
6.S890:
Topics in Multiagent
Learning

Lecture 15 – Prof. Farina
Learning in Extensive-Form Games (Part II)
And Equilibrium Perfection

Fall 2023

Important Facts for Extensive-Form Games
FACT: There exists a representation of strategies in the tree, called

sequence-form strategies, such that:

• The strategy set is a convex polytope
• The utility of each player is linear in the player’s strategy

⟹: Computing a Nash equilibrium in a two-player zero-sum
extensive-form game can be written as

max
!∈#!

min
$∈#"

𝑥%𝐴𝑦

Sequence-form strategy polytope of players
Sequence-form payoff matrix of the game
(See Lecture 13 for how to compute)

Important Facts for Extensive-Form Games
⟹: Computing a Nash equilibrium in a two-player zero-sum

extensive-form game can be written as

max
!∈#!

min
$∈#"

𝑥%𝐴𝑦

Sequence-form strategy polytope of players
Sequence-form payoff matrix of the game

⟹: As seen in Lecture 13, we can use Linear Programming to solve for
Nash equilibrium in two-player zero sum games

As discussed in the previous lecture, we can also use learning
(more scalable both in theory and in practice)

Quiz: what is learning and how
do we use it in games?

Q: What is a no-external-regret
algorithm?

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

Objective: sublinear (external) regret

𝑅($) ≔ max
%&∈(

*
"*+

$

⟨𝑢("), -𝑥 − 𝑥(")⟩	

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for
extensive-form games

Building a regret minimizer

means making sure this

bound holds, NO MATTER

THE SEQUENCE OF

UTILITIES GIVEN TO THE

LEARNER

Q: How do we use no-external-regret
algorithms in two-player zero-sum normal-form or
extensive-form games?

max
!∈&

min
$∈'

𝑥%𝐴𝑦

𝑋, 𝑌 = Simplex for normal-form games

𝑋, 𝑌 = sequence-form polytope for
extensive-form games

Q: What utilities do we supply to the learners?

Answer: we let the learners play against each other

(Gradients of the players’
utility functions)

If we can build a no-external-regret algorithm for
outputting sequence-form strategies, then we can
use it to compute a Nash equilibrium in two-player

zero-sum games (and more)

Q: Other uses of no-external-regret
algorithms?
• Q: what happens if we use a no-external-regret algorithm against

static opponents (opponents that play from a fixed strategy)?
• A: The average strategy of the no-external-regret algorithm converges to a

best response to the opponents

• Q: what equilibrium do we recover if all players play according to a
no-external-regret algorithm against each other in a general-sum
multi-player game?
• A: The average play converges to the set of coarse-correlated equilibria

How can we construct a no-
external-regret algorithm for
extensive-form games?

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

How to sidestep
exponential size?

Main idea:

Kernelized Multiplicative
Weights Update

Change of variables: instead of picking a point in the
strategy polytope, decide how to mix the vertices

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

What is the local
feedback?

Main idea:

Run a local no-regret algorithm at each
decision point to update your strategy.

”Process” the utility vector 𝑢(") (which is
for the whole sequence-form strategy)
and chop it up into local feedback for
each decision point.

Counterfactual
Regret Minimization

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

What regularizers are
easy to deal with?

Main idea:

The sequence-form polytope is a convex set. So, we can
apply the FTRL algorithm in its general form, and that
guarantees no-regret

𝑥()) = argmax
!∈+

⟨𝑈()), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	

Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…

…but is a no-external-regret algorithm for
sequence-form strategies

🚨
Papercut

Alert™

Counterfactual Regret Minimization

Big Picture Idea:

A B
C

D E F

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Each local
learner is

responsible for
refining the

behavior at their
decision point

Can locally use
regret matching,

mulFplicaFve
weights update,

…

-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form
strategy)

Strategy

𝑏% 𝑏&

𝑏' 𝑏(

-2.0
+1.4 𝑏%

𝑏&

𝑏%𝑏'

𝑏%𝑏(

Strategy
(in sequence form)

CFR
Learning

Algorithm-0.7 -0.4

Main question: what utility
to pass to the local learners?

Local
Learner

Local
Learner

Remember: we are trying to construct a no-
external-regret minimizer. Our algorithm must

guarantee sublinear regret no ma_er the
sequence of u`li`es!

Counterfactual Utilities

𝑏% 𝑏&

𝑏' 𝑏(

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

"𝑢' = −0.7
"𝑢(= −0.4
"𝑢& = +1.4
"𝑢% = −2.0 + 𝑏' ⋅ −0.7 + 𝑏(⋅ (−0.4)

Why does it work?

• Proof time!

Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅,-.
(%) ≤:

/

max 0, 𝑅/
%

• Therefore: if the local regret minimizers all have regret 𝑂(𝑇) , then
CFR has regret 𝑂(𝑇) (where the 𝑂 hides game-dependent
constants)

Decision points Local regret cumulated by learner at j

FTRL in Extensive-Form Games

Follow-the-Regularized-Leader

𝑥()) = argmax
!∈+

	⟨𝑈()), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	

Depending on the choice of strongly convex regularizer 𝜑,
 solving the step above might be impractical

Example: if 𝜑 is the squared Euclidean distance, then the solution can
be found in polynomial time but it is complicated and expensive in

practice! (hence, not a popular approach…)

Efficient Regularizers

Idea: construct regularizers that mimic the structure of the
tree-form decision problem

𝑏% 𝑏&

𝑏' 𝑏(

Local
reg. 𝜑$

Local
reg. 𝜑%

Dilated regularizers

𝜑 𝑥 ≔ 𝜑% 𝑏%, 𝑏& + 𝑏% ⋅ 𝜑& 𝑏', 𝑏(

𝑏%

𝑏&

𝑏%𝑏'

𝑏%𝑏(
Strategy
(in sequence form)

𝑥 =
Where 𝑓$ and 𝑓% are local strongly convex regularizers
(e.g., negative entropy)

It can be shown that 𝜑 is strongly convex, and the
solution to the FTRL problem can be computed in a

bottom-up fashion

Only a high level intuition. Good to
know they exist, but they don’t
perform nearly as well as CFR!

For large games, regret-based methods are today the scalable state of
the art

Overall: kernelization gives better theoretical bounds on the regret

CFR gives better empirical performance (beats top poker pros)

FTRL is technically possible, but nobody has figured out how to make it
work well in practice

We can use the techniques we
discussed to compute some Nash

equilibrium in any two-player zero-
sum game

We can use the techniques we
discussed to compute some Nash

equilibrium in any two-player zero-
sum game

Are all Nash equilibria equally
good? Or should we aim for some

but not other?

Not all Nash equilibria are equally sensible, especially in sequential
games!

Intuition: Nash equilibria stem from the
idea that the opponent is as strong as

possible, and might therefore be completely
unprepared to handle the case of an

imperfect opponent Very relevant when playing
with humans!

Guess-the-Ace game
To make the discussion more concrete,

consider the following game (due to
Miltersen and Sorensen)

• At the start a standard 52-card deck is perfectly
shuffled, face down, by a dealer

• Then, Player 1 decides whether to immediately end
the game (no money transfer), or offer $1000 to
Player 2 if they can correctly guess whether the top
card of the shuffled deck is the ace of spaces or not.

• If Player 2 guesses correctly, the $1000 get
transferred from Player 1 to Player 2; if not, no
money is transferred

Guess-the-Ace game
To make the discussion more concrete,

consider the following game (due to
Miltersen and Sorensen)

• At the start a standard 52-card deck is perfectly
shuffled, face down, by a dealer

• Then, Player 1 decides whether to immediately end
the game (no money transfer), or offer $1000 to
Player 2 if they can correctly guess whether the top
card of the shuffled deck is the ace of spaces or not.

• If Player 2 guesses correctly, the $1000 get
transferred from Player 1 to Player 2; if not, no
money is transferred

Q: As Player 1, what is the only
sensible way to play the game?

Answer: the only sensible thing for Player 1 to do is to
quit immediately

(anything else loses money to Player 1 in expectaCon)

Indeed, that is the only Nash equilibrium
strategy for Player 1.

Guess-the-Ace game

But then, Player 2 does not get to play. From
the point of view of the definition of Nash

equilibrium, anything that Player 2 does is a
Nash equilibrium strategy Both of these are Nash equilibria. Nash eq. does not distinguish

between the two

Yet, huge difference
between the strategies. Only
one of the two approaches

can be called “rational”

Imagine that Player 2 is a bot playing against opponents in the real world, blindly following the
Nash equilibrium strategy it has precomputed

If Player 1 makes a mistake and decides to offer the $1000 instead of immediately quitting, the
Nash equilibrium that bets that the top card is not the ace of space has an expected utility of >
$980 whereas the Nash equilibrium that bets that the top card is the ace of spades only has an

expected utility of < $20.

Formalizing this subtle noCon of raConality within the set of Nash equilibria has been a major
endeavor for the game-theoreCc literature in the 70s and 80s. Today, we say that the equilibrium

in Figure 1 (LeV) is sequen2ally irra2onal, while the one on the right is sequenCally raConal.

Formalizing this subtle notion of rationality within the set of Nash equilibria has been a major
endeavor for the game-theoretic literature in the 70s and 80s. Today, we say that the equilibrium

in Figure 1 (Left) is sequentially irrational, while the one on the right is sequentially rational.

Not all Nash equilibria are equally “good” when the agents
can make mistakes.

Sequentially-irrational Nash equilibria might leave value
on the table, by being incapable of
capitalizing on opponents’ mistakes

Trivia: this kind of surprising behavior kicked in during the poker
tournament with the pros, and people were worried there was

possibly a bug in the bot. Instead, it was likely the pro that had made
a mistake and entered an off-equilibrium part of the tree

