
Computation and Learning of Equilibria in Stochastic Games

Noah Golowich

October 15 & 17, 2023

Part I

Upper bounds

1 Independent learning in Stochastic games

We consider a finite-horizon stochastic game G = (m,S,A,P, r,H, s1). Recall that:

• m ∈ N denotes the number of players and H ∈ N denotes the horizon.

• S denotes the state space, which we assume to be finite.

• A = A1 × · · ·Am denotes the joint action set; player i’s action set is Ai. We denote joint
actions in A with boldface, i.e., a = (a1, . . . , am) ∈ A.

• P(s′|s,a) denotes the transition matrix.

• ri(s,a) denotes the reward function of player i (for i ∈ [m]). We assume ri(s,a) ∈ [0, 1].

• s1 denotes the initial state. (We assume for simplicity that s1 is fixed.)

We let Ai = |Ai| denote the number of actions of player i and S = |S| denote the number of states.

1.1 Review of notation

Recall that a policy of player i is a sequence of mappings πi,h : (S × A)h−1 × S → ∆(Ai), which
maps a sequnce of previous states and actions (s1,a1, . . . , sh−1,ah−1), as well as the current state
sh, to the distribution πi,h(s1,a1, . . . , sh−1,ah−1, sh). A Markov policy of player i is one which
only depends on the step number h and the current state s, i.e., πi,h can be written as a function
πi,h : S → ∆(Ai).

A joint policy is simply a policy specifying actions for all players at each step, i.e., a sequence of
mappings πh : (S×A)h−1×S → ∆(A), and a joint Markov policy is a sequence πh : S → ∆(A), for
1 ≤ h ≤ H. A joint policy is a product policy if the mappings πh decompose as πh : (S×A)h−1×S →
∆(A1)× · · · ×∆(Am). A joint Markov policy is a product policy if the mappings πh decompose as
πh : S → ∆(A1)× · · · ×∆(Am).

1

Given a policy π, h ∈ [H], a state s ∈ S, and a player i ∈ [m], the player’s value function at
step h is defined by:

V π
i,h(s) := Eπ

 H∑
g=h

ri(sg,ag) | sh = s

 ,
where the notation Eπ[· | sh = s] means that we start the game at state s and players play according
to policy π.

1.2 Equilibrium notions

Player i’s utility is given by their expected value function, i.e., we should think of ui(π) :=
V π
i,1(s1). We will be primarily concerned with coarse correlated equilibria, due to their compu-

tational tractability:

Definition 1.1 (Coarse correlated equilibrium). A joint policy π is a ε-approximate coarse corre-
lated equilibrium (ε-CCE) if, for each i ∈ [m],

max
π′i

V
π′i×π−i

i,1 (s1)− V π
i,1(s1) ≤ ε,

where π′i × π−i denotes the policy where player i plays according to π′i and all other players play
according to π. If π is also a Markov policy, then it is called an ε-approximate Markov CCE.

For reference, a Nash equilibrium can be seen as a CCE which is also a product policy:

Definition 1.2 (Nash equilibrium). A joint policy π is an ε-approximate Nash equilibrium if it
is an ε-CCE and is moreover a product policy. Similarly, it is an ε-approximate Markov Nash
equilibrium if it is an ε-approximate Markov CCE and a product policy.

2 Warm-up: computing Markov CCE

Last lecture we saw that there always exists a Markov Nash equilibrium in finite-horizon stochastic
games. The proof was constructive in nature, using backwards induction. However, due to the
intractability of computing Nash equilibrium, even in the special case of normal-form games, we
do not have an efficient algorithm for computing an (approximate) Markov Nash equilibrium in
stochastic games. Algorithm 1 gives an efficient algorithm to compute an (approximate) Markov
CCE in a stochastic game.

Proposition 2.1. For any ε > 0, Algorithm 1 finds an ε · H-approximate Markov CCE of the
stochastic game.

Proof. It is straightforward to show, using backwards induction on h, that for each h ∈ [H], i ∈
[m], s ∈ S, V π

i,h(s) = Vi,h(s), where Vi,h are the value functions defined in Algorithm 1.
Next, we show using backwards induction on h that for each h ∈ [H], i ∈ [m], s ∈ S, that

max
π′i

V
π′i×π−i

i,h (s)− V π
i,h(s) ≤ ε · (H − h). (1)

2

Algorithm 1 CCE-Value-Iteration

1: Initialize Vi,H+1(s) = 0 for all i ∈ [m], s ∈ S.

2: for h = H,H − 1, . . . , 1 do:

3: for s ∈ S do

4: For i ∈ [m], define Qi(s,a) := ri(s,a) + Es′∼P(·|s,a)[Vi,h+1(s′)].

5: Find an ε-CCE of the game (Q1(s, ·), . . . , Qm(s, ·)), denoted q ∈ ∆(A). . e.g., LP or

no-regret

6: For i ∈ [m], define Vi,h(s) := Ea∼q[Qi(s,a)] and πh(s) := q ∈ ∆(A).

7: return the policy π = (π1, . . . , πH).

