Lecture 15 – Prof. Farina
Learning in Extensive-Form Games (Part II)
And Equilibrium Perfection

Fall 2023
Important Facts for Extensive-Form Games

FACT: There exists a representation of strategies in the tree, called sequence-form strategies, such that:

- The strategy set is a convex polytope
- The utility of each player is linear in the player’s strategy

\[\max_{x \in Q_1} \min_{y \in Q_2} x^T A y \]

\[(\text{Sequence-form strategy polytope of players}) \]

\[(\text{Sequence-form payoff matrix of the game}) \]

(See Lecture 13 for how to compute)
Important Facts for Extensive-Form Games

\[\max_{x \in Q_1} \min_{y \in Q_2} x^T Ay \]

- Computing a Nash equilibrium in a two-player zero-sum extensive-form game can be written as

As seen in Lecture 13, we can use Linear Programming to solve for Nash equilibrium in two-player zero-sum games.

As discussed in the previous lecture, we can also use learning (more scalable both in theory and in practice)
Quiz: what is learning and how do we use it in games?
Q: What is a no-external-regret algorithm?

Utility vectors $u(t)$ are processed by the learning algorithm, which outputs a strategy $x(t) \in X$. The objective is to minimize sublinear (external) regret:

$$R^{(T)} := \max_{\hat{x} \in X} \sum_{t=1}^{T} \langle u(t), \hat{x} - x(t) \rangle$$

X represents different sets depending on the game type:
- Simplex for normal-form games
- Sequence-form polytope for extensive-form games

Building a regret minimizer means making sure this bound holds, no matter the sequence of utilities given to the learner.
Q: How do we use no-external-regret algorithms in two-player zero-sum normal-form or extensive-form games?

\[\max_{x \in X} \min_{y \in Y} x^T A y \]

Answer: we let the learners play against each other

Q: What utilities do we supply to the learners?

\[\ell^t_X := A y^t, \quad \ell^t_Y := -A^T x^t \]

(Gradients of the players’ utility functions)

\(X, Y = \text{Simplex for normal-form games} \)

\(X, Y = \text{sequence-form polytope for extensive-form games} \)
If we can build a no-external-regret algorithm for outputting sequence-form strategies, then we can use it to compute a Nash equilibrium in two-player zero-sum games (and more)
Q: Other uses of no-external-regret algorithms?

• Q: what happens if we use a no-external-regret algorithm against static opponents (opponents that play from a fixed strategy)?
 • A: The average strategy of the no-external-regret algorithm converges to a best response to the opponents

• Q: what equilibrium do we recover if all players play according to a no-external-regret algorithm against each other in a general-sum multi-player game?
 • A: The average play converges to the set of coarse-correlated equilibria
How can we construct a no-external-regret algorithm for extensive-form games?
No-Regret Algorithms for EFGs

Different conceptual approaches exist:

- Conversion to a single simplex of convex combinations of vertices
- Decomposition into local decision problem over actions at each decision point
- Use general convex optimization tools (e.g., FTRL)

Exploits structure of problem and specific learning algorithm

Less specialized; general tool

Main idea:
Change of variables: instead of picking a point in the strategy polytope, decide how to mix the vertices

Key question:
How to sidestep exponential size?

Kernelized Multiplicative Weights Update
No-Regret Algorithms for EFGs

Different conceptual approaches exist:

- Conversion to a single simplex of convex combinations of vertices
- Decomposition into local decision problem over actions at each decision point
- Use general convex optimization tools (e.g., FTRL)

Exploits structure of problem and specific learning algorithm

Less specialized; general tool

Main idea:

Run a local no-regret algorithm at each decision point to update your strategy.

"Process" the utility vector $u^{(t)}$ (which is for the whole sequence-form strategy) and chop it up into local feedback for each decision point.

Key question:

What is the local feedback?

Counterfactual Regret Minimization
No-Regret Algorithms for EFGs

Different conceptual approaches exist:

- Conversion to a single simplex of convex combinations of vertices
- Decomposition into local decision problem over actions at each decision point
- Use general convex optimization tools (e.g., FTRL)

Exploits structure of problem and specific learning algorithm

Less specialized; general tool

Key question:
What regularizers are easy to deal with?

