6.S890: Topics in Multiagent Learning

Lecture 13 – Prof. Farina

Computation of Nash equilibria in two-player zero-sum extensive-form games

Fall 2023

Recall: Extensive-form games

Recall: Strategies

	Idea	Obvious downsides	Good news
(Reduced) Normal-form strategies	Distribution over deterministic strategies $\mu \in \Delta(\Pi)$	Exponentially-sized object	In rare cases, it's possible to operate implicitly on the exponential object via a kernel trick
Behavioral strategies	Local distribution over actions at each decision point $b \in \times_j \Delta(A_j)$	Expected utility is nonconvex in the the entries of vector <i>b</i>	Kuhn's theorem: same power as reduced normal-form strategies
Sequence-form strategies	"Probability flows" on the tree-form decision process $x \in Q$ (convex polytope)	None	Everything is convex! Kuhn's theorem applies automatically.

Recall: Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a list of all possible assignments of actions at each information set

(Histories in the same information must get assigned the same action)

Recall: Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a list of all possible assignments of actions at each information set

(Histories in the same information must get assigned the same action)

Recall: Equivalent Normal-Form Game

Recall: Equivalent Normal-Form Game

Recall: Behavioral Strategies

Idea: Strategy = choice of distribution over available actions at each "decision point"

We found it convenient to take the point of view of a single player: face decisions and observations

Recall: Behavioral strategies

Idea: Strategy = choice of distribution over available actions at each decision point

✓ Set of strategies is convex

X Expected utility is **not** linear in this representation

Reason: prob. of reaching a terminal state is **product** of variables

Products = non-convexity 😪

Recall: Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)

x 0.8 (Pl1)

When these are variables being optimized, we have a product! Nonconvexity in player's strategy

"Fixing" Behavioral Strategies: Sequence-Form Strategies

Since sequence-form strategies already automatically encode products of probabilities on paths, expected utility is linear in this strategy representation!

Idea: Store probability for whole sequences of actions

- Set of strategies is convex
- Expected utility is a linear function

Consistency constraints

- 1. Entries all non-negative
- 2. Root sequence has probability 1.0
- 3. Probability mass conservation

Recall: Expected Utility

Game tree:

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1) x 0.4 (Pl2)

Single variable from strategy vector! Nonlinearity is gone

Recall: Equilibrium Computation

Nash equilibrium (two-player zero-sum):

$\max_{x \in Q_1} \min_{y \in Q_2} x^T A y$

Sequence-form Sequence-form polytope of player 1 (dimension 12) Sequence-form polytope of player 2 (dimension 12)

You can **still** use learning, linear programming, ...

Let's code up a solver together!

Two Approaches to Solve The Max-Min Problem

Approach 1: Linear Programming

Approach 2: Learning

For sequence-form polytopes in particular: Counterfactual Regret Minimization (CFR)

 $\max_{x \in Q_1} \min_{y \in Q_2} x^T A y$

player 1

Sequence-form payoff matrix for Sequence-form polytope of player Sequence-form 1 (dimension 12) polytope of player 2 (dimension 12)

Why / How can this be converted into a linear program?

Linear Program Formulation

Nested optimization problem. The inner problem is linear

Remember: y is from the sequence-form polytope Q_2

- Root decision points have mass 1
- Probability mass is conserved $-y \ge 0$

Compactly:

$$Q_2 = \begin{cases} F_2 y = f_2 \\ y \ge 0 \end{cases}$$

$$Q_1 = \begin{cases} F_1 x = f_1 \\ x \ge 0 \end{cases} \qquad \qquad Q_2 = \begin{cases} F_2 y = f_2 \\ y \ge 0 \end{cases}$$

Linear Program Formulation

How to construct F_1 , f_1 , F_2 , f_2 ?