Indeed, suppose that (1) holds at step h + 1. Then for any policy π′i of player i, and any state
s ∈ S,

V
π′i×π−i

i,h (s)− V π
i,h(s)

=Ea∼πh(s)

[
Es′∼P(·|s,(π′i(s),a−i))[ri(s, (π

′
i(s),a−i)) + V

π′i×π−i

i,h+1 (s′)]− Es′∼P(·|s,a)[ri(s,a) + V π
i,h+1(s′)]

]
≤ε · (H − h− 1) + Ea∼πh(s)

[
Es′∼P(·|s,(π′i(s),a−i))[ri(s, (π

′
i(s),a−i)) + V π

i,h+1(s′)]− Es′∼P(s,a)[ri(s,a) + V π
i,h+1(s′)]

]
=ε · (H − h− 1) + Ea∼πh(s)

[
Es′∼P(·|s,(π′i(s),a−i))[ri(s, (π

′
i(s),a−i)) + Vi,h+1(s′)]− Es′∼P(s,a)[ri(s,a) + Vi,h+1(s′)]

]
≤ε · (H − h− 1) + ε = ε · (H − h),

where the first inequality uses the inductive hypothesis (i.e., (1) at step h + 1) and the second
inequality uses the choice of πh in Lines 5 and 6 of Algorithm 1.

Finally, note that (1) at step h = 1 gives the desired result.

3 The V-learning algorithm

Algorithm 1 relies on the assumption that the transitions and rewards of the stochastic game G are
known – what if this is not the case? At the same time, we wish to allow the agents to learn in an
independent manner, not needing to communicate with each other or with a central coordinator.
We therefore consider the following decentralized setting, where the algorithm does not know the
transitions and rewards, and must learn them over time:

• The agents are allowed to interact with the stochastic game over a period of T episodes.

• At the beginning of each episode t ∈ [T], each agent i ∈ [m] chooses a policy πi = (πi,1, . . . , πi,H)

(often we will use a superscript as in π
(t)
i to distinguish policies from different episodes).

• A trajectory (sh, (a1,h, . . . , am,h), (r1,h, . . . , rm,h))Hh=1 is drawn from the joint policy π = (π1, . . . , πm),
where agents execute πi independently.

• Each agent i observes (sh, ai,h, ri,h)Hh=1 and uses this data to update their policy πi.

3

• At the conclusion of the T episodes, each agent i outputs a policy πi. We consider the 2-player
zero-sum setting, and want that the policy (π1, π2) is an ε-Nash equilibrium (Definition 1.2)
(in fact, we will be able to ensure that it is a Markov Nash equilibrium).

We remark that in the general-sum setting, though we cannot find a Nash equilibrium, it is
possible for each player to independently output a policy πi which depends on some shared
random bits, so that a joint policy defined in terms of the πi and the shared bits is an ε-CCE.
We do not discuss the details of this procedure.

3.1 The challenge of exploration

We might hope that when the transitions P(s′|s,a) and rewards ri(s,a) are unknown, then we can
still implement an “approximation” of Algorithm 1, say as follows (sometimes known as an ε-greedy
approach):

1. Draw several trajectories from a random policy and estimating the transitions and rewards
from the trajectories.

2. Run Algorithm 1 on the empirical approximation of the transitions and rewards.

It turns out that such a strategy fails. To illustrate, let us consider the m = 1 player setting, so
that finding an ε-approximate equilibrium is equivalent to finding an ε-optimal policy.

Example 3.1 (Combination lock). Suppose there are H+1 states, denoted s1, s2, . . . , sH , ssink and
two actions A = {0, 1}. Moreover, for some unknown action sequence a? = (a1, . . . , aH) ∈ AH :

• P(sh+1|sh, a?h) = 1 and P(ssink|sh, 1− a?h) = 1.

• r(sH , a
?
H) = 1 and all other rewards are 0.

• The initial state is s1.

Why does the ε-greedy approach fail to learn efficiently on this example? Clearly there is a policy
with value 1 (namely, π?h(sh) = a?h). However, under a uniformly random policy, the probability
that we ever reach state sH/2 is 2−H/2. Thus, in poly(H) trajectories, we will almost never even
get to sh, and certainly have no hope of learning a?H/2+1, . . . , a

?
H .

3.2 The V-learning algorithm

For simplicity we assume that all players have A actions, i.e., |Ai| = A for all i. Moreover, we
assume that the stochastic game is 2-player 0-sum, meaning that m = 2 and r1(s,a) = 1− r2(s,a)
for all s ∈ S,a ∈ A.

Example 3.1 indicates that we need to perform some sort of adaptive exploration. The V-learning
algorithm (Algorithm 2) does so by adding larger exploration bonuses to states which we have not
visited as much. In particular, for a state which has been visited n times in the past, we add an
exploration bonus of

βn := C
√
H3A/n, (2)

4

for some absolute constant C.1 V-learning performs a sort of “soft” variant of the value iteration
procedure of Algorithm 1, where a state s which has been visited n times in the past is updated
with a learning rate of

αn :=
H + 1

H + n
.

Algorithm 2 V-learning (for 2-player 0-sum stochastic games)

1: For all i, s, a, h initialize Ṽi,h(s), Vi,h(s)← H,Nh(s)← 0, πi,h(a|s)← 1/A.

