
6.S890:
Topics in Multiagent
Learning

Lecture 13 – Prof. Farina
Computation of Nash equilibria in
two-player zero-sum extensive-form games

Fall 2023

Recall: Extensive-form games

Recall: Strategies

Idea Obvious downsides Good news

(Reduced) Normal-form
strategies

Distribution over
deterministic strategies

𝜇 ∈ Δ(Π)

Exponentially-sized
object

In rare cases, it’s possible
to operate implicitly on
the exponential object
via a kernel trick

Behavioral strategies Local distribution over
actions at each decision
point

𝑏 ∈	×! 	Δ(𝐴!)

Expected utility is
nonconvex in the the
entries of vector 𝑏

Kuhn’s theorem: same
power as reduced
normal-form strategies

Sequence-form
strategies

”Probability flows” on
the tree-form decision
process

𝒙 ∈ 𝑸 (convex polytope)

None Everything is convex!

Kuhn’s theorem applies
automatically.

Recall: Strategic Form
Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions at
each information set

(Histories in the same
information must get

assigned the same action)

Recall: Strategic Form
Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions at
each information set

(Histories in the same
information must get

assigned the same action)

Valid assignments for Player 1: 27
Valid assignments for Player 2: 64

These assignements are called
“reduced normal-form plans”

Recall: Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-fo

rm
 p

la
ns

 fo
r P

la
ye

r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use that
combination of reduced normal-form

plans
Don’t forget

nature moves

With this, we have reduced the
extensive-form game to a normal-form

game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Example: Nash equilibrium in Kuhn
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Recall: Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-fo

rm
 p

la
ns

 fo
r P

la
ye

r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use that
combination of reduced normal-form

plans
Don’t forget

nature moves

With this, we have reduced the
extensive-form game to a normal-form

game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Example: Nash equilibrium in Kuhn
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Big issue: the number of reduced normal-form plans scales
exponentially with the game tree size!

This approach is not scalable beyond very small games

We need better techniques

Recall: Behavioral Strategies

Idea: Strategy = choice of distribution over available actions
at each “decision point”

Information set

We found it convenient to
take the point of view of a

single player: face
decisions and
observations

Recall: Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

1 Expected utility is not
 linear in this representation

 Reason: prob. of reaching a
 terminal state is product of
 variables

Products = non-convexity !"#$

Idea: Strategy = choice of
distribution over available

actions at each decision point

Recall: Expected Utility
Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
x 0.8 (Pl1)

0.6 0.4

When these are variables being optimized, we have a product! Non-
convexity in player’s strategy

“Fixing” Behavioral Strategies:
Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

! Expected utility is a
 linear function

⭐ Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

Idea: Store probability for whole
sequences of actions

Children

Parent 0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

Recall: Expected Utility
Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1) x 0.4 (Pl2)
0.6 0.4

Single variable from strategy vector! Nonlinearity is gone

Recall: Equilibrium Computation

Payoff matrix: Each cell contains the
expected utility when players use that
combination of reduced normal-form

plans

With this, we have reduced the
extensive-form game to a normal-form

game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐵𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix in
reduced normal form

You can use any technique for normal-form games:
learning, linear programming, …

Payoff matrix: Each cell contains the
expected utility when players use that
combination of reduced normal-form

plans

With this, we have reduced the
extensive-form game to a normal-form

game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
$
𝑥#𝐴𝑦

Sequence-form
polytope of player
1 (dimension 12)

Sequence-form
polytope of player
2 (dimension 12)

Sequence-form
payoff matrix

You can still use learning, linear programming, …

BEFORE: Reduced–normal form NOW: Sequence form

Scale exponentially
with tree size

Scale linearly with
tree size

Let’s code up a solver
together!

Nash equilibrium
(two-player zero-sum):

max
!∈&!

min
$∈&"

𝑥#𝐴𝑦

Sequence-form
polytope of player
1 (dimension 12)

Sequence-form
polytope of player
2 (dimension 12)

Sequence-form
payoff matrix for

player 1

You can still use learning, linear programming, …

Two Approaches to Solve The Max-Min
Problem

Approach 1: Linear Programming
Approach 2: Learning

For sequence-form
polytopes in particular:
Counterfactual Regret

Minimization (CFR)

Nash equilibrium
(two-player zero-sum):

max
!∈&!

min
$∈&"

𝑥#𝐴𝑦

Sequence-form
polytope of player
1 (dimension 12)

Sequence-form
polytope of player
2 (dimension 12)

Sequence-form
payoff matrix for

player 1

Why / How can this be
converted into a linear

program?

Linear Program Formulation

/max 3min 𝑥"𝐴𝑦
s. t. 𝑦 ∈ 𝑄#

s. t. 𝑥 ∈ 𝑄$

max
%∈'!

min
(∈'"

𝑥"𝐴𝑦
1

Nested optimization problem. The inner
problem is linear

Remember: 𝑦 is from the sequence-form polytope 𝑄<

- Root decision points have mass 1
- Probability mass is conserved
- 𝑦 ≥ 0

Compactly:

𝑄# = 3𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

max /
min 𝑥"𝐴𝑦

s. t. 𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

2

Linear Program Formulation

/max 3min 𝑥"𝐴𝑦
s. t. 𝑦 ∈ 𝑄#

s. t. 𝑥 ∈ 𝑄$

max
%∈'!

min
(∈'"

𝑥"𝐴𝑦
1

max /
min 𝑥"𝐴𝑦

s. t. 𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

2

max I
max 𝑓#𝑣

s. t. 𝐹#"𝑣 ≤ 𝐴"𝑥
𝑣 ∈ ℝ

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

3 Dualize!

max 𝑓#𝑣

s. t.