In sequence form, we have one variable per action at each decision point (information set)

Matrices F_1 , f_1 , F_2 , f_2 encode the probability flow conservation constraints

Step 1: Construct each player's tree-form decision process

Effectively boils down to figuring out:

for each information set J of the player, what was the last (information set, action) pair <u>for the player</u> on the path from the root of the tree to J? ("parent" of J)

J	Actions	Parent
А	[chk, bet]	
В	[chk, bet]	
С	[chk, bet]	
D	[fold, call]	
Е	[fold, call]	
F	[fold, call]	

Step 2: Assign numerical identifiers

We will use numerical IDs to each action at each information set

J	Actions	Parent
А	[chk, bet]	None
В	[chk, bet]	None
С	[chk, bet]	None
D	[fold, call]	(A, chk)
Е	[fold, call]	(B, chk)
F	[fold, call]	(C, chk)

(J, action)	ID
(A, chk)	0
(A, bet)	1
(B, chk)	2
(B, bet)	3
(C <i>,</i> chk)	4
(C, bet)	5
(D, fold)	6
(D, call)	7
(E, fold)	8
•••	
(F, call)	11

Sequence-form constraints:

$$\begin{cases} x_0 + x_1 = 1 \\ x_2 + x_3 = 1 \\ x_4 + x_5 = 1 \\ x_6 + x_7 = x_0 \\ x_8 + x_9 = x_2 \\ x_{10} + x_{11} = x_4 \\ x_0, \dots, x_{11} \ge 0 \end{cases}$$

In matrix-vector form,

 F_1

А	[chk, bet]	None
В	[chk, bet]	None
С	[chk, bet]	None
D	[fold, call]	(A, chk)
Е	[fold, call]	(B <i>,</i> chk)
F	[fold, call]	(C <i>,</i> chk)

(C, bet)	С
(D, fold)	6
(D, call)	7
(E <i>,</i> fold)	8
(F, call)	11

Sequence-form constraints:

$(x_0 + x_1 = 1)$
$x_2 + x_3 = 1$
$x_4 + x_5 = 1$
$x_6 + x_7 = x_0$
$x_8 + x_9 = x_2$
$x_{10} + x_{11} = x_4$
$x_0, \dots, x_{11} \ge 0$

Plan of attack

• Step 1: for each player, figure out the parent relationships

Plan of attack

- Step 1: for each player, figure out the parent relationships
- Step 2: then, assign numerical IDs and compile the matrices F and f

The Payoff Matrix A

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) $\times x_6$ (Pl1) $\times y_1$ (Pl1)

When these are variables being optimized, we have a product! Nonconvexity in player's strategy

Implementation

- class Game
 - tpx_pl1: Treeplex
 - tpx_pl2: Treeplex

- A: payoff matrix (numpy array, player 1 on rows for A)
- class Treeplex
 - infosets: dict[str, Infoset]
 - num_seqs: int. Total number of actions across decision points (12 in figure)
- class Infoset:
 - actions: dictionary from action name (e.g., "fold") to unique ID (e.g., 6)
 - parent: unique ID of the parent infoset action. (may be None)

```
6
     game = Game('kuhn.txt')
 7
 8
     def make_Ff(tpx):
 9
          F = np.zeros((len(tpx.infosets), tpx.num_seqs))
10
         f = np.zeros((len(tpx.infosets)))
11
12
          for i, infoset in enumerate(tpx.infosets.values()):
13
             for a in infoset.actions.values():
14
15
                  F[i, a] = 1
16
             if infoset.parent is None:
17
                 f[i] = 1
18
              else:
                  F[i, infoset.parent] = -1
19
20
21
         return F, f
22
     F_1, f_1 = make_Ff(game.tpx_pl1)
23
24
      print(F_1, f_1.T)
25
     F_2, f_2 = make_Ff(game.tpx_pl2)
26
     print(F_2, f_2.T)
27
28
     m = gp.Model()
29
     x = m.addMVar(game.tpx_pl1.num_seqs)
30
     v = m.addMVar(len(game.tpx_pl2.infosets), lb=float("-inf"))
31
32
     m.addConstr(F_1 @ x == f_1)
33
     m.addConstr(F_2.T @ v \leq game.A.T @ x)
34
35
     m.setObjective(f_2 @ v, sense=GRB.MAXIMIZE)
     m.optimize()
36
```