2: For all (i, s, h) ∈ [m]×S× [H] initialize a bandit no-regret learner BanditNoRegreti,s,h for that

tuple.

3: for Episode t = 1, 2, . . . , T do

4: for Step h = 1, 2, . . . ,H do

5: for Agent i = 1, 2 do

6: Take action ai,h ∼ πi,h(·|s), observe reward ri,h and next state sh+1.

7: n← Nh(sh), and Nh(sh)← Nh(sh) + 1.

8: Ṽi,h(sh)← (1− αn) · Ṽi,h(sh) + αn · (ri,h + Vi,h+1(sh+1) + βn).

9: Vi,h(sh)← min{H, Ṽi,h(sh), Vi,h(sh)}.
10: πi,h(·|sh)← BanditNoRegreti,sh,h(ai,h, ri,h + Vi,h+1(sh+1)).

11: Define Markov policies π̂1, π̂2, where

π̂i,h(·|s) :=
T∑
t=1

γi,t · π(t)
i,h(·|s),

where π
(t)
i,h is player i’s policy from episode t, and γi,t ∈ R≥0 are coefficients (see (3) for the

formal definition of π̂i).

12: return (π̂1, π̂2).

We let π
(t)
h , V

(t)
i,h , Ṽ

(t)
i,h , N

(t)
h , s

(t)
h ,a

(t)
h be the values of the respective objects at the beginning of

episode t of V-learning.

Background on bandit no-regret learners. V-learning makes use of a bandit no-regret
learning algorithm at each state, for each agent i (see Line 10), which must choose a distribution
over the action set A (taken to be Ai in V-learning) over multiple rounds. In the abstract setting
of bandit no-regret learning, at each round k that the algorithm is called:

• The algorithm chooses a distribution q(k) ∈ ∆(A), and samples an action a(k) ∼ q(k).

• The adversary chooses a reward vector u(k) ∈ [0, 1]A.

1Technically there should be a log factor, but we ignore log factors.

5

• The algorithm reveals its action a(k), and receives noisy feedback ũ(k)(a(k)), so that E[ũ(k)(a(k))|a(k), u(k)] =
u(k)(a(k)).

The learning algorithm aims to minimize its regret relative to any fixed action:

Lemma 3.1 (Bandit no-regret learning guarantee). There is a bandit no-regret learning algorithm
BanditNoRegret so that, for any sequence of adversarial utilities u(1), . . . , u(K) ∈ [0, 1]A, with high
probability, it holds that

max
a?∈A

K∑
k=1

(
u(k)(a?)− 〈u(k), q(k)〉

)
≤ Õ(

√
T |A|).

In the specific case of V-learning, the bandit no-regret learning algorithm BanditNoRegreti,s,h
is instantiated as follows: fix i, s, h, and suppose that the kth time (s, h) is visited is episode tk.
Then:

• The distribution q(k) is π
(tk)
i,h (·|s) ∈ ∆(Ai).

• The sampled action a(k) ∼ q(k) is a
(tk)
i,h .

• The reward vector u(k) is defined by u(k)(ai) := E
a−i∼π

(tk)
−i,h(s)

[
ri(s, (ai,a−i)) + Es′∼P(s,(ai,a−i))[V

(tk)
i,h+1(s′)]

]
.

• The noisy reward is ũ(k)(a(k)) = r
(tk)
i,h + V

(tk)
i,h+1(s

(tk)
h+1).

Guarantee for V-learning. The V-learning algorithm can be shown to output an approximate
Markov Nash equilibrium of the stochastic game with high probability:

Theorem 3.2 (V-learning guarantee). In a stochastic game G with horizon H, S states, and
A actions per player, V-learning (Algorithm 2) outputs a policy π̂ = (π̂1, π̂2) which, with high
probability is an ε-approximate Markov Nash equilibrium of G for ε = Õ(

√
H5SA/T).

3.3 Proof of correctness of V-learning

Defining the output policy π̂. First we make the following definitions: for 1 ≤ ` ≤ n,

α0
0 := 0, α0

n :=

n∏
j=1

(1− αj), α`n := α` ·
n∏

j=`+1

(1− αj).

Think of α`n as “the contribution from an update during episode ` to the value function during
episode n.”

Lemma 3.3. The values α`n satisfy the following properties:

1.
∑n

`=0 α
`
n = 1.

2. maxi∈[n] α
i
n ≤ 2H/n.

3. 1/
√
n ≤

∑n
i=1 α

i
n/
√
i ≤ 2/

√
n.

6

4.
∑∞

n=i α
i
n = 1 + 1/H.

The policies π̂i,h(s) are defined as follows: fix s ∈ S, h ∈ [H], and let t1, . . . , tn denote the
episodes when (h, s) was visited in the execution of Algorithm 2. Then we set, for i ∈ [2],

π̂i,h(·|s) =
n∑
j=1

αjn · π
(tj)
i,h (·|s). (3)

We also will need the following lemma:

Lemma 3.4. Fix any s, h, t. Suppose that, prior to episode t, (s, h) was previously visited during
episodes t1 < t2 < · · · < tn < t. Then

Ṽ
(t)
i,h (s) = α0

n ·H +

n∑
j=1

αjn ·
(
ri(s,a

(tj)
h) + V

(tj)
i,h+1(s

(tj)
h+1) + βj

)
(4)

Proof. The proof is immediate by unpacking the definitions of αin and of Ṽ
(t)
i,h (sh) on Line 8 of

Algorithm 2. (Note that α0
n = 0 for n > 0 and α0

0 = 1.)