𝐹$𝑥 = 𝑓$
𝐹#"𝑣 ≤ 𝐴"𝑥
𝑥 ≥ 0
𝑣 ∈ ℝ

𝑄$ = 3𝐹$𝑥 = 𝑓$
𝑥 ≥ 0 	 𝑄# = 3𝐹#𝑦 = 𝑓#

𝑦 ≥ 0

4Single linear
program!

Linear Program Formulation

/max 3min 𝑥"𝐴𝑦
s. t. 𝑦 ∈ 𝑄#

s. t. 𝑥 ∈ 𝑄$

max
%∈'!

min
(∈'"

𝑥"𝐴𝑦
1

max /
min 𝑥"𝐴𝑦

s. t. 𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

2

max I
max 𝑓#𝑣

s. t. 𝐹#"𝑣 ≤ 𝐴"𝑥
𝑣 ∈ ℝ

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

3 Dualize!

max 𝑓#𝑣

s. t.

𝐹$𝑥 = 𝑓$
𝐹#"𝑣 ≤ 𝐴"𝑥
𝑥 ≥ 0
𝑣 ∈ ℝ

𝑄$ = 3𝐹$𝑥 = 𝑓$
𝑥 ≥ 0 	 𝑄# = 3𝐹#𝑦 = 𝑓#

𝑦 ≥ 0

4Single linear
program!

What do we need to implement this?

1. From the game tree, extract 𝐹$, 𝐹#, 𝑓$, 𝑓#, and 𝐴

2. Code up the linear program

3. Profit!

How to construct 𝐹!, 𝑓!, 𝐹", 𝑓"?

In sequence form, we
have one variable per

action at each decision
point (information set)

Matrices 𝐹N, 𝑓N, 𝐹<, 𝑓<
encode the probability

flow conservation
constraints

Step 1: Construct each player’s tree-form
decision process

Effectively boils down to figuring out:
for each information set J of the player, what was the last (information set, action)

pair for the player on the path from the root of the tree to J? (“parent” of J)

J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

Step 1: Construct each player’s tree-form
decision process

Effectively boils down to figuring out:
for each information set J of the player, what was the last (information set, action)

pair for the player on the path from the root of the tree to J? (“parent” of J)

J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

A B C

D E F

J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

A B C

D E F

Step 2: Assign numerical identifiers

We will use numerical IDs
to each action at each

information set

(J, action) ID

(A, chk) 0

(A, bet) 1

(B, chk) 2

(B, bet) 3

(C, chk) 4

(C, bet) 5

(D, fold) 6

(D, call) 7

(E, fold) 8

… …

(F, call) 11

0 1 2 3 4 5

6 7 8 9 10 11

Sequence-form constraints:
𝑥O + 𝑥N = 1
𝑥< + 𝑥P = 1
𝑥Q + 𝑥R = 1
𝑥S + 𝑥T = 𝑥O
𝑥U + 𝑥V = 𝑥<
𝑥NO + 𝑥NN = 𝑥Q
𝑥), … , 𝑥$$ ≥ 0

J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

A B C

D E F

Step 2: Assign numerical identifiers

We will use numerical IDs
to each action at each

information set

(J, action) ID

(A, chk) 0

(A, bet) 1

(B, chk) 2

(B, bet) 3

(C, chk) 4

(C, bet) 5

(D, fold) 6

(D, call) 7

(E, fold) 8

… …

(F, call) 11

0 1 2 3 4 5

6 7 8 9 10 11

Sequence-form constraints:
𝑥O + 𝑥N = 1
𝑥< + 𝑥P = 1
𝑥Q + 𝑥R = 1
𝑥S + 𝑥T = 𝑥O
𝑥U + 𝑥V = 𝑥<
𝑥NO + 𝑥NN = 𝑥Q
𝑥), … , 𝑥$$ ≥ 0

In matrix-vector form,

+1 +1

+1 +1

+1 +1

-1 +1 +1

-1 +1 +1

-1 +1 +1

+1

+1

+1
𝑥	 =

𝐹$ 𝑓$

Plan of attack

• Step 1: for each player, figure out the parent relationships

Plan of attack

• Step 1: for each player, figure out the parent relationships
• Step 2: then, assign numerical IDs and compile the matrices F and f

A B C

D E F

0 1 2 3 4 5

6 7 8 9 10 11

The Payoff Matrix 𝐴
Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) ×	 𝑥* (Pl1)

When these are variables being optimized, we have a product! Non-
convexity in player’s strategy

×	 𝑦$ (Pl1)
0 1

Implementation

• class Game
• tpx_pl1: Treeplex
• tpx_pl2: Treeplex
• A: payoff matrix (numpy array, player 1 on rows for A)

• class Treeplex
• infosets: dict[str, Infoset]
• num_seqs: int. Total number of actions across decision points (12 in figure)

• class Infoset:
• actions: dictionary from action name (e.g., “fold”) to unique ID (e.g., 6)
• parent: unique ID of the parent infoset action. (may be None)

A B C

D E F

0 1 2 3 4 5

6 7 8 9 10 11

