deviate
• Each player is best responding to each of the other players
• Concept generalizes to any number of players and beyond 

zero-sum games

Since maxmin strategies can be computed in polynomial time, this means 
that a Nash equilibrium in two-player zero-sum games always exists and 
can be computed in polynomial time



Beyond Zero-Sum?



[John Nash ’50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.

Proof highly non-constructive (uses Brouwer’s fixed point thm)

No simpler proof has been discovered

[Daskalakis-Goldberg-Papadimitriou’06]: no simpler proof exists

i.e. 

Nash’s Theorem

Nash 
Equilibrium

Brouwer’s Fixed 
Point Theorem



• In practice, people have been successful applying learning methods 
beyond two-player zero-sum settings and achieving human or even 
superhuman performance
• Example: six-player poker was solved this way

• In general-sum games, learning dynamics also provably converge to 
relaxations of the Nash equilibrium (e.g., correlated and coarse-
correlated equilibria), which are interesting on their own





Most interactions do not look like a normal-form games

Players can often make more than one move, and they often 
have imperfect information

Parts II and III



Part II: Markov (aka Stochastic) Games

Markov games: many “normal-form” stage 
games played on a graph.

(≈ think: “MDP of normal-form games”)

• Example:
diplomacy

Can be generally solved via backward 
induction (bottom up induction)

Surprising complexity of 
stationary equilibria





Part III: Imperfect-Information Extensive-Form Games

• Example:
poker

While stochastic games capture sequential 
moves, they do not address imperfect 

information

Imperfect information extensive-form games:
≈ “stochastic games + imperfect information
+ tree structure (instead of general graph)”





Difficulties with Imperfect Information

• Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

• Nonetheless: many positive results
• In fact, we live in a world where machines bluff at poker better than humans

The number of (deterministic) strategies grows exponentially in the game tree

Other players have control over what part of the game tree is visited/explored

1

3

Imperfect information makes backward induction and local reasoning not viable2

Think about poker: need to reason about misdirection. General principle: you need to think about what 
the opponents don’t know about you and leverage that to your advantage



• As an example of a positive result, we will show that learning can be 
carried out efficiently in imperfect-information games



By the end of this part…



• By the end of this part, you should have acquired:
• A language to think about and describe different equilibrium points 

of multiagent interactions (Nash equilibrium, maxmin strategies, 
correlated equilibria, …)
• An appreciation for what is computationally tractable in every case, 

and what only in special cases
• The ability to implement learning dynamics to progressively refine 

strategies, including in imperfect-information domains
• A general understanding of what techniques are used to push 

scalability, and what major areas of investigation remain 
underexplored



Part IV: Nonconvexity (preview)



Part IV: Nonconcave games

Emerging applications in Machine Learning involve multiple agents who:
Ø choose high-dimensional strategies 𝑥7 ∈ 𝒳7 ⊂ ℝ8!
Ø maximize utility functions 𝑢7(𝑥7	; 𝑥97) that are typically nonconcave in their own strategy

(a.k.a. minimize loss functions that are nonconvex in their own strategy)

Issue: Game Theory is fragile when utilities are nonconcave
Ø in particular, Nash equilibrium (and other types of equilibrium) may not exist
Ø so what is even our recommendation about reasonable optimization targets in the multi-

agent setting?

   [often:   𝑢$ is Lipschitz and smooth (i.e. Lipschitz gradient) a.e.]

…

action: 𝑥% ∈ 𝒳% ⊂ ℝ&- 
goal: max 𝑢% 𝑥%, … , 𝑥'

action: 𝑥( ∈ 𝒳( ⊂ ℝ&.	
goal: max 𝑢( 𝑥%, … , 𝑥'

action: 𝑥' ∈ 𝒳' ⊂ ℝ&/
goal: max 𝑢' 𝑥%, … , 𝑥'

Setting:

   [often: global constraints 𝑥%, 𝑥(, … , 𝑥' ∈ 𝒮 ⊆×$𝒳$]



And finally…