Optimal value functions. We introduce the following notation: for a function Vh+1 : S → R,
we write

PhVh+1(s,a) := Es′∼P(s,a)[Vh+1(s′)].

Since (normal-form) 2-player zero-sum games have a well-defined value, 2-player zero-sum
stochastic games have well-defined value functions, which are defined iteratively as follows, for
i ∈ {1, 2}:

V ?
i,h(s) := max

p∈∆(Ai)
min

q∈∆(A−i)
Eai∼pEa−i∼q[Q

?
i,h(s, (ai, a−i))]

Q?i,h(s,a) :=ri,h(s,a) + (PhV ?
i,h+1)(s,a).

It is straightforward to show that, for all h, s, i:

max
πi

min
π−i

V
πi,π−i

i,h (s) = min
π−i

max
πi

V
πi,π−i

i,h (s) = V ?
i,h(s). (5)

Moreover, we note that the following equality (called the Bellman equation) is immediate from the
definition of V π

i,h:

V π
i,h(s) = Ea∼πh(s)

[
ri(a) + PhV π

i,h+1(s,a)
]
. (6)

Optimism. The following lemma shows that the exploration bonuses induce value functions
which are overestimates of the optimal value function:

Lemma 3.5. With high probability, for all s ∈ S, h ∈ [H], t ∈ [T], i ∈ [2],

Ṽ
(t)
i,h (s) ≥ V (t)

i,h (s) ≥ max
π′i

V
π′i,π̂−i

i,h (s) ≥ V ?
i,h(s).

7

Proof. The first inequality is immediate from the definition of V
(t)
i,h in Line 9, and the final inequality

is immediate from (5). So it remains to only show the middle inequality. So fix s, h, t, and suppose
that, prior to episode t, (s, h) was visited in episodes t1 < · · · < tn < t. Fix any policy of player i,
π′i. We may also suppose that n > 0. Then

V
π′i,π̂−i

i,h (s) =
n∑
j=1

αjn · Ea∼π′i,h(s)×π(tj)
−i,h(s)

[(
ri + (PhV

π′i,π̂−i

i,h+1)
)

(s,a)
]

≤
n∑
j=1

αjn · Ea∼π′i,h(s)×π(tj)
−i,h(s)

[(
ri + (PhV

(tj)
i,h+1)

)
(s,a)

]
≤

n∑
j=1

αjn · Ea∼π(tj)
i,h (s)×π(tj)

−i,h(s)

[(
ri + (PhV

(tj)
i,h+1)

)
(s,a)

]
+ Õ(

√
H3A/n)

≤
n∑
j=1

αjn ·
(
ri(s,a

(tj)
h) + V

(tj)
i,h+1(s

(tj)
h+1)

)
+ Õ(

√
H3A/n)

=Ṽ
(t)
i,h (s), (7)

where the equality uses (6) together with the definition of π̂−i,h in (3), the first inequality uses
the inductive hypothesis, the second inequality uses the guarantee of BanditNoRegreti,s,h (namely,

Lemma 3.1),2 the third inequality uses the Azuma-Hoeffding bound and holds with high probabil-
ity,3 and the final equality uses Lemma 3.4 and the definition of βn in (2).

It is straightforward from Line 9 that

V
(t)
i,h (s) = min

{
H,min

t′≤t
Ṽ

(t′)
i,h (s)

}
,

Since (7) holds for any t, we conclude that V
π′i,π̂−i

i,h (s) ≤ V
(t)
i,h (s), which concludes the proof of the

lemma.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. It suffices to show that maxπ′1 V
π′1,π̂2

1,1 (s1) − minπ′2 V
π̂1,π′2

1,1 (s1) ≤ ε. We may
compute

max
π′1

V
π′1,π̂2

1,1 (s1)−min
π′2

V
π̂1,π′2

1,1 (s1) = max
π′1

V
π′1,π̂2

1,1 (s1) + max
π′2

V
π̂1,π′2

2,1 (s1)−H

≤V (T)
1,1 (s1) + V

(T)
2,1 (s1)−H

≤ 1

T

T∑
t=1

(
V

(t)
1,1 (s1) + V

(t)
2,1 (s1)

)
−H

≤ 1

T

T∑
t=1

(
Ṽ

(t)
1,1 (s1) + Ṽ

(t)
2,1 (s1)

)
−H,

2Technically, Lemma 3.1 is not quite sufficient: we need to analyze a weighted version of regret, where iteration j
is weighted by αj

n; see [JLWY21, Corollary 19] for the correct version.
3To apply Azuma-Hoeffding we use Item 2 of Lemma 3.3.

8

where the first equality uses that r1(s,a) + r2(s,a) = H for all s,a, the first inequality uses

Lemma 3.5, the second inequality uses that V
(t)
i,1 is non-increasing with respect to t (Line 9), and

the final inequality also uses Line 9.

Define δ
(t)
h := Ṽ

(t)
1,h(s

(t)
h) + Ṽ

(t)
2,h(s

(t)
h)− (H − h+ 1). Note that

δ
(t)
h ≥ V

?
1 (s

(t)
h) + V ?

2 (s
(t)
h)− (H − h+ 1) = 0,

where the inequality uses Lemma 3.5. We now bound δ
(t)
h using forward induction on h, as follows:

fix any h ∈ [H], t ∈ [T]. Let s = s
(t)
h , n

(t)
h = N

(t)
h (s) denote the number of times (h, s) was visited

prior to episode t, and let those episodes be denoted t1 < t2 < · · · < tn < t. Then

δ
(t)
h =2α0

n
(t)
h

·H +

n
(t)
h∑
j=1

αj
n
(t)
h

·
(
V

(tj)
1,h+1(s

(tj)
h+1) + V

(tj)
2,h+1(s

(tj)
h+1) + (H − h) + 2βj

)

≤2α0

n
(t)
h

·H +

n
(t)
h∑
j=1

αj
n
(t)
h

·
(
Ṽ

(tj)
1,h+1(s

(tj)
h+1) + Ṽ

(tj)
2,h+1(s

(tj)
h+1) + (H − h) + 2βj

)

≤2α0

n
(t)
h

·H +

n
(t)
h∑
j=1

αj
n
(t)
h

· δ(tj)
h+1 + Õ(

√
H3A/n

(t)
h), (8)

where the first equality uses Lemma 3.4 for i = 1, 2 as well as the fact that r1(s,a) + r2(s,a) = 1

for all s,a, the first inequality uses the fact that V
(t)
i,h (s) ≤ Ṽ

(t)
i,h (s) for all i, h, s (Line 9), and the

final inequality uses the definition of βj in (2) as well as Item 3 of Lemma 3.3.
We now want to sum (8) over all t. We consider the first two terms separately:

T∑
t=1

2α0

n
(t)
h

·H =
T∑
t=1

2H · 1{n(t)
h = 0} ≤ 2HS

T∑
t=1

n
(t)
h∑
j=1

αj
n
(t)
h

· δ(tj)
h+1 ≤

T∑
t′=1

δ
(t′)
h+1

∞∑
`=n

(t′)
h +1

α
n
(t′)
h
` ≤

(
1 +

1

H

)
·
T∑
t′=1

δ
(t′)
h+1.

In the second line, the first inequality follows by, for each t′, grouping together all terms of the

summation of the form αj
n
(t)
h

for which j = n
(t′)
h . We have terms for visiting the corresponding state

s
(t′)
h for the n

(t′)
h + 1, n

(t′)
h + 2, . . .th times. The second inequality uses Item 4 of Lemma 3.3. Note

that both inequalities use non-negativity of δ
(t)
h .

Using the above display in (8), we conclude that

T∑
t=1

δ
(t)
1 ≤2SAH +

(
1 +

1

H

)
·
T∑
t=1

δ
(t)
h+1 +

T∑
t=1

Õ

(√
H3A/n

(t)
h

)
.

9

Iterating on h, we conclude that

T ·
(

max
π′1

V
π′1,π̂2

1,1 (s1)−min
π′2

V
π̂1,π′2

1,1 (s1)

)
≤

T∑
t=1

δ
(t)
h ≤O(SAH2) + Õ

(
H∑
h=1

T∑
t=1

√
H3A/n

(t)
h

)

≤O(SAH2) + Õ

 ∑
s∈S,h∈[H]

N
(T)
h (s)∑
n=1

√
H3A/n


≤O(SAH2) +

√
T ·H5SA.

10

Part II

Lower bounds

4 Hardness results for no-regret learning

Recall from last lecture we saw the V-learning algorithm. While we focused on the 2-player 0-sum
setting, in which V-learning finds a Markov Nash equilibrium of a given stochastic game, there is
a more general version of the algorithm that works in multi-player, general-sum stochastic games:

1. Over the course of T episodes, players independently choose policies π
(t)
i = (π

(t)
i,1 , . . . , π

(t)
i,h)

(using essentially the same procedure as in V-learning).

2. At the end of the T episodes, the players output a joint policy π̂, which is an approximate
CCE. It takes some coordination to act according to π̂ (i.e., the players need access to a string
of shared random bits).

A more natural guarantee (and in line with classical work on no-regret learning we see elsewhere
in the course) would be the following:

Question 4.1. Do the policies π̂
(t)
i (i ∈ [m], t ∈ [T]) produced by V-learning satisfy the following

no-regret guarantee: for each i ∈ [m],

max
π′i

T∑
t=1

V
π′i×π

(t)
−i

i,1 (s1)− V π(t)

i,1 (s1) ≤ o(T).

It turns out that the answer that Question 4.1 is no, in a fairly strong sense:

Theorem 4.1 ([FGK23]). If PPAD 6⊆ RP,4 then there is no polynomial-time algorithm which takes
as input the description of a stochastic game and outputs a sequence of joint product policies that
guarantees each agent sublinear regret.

5 Hardness results for computing stationary Markov equilibria

Note that the equilibria we computed and learned in the previous lecture were nonstationary
equilibria, meaning that the actions players take depends on the time step h. This is necessary in a
finite-horizon setting: in general, there may not be a Nash equilibrium in which players’ policies are
stationary. However, as we saw two lectures ago, in the discounted infinite-horizon setting, there
always exists a Nash equilibrium in stationary strategies. Below we review the relevant notions:

We consider a discounted infinite-horizon stochastic game G = (m,S,A,P, r, γ), which is defined
identically to the finite-horizon setting, except that the horizon H is replaced by a discount factor
γ ∈ (0, 1). Recall that A = A1 × · · · × Am. Also note that larger γ (i.e., closer to 1) represents
harder problems.

4We use RP to denote the class of total search problems in TFNP for which there is a polynomial-time algorithm
which outputs a solution with probability at least 2/3.

11

5.1 Policies and equilibria

A (Markov) joint stationary policy5 is a mapping π : S → ∆(A). The policy π is a product policy
if it decomposes as π : S → ∆(A1)× · · · ×∆(Am). A (Markov) stationary policy of player i ∈ [m]
is a mapping πi : S → ∆(Ai).

The value functions are defined as follows in the discounted infinite-horizon setting: for a joint
policy π, a state s ∈ S, and a player i ∈ [m], we define

V π
i (s) := Eπ

[∞∑
h=1

γh−1 · ri(sh,ah) | s1 = s

]
.

Note that V π
i (s) ∈ [0, 1/(1− γ)] (since ri(s,a) ∈ [0, 1]). In this section we will always consider the

case that γ is a constant, meaning that V π
i (s) ∈ [0, O(1)].

Definition 5.1 (Stationary CCE). A stationary policy π : S → ∆(A) is an ε-approximate station-
ary CCE if for all states s ∈ S and players i ∈ [m],

max
π′i

V
π′i×π−i

i (s)− V π
i (s) ≤ ε. (9)

Definition 5.2 (Stationary Nash equilibrium). A joint stationary policy π is an ε-approximate
stationary Nash equilibrium if it is an ε-approximate stationary CCE and is moreover a product
policy.

Note that Definitions 5.1 and 5.2, as stated above, are a bit stronger than their counterparts in
the nonstationary setting, in the sense that the nondeviation conditions (9) must hold for all states
(not just the initial state). This is not such a big deal: there is a (lossy) equivalence between these
two notions, and details may be found in [DGZ23].6 Moreover, the proof from earlier on in the
course that there always exists a stationary Nash equilibrium (and thus a stationary CCE) extends
immediately to this stronger notion of equilibrium.

5.2 Hardness of stationary CCE

Surprisingly, in contrast to the nonstationary setting, it is computationally hard to compute an
ε-approximate stationary CCE in a stochastic game (even if all the transitions and rewards are
known).

Theorem 5.1. There is a constant ε0 > 0 so that the problem of computing ε0-approximate sta-
tionary CCE in 2-player stochastic games is PPAD-hard.

Theorem 5.1 should be somewhat surprising, in light of the fact that typically it is tractable to
compute CCE. To elucidate the source of hardness, we define turn-based games, which is a subset
of stochastic games that contains the hard instances used to prove Theorem 5.1.

Definition 5.3 (Turn-based game). A discounted infinite-horizon stochastic game is a turn-based
(stochastic) game if, for each state s, there is some player i ∈ [m], called the controller of the state,
so that all players’ rewards at s and the transition to the next state from s only depend on the
action of player i at s. We write i = cr(s).

5All policies considered henceforth will be Markov, so we drop the “Markov” modifier.
6Note also that the algorithm CCE-Value-Iteration for computing nonstationary Markov CCE (Algorithm 1) in

fact computes the stronger notion in which the nondeviation condition holds at each state.

12

The crucial observation is the following:

Lemma 5.2. In turn-based stochastic games, given an ε-approximate stationary CCE, an ε-approximate
stationary Nash equilibria may be constructed in polynomial time.

Proof. Given a stationary CCE π : S → ∆(A), define π̃ : S → ∆(A1) × · · · ×∆(Am) by π̃(s) :=
π1(s) × · · · × πm(s), where πi(s) denotes the marginal of π(s) on player i’s actions. Clearly π̃ is
a product policy. Since at each state s, the marginals of π̃(s) and π(s) on player cr(s)’s actions
agree, it is immediate that π̃ induces the same distribution over trajectories as π and thus is an
ε-approximate stationary Nash equilibrium.

By Lemma 5.2, it suffices to show that finding ε0-stationary Nash equilibria is PPAD-hard.
To do so, we use a similar gadget construction and reduction from an arithmetic circuit problem
as was used to show hardness of computing Nash equilibria in graphical games. In particular, we
consider the following Generalized Circuit problem, which is a variant of the ArithmCircuitSAT
[DGP06] we saw when showing PPAD-hardness of computing Nash equilibria in normal form games.

Definition 5.4 (Generalized Circuit problem). The input to a Generalized Circuit problem
instance is a circuit with a set V of nodes, together with a set G of gates connecting the nodes.
Each gate is one of the following types: G+, G×, G←, G>. An assignment π : V → [0, 1] of real
values to the nodes is said to be an ε-approximate solution to the instance if:

• For each G+ gate with inputs u1, u2 ∈ V and output v ∈ V , π(v) = min{1, π(u1)+π(u2)}± ε.

• Each G× gate comes equipped with a parameter α ∈ [−1, 1]. For each such gate with input
u ∈ V and output v ∈ V , π(v) = max{0, α · π(u)} ± ε.

• Each G← gate comes equipped with a parameter ζ ∈ [0, 1]. For each such gate with output
v ∈ V , π(v) = ζ ± ε.

• For eachG> gate with inputs u1, u2 ∈ V and output v ∈ V , π(v) =

{
1± ε : π(u1) ≥ π(u2) + ε

0± ε : π(u1) ≤ π(u2)− ε
.

The computational problem ε-Generalized Circuit is as follows: given a circuit (V,G) as de-
scribed above, to find an ε-approximate solution π.

Theorem 5.3 ([Rub18]). There is a constant ε > 0 so that ε-Generalized Circuit is PPAD-hard.

We are now ready to give the proof (sketch) of Theorem 5.1.

Proof sketch of Theorem 5.1. Choose ε according to Theorem 5.3, and let (V,G) denote an instance
of ε-Generalized Circuit. We will construct a turn-based stochastic game G so that, for some
constant ε0 < ε, any ε0-approximate stationary Nash equilibrium of G allows us to compute an
ε-approximate solution to (V,G). The game G is constructed as follows:

• The state space is S = V ∪W ∪{ssink}, where ssink is a “sink state” which transitions to itself
and which yields a reward of 0 to all players, and W is a set of “helper nodes” (discussed
further below).

13

Figure 1: Stochastic game gadget for gate G+.

• The set of players is V ∪W : each player controls a single state.7

• The action set of each player is Ai = {0, 1}.

• The rewards ri(s, acr(s)) and transitions P(s′|s, acr(s)) are specified below, as a function of
(V,G). Note that when specifying rewards and transitions it suffices to specify only the
action of the controller cr(s) of s, since the game is turn-based.

• The discount factor is γ = ε2.

The idea is now to construct the rewards and transitions of G to “simulate” each gate in G. To
illustrate, we consider a gate of the form G+, with input nodes u1, u2 ∈ V and output node v ∈ V .
To simulate this gate, we need one helper node w ∈W . The transitions out of w and v are defined
as follows:

• P(u1|w, 0) = P(u2|w, 0) = 1
2 ; P(v|w, 1) = 1.

• P(w|v, 0) = 1 and P(ssink|v, 1) = 1.

The rewards to the players cr(v), cr(w) controlling states v, w are as follows:

• rcr(w)(u1, 1) = rcr(w)(u2, 1) = 1, and rcr(w)(v, 1) = 1/2.

• rcr(v)(w, 1) = 1/2 and rcr(v)(w, 0) = −1/2.

• All other rewards to cr(w), cr(v) are 0.

See Figure 1. Since G is a turn-based game, any product stationary policy π corresponds to
a mapping π : S → [0, 1], where π(s) = πcr(s)(1|s) is the probability that the controller of s takes
action 1 at s. The following lemma shows that the transitions and rewards defined above simulate
the gate G+:

7Note that Theorem 5.1 states PPAD-hardness for 2-player games, which is a bit stronger than the result we prove.
This construction may be modified to only have 2 players, though the proof is more complicated; see [DGZ23].

14

Lemma 5.4. There is a constant ε0 � ε, so that the following holds.8 For any ε0-approximate
stationary Nash equilibrium of G, it holds that

π(v) = min{1, π(u1) + π(u2)} ± ε.

The proof of Lemma 5.4 is provided below. Similar constructions and lemmas may be provided
for the other gate types G×, G←, G>. Putting those results together, it follows that, given an
ε0-approximate stationary Nash equilibrium π of G, we may consider the corresponding mapping
π : S → [0, 1], and its restriction to V yields an ε-approximate solution to (V,G), as desired.

To prove Lemma 5.4, we need the following notation: for s ∈ S, a ∈ A = {0, 1}, and i ∈ [m],

Qπi (s, a) := Eπ
[∞∑
h=1

γh−1 · ri(sh,ah) | s1 = s, a1,cr(s) = a

]
.

We need the following lemma:

Lemma 5.5. Given an ε0-approximate stationary Nash equilibrium π of G, it may be converted in
polynomial time to a stationary policy π̄ which satisfies: for all i ∈ [m], s ∈ S,

max
a∈A

Qπ̄i (s, a)− min
a′∈A:π̄cr(s)(a

′|s)>0
Qπ̄i (s, a′) ≤ ε′, (10)

for some ε′ = O(
√
ε0).

The policy π̄ is known as an ε-well supported stationary Nash equilibrium of G: roughly saying,
(10) is saying that for any action on which π̄ puts nonzero probability, it must be almost as good
(i.e., within ε′) of the optimal action at that state. See [DGZ23, Lemmas 5.5 & 5.6] for a proof of
Lemma 5.5.

Proof sketch of Lemma 5.4. First let π̄ be the output of running the procedure of Lemma 5.5 on
π. Suppose that π̄(v) > π̄(u1) + π̄(u2) + ε. Then using the definition of Qπ̄i , we have

Qπ̄cr(w)(w, 1)−Qπ̄cr(w)(w, 0) ≥ γ ·
(
π̄(v)

2
− π̄(u1) + π̄(u2)

2
−O(γ)

)
≥ γε

2
−O(γ2)� ε′.

Thus, by (10), we have π̄cr(w)(0|w) = 0, i.e., π̄(w) = 1. Since Qπ̄cr(v)(v, 1) = 0, we have

Qπ̄cr(v)(v, 0)−Qπ̄cr(v)(v, 1) ≥ γ

2
−O(γ2)� ε′.

But then π̄cr(v)(1|v) = 0, i.e., π̄(v) = 0, which is a contradiction.
Similar reasoning applies in the case that π̄(v) < π̄(u1) + π̄(u2)− ε.

Note that technically, to prove Lemma 5.4, we needed to replace π by π̄: thus the ε-approximate
solution to (V,G) produced in the proof of Theorem 5.3 is actually π̄, which is fine since π̄ is
efficiently computable from π.

8Working through the computations, one may show that ε0 = c · ε16 suffices, for some constant c > 0.

15

6 Simple stochastic games: are they hard?

In the previous section we showed that it is PPAD-hard to compute an ε0-approximate Nash equi-
librium in turn-based general-sum stochastic games, even when the discount factor γ is 1/2. In this
section we consider what seems to be an easier problem: what about zero-sum stochastic games?
To keep things simple we consider the case that A = 2, so that the description length of a stochasitc
game is polynomial in S, the number of states. A variant of value iteration easily establishes the
following fact:

Proposition 6.1 ([Sha53]). In a zero-sum turn-based stochastic game with S states and discount
factor γ, an ε-approximate Nash equilibrium can be computed in time poly(S, 1/(1− γ), log(1/ε)).

One may contrast the result of Proposition 6.1 with the single-player setting (i.e., discounted
MDPs), in which an ε-approximate Nash equilibrium can be computed in time poly(S, log(1/(1−
γ)), log(1/ε)), using linear programming. One may wonder whether an analogous guarantee holds
for two-player zero-sum turn-based stochastic games – concretely, we ask:

Problem 6.1 ([Con92]). Is there an algorithm that, given as input a 2-player zero-sum turn-based
stochastic game with γ = 1 − 2−S , runs in poly(S, 1/ε) time, and outputs an ε-approximate Nash
equilibrium?

Problem 6.1 was originally introduced in [Con92], where it was phrased in the slightly different
(though equivalent) terminology of simple stochastic games (SSGs). As such, we will refer (with
slight abuse of terminology) to Problem 6.1 as the problem of computing Nash equilibria in SSGs.
This is a major open problem, with various applications deriving from areas including complexity
theory, logic, and algorithms:

• The decision-problem variant of Problem 6.1, namely deciding whether the optimal value of
an SSG is larger than 1/2, is in NP ∩ coNP. Thus, it is very unlikely to be NP-hard.

• This decision-problem variant is logspace complete for the class of languages accepted by
logspace-bounded randomized alternating Turing machines [Con92].

• Several other problems not known to have polynomial-time algorithms, such as mean-payoff
games and parity games, are known to be reducible to SSGs. Moreover, parity games have
applications in logic relating to µ-calculus and tree automata.

• In many ways, the problem of deciding SSGs can be seen as a generalization of linear pro-
gramming. In fact, the best known algorithm for solving SSGs is a variant of the simplex
algorithm with a randomized pivot rule. It runs in time 2O(

√
n) [Lud95]. There has been

essentially no progress on improving this runtime for the last ∼ 3 decades!

References

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

16

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The com-
plexity of computing a nash equilibrium. In Proceedings of the Thirty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’06, page 71–78, New York, NY,
USA, 2006. Association for Computing Machinery.

[DGZ23] Constantinos Daskalakis, Noah Golowich, and Kaiqing Zhang. The complexity of markov
equilibrium in stochastic games. In Gergely Neu and Lorenzo Rosasco, editors, Pro-
ceedings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of
Machine Learning Research, pages 4180–4234. PMLR, 12–15 Jul 2023.

[FGK23] Dylan J Foster, Noah Golowich, and Sham M. Kakade. Hardness of independent learning
and sparse equilibrium computation in Markov games. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 10188–10221. PMLR, 23–29 Jul
2023.

[JLWY21] Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning – a simple,
efficient, decentralized algorithm for multiagent rl, 2021.

[Lud95] W. Ludwig. A subexponential randomized algorithm for the simple stochastic game
problem. Information and Computation, 117(1):151–155, 1995.

[Rub18] Aviad Rubinstein. Inapproximability of nash equilibrium. SIAM Journal on Computing,
47(3):917–959, 2018.

[Sha53] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953.

17

	I Upper bounds
	Independent learning in Stochastic games
	Review of notation
	Equilibrium notions

	Warm-up: computing Markov CCE
	The V-learning algorithm
	The challenge of exploration
	The V-learning algorithm
	Proof of correctness of V-learning

	II Lower bounds
	Hardness results for no-regret learning
	Hardness results for computing stationary Markov equilibria
	Policies and equilibria
	Hardness of stationary CCE

	Simple stochastic games: are they hard?