Main idea:
The sequence-form polytope is a convex set. So, we can apply the FTRL algorithm in its general form, and that guarantees no-regret

\[x^{(t)} = \arg \max_{x \in \mathbb{Q}} \langle U^{(t)}, x \rangle - \frac{1}{\eta} \varphi(x) \]
Counterfactual Regret Minimization

Idea: Minimize regret **globally** on the tree by **thinking locally** at each decision point.

- CFR updates strategies in *behavioral* form...
- ...but is a no-external-regret algorithm for *sequence-form strategies*.
Each local learner is responsible for refining the behavior at their decision point. Can locally use regret matching, multiplicative weights update, ...
Main question: what utility to pass to the local learners?

Utility vector (for sequence-form strategy)

Strategy (in sequence form)

Remember: we are trying to construct a no-external-regret minimizer. Our algorithm must guarantee sublinear regret no matter the sequence of utilities!
Counterfactual Utilities

Give to each local learner the expected utility in the subtree rooted at each action:

\[\hat{u}_3 = -0.7 \]
\[\hat{u}_4 = -0.4 \]
\[\hat{u}_2 = +1.4 \]
\[\hat{u}_1 = -2.0 + b_3 \cdot (-0.7) + b_4 \cdot (-0.4) \]
Why does it work?

• Proof time!
Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

\[R^{(T)}_{CFR} \leq \sum_{j} \max \left\{ 0, R^{(T)}_{j} \right\} \]

• Therefore: if the local regret minimizers all have regret \(O(\sqrt{T}) \), then CFR has regret \(O(\sqrt{T}) \) (where the \(O \) hides game-dependent constants)

\textit{Therefore:} if both players in a zero-sum extensive-form game play according to CFR, the average strategy converges to Nash equilibrium at rate \(O(1/\sqrt{T}) \)
FTRL in Extensive-Form Games
Follow-the-Regularized-Leader

\[x^{(t)} = \arg \max_{x \in \mathbb{Q}} \langle U^{(t)}, x \rangle - \frac{1}{\eta} \varphi(x) \]

Depending on the choice of strongly convex regularizer \(\varphi \), solving the step above might be impractical

Example: if \(\varphi \) is the squared Euclidean distance, then the solution can be found in polynomial time but it is complicated and expensive in practice! (hence, not a popular approach...)
Efficient Regularizers

Idea: construct regularizers that mimic the structure of the tree-form decision problem

\[
\varphi(x) := \varphi_1(b_1, b_2) + b_1 \cdot \varphi_2(b_3, b_4)
\]

Where \(f_1 \) and \(f_2 \) are local strongly convex regularizers (e.g., negative entropy)

It can be shown that \(\varphi \) is strongly convex, and the solution to the FTRL problem can be computed in a bottom-up fashion.

Only a high level intuition. Good to know they exist, but they don’t perform nearly as well as CFR!
For large games, regret-based methods are today the scalable state of the art.

Overall: kernelization gives better **theoretical bounds** on the regret.

CFR gives better empirical performance (beats top poker pros).

FTRL is technically possible, but nobody has figured out how to make it work well in practice.
We can use the techniques we discussed to compute some Nash equilibrium in any two-player zero-sum game.
We can use the techniques we discussed to compute some Nash equilibrium in any two-player zero-sum game.
Are all Nash equilibria equally good? Or should we aim for some but not other?
Not all Nash equilibria are equally sensible, especially in sequential games!

Intuition: Nash equilibria stem from the idea that the opponent is as strong as possible, and might therefore be completely unprepared to handle the case of an imperfect opponent

Very relevant when playing with humans!
Guess-the-Ace game

To make the discussion more concrete, consider the following game (due to Miltersen and Sorensen)

• At the start a standard 52-card deck is perfectly shuffled, face down, by a dealer
• Then, Player 1 decides whether to immediately end the game (no money transfer), or offer $1000 to Player 2 if they can correctly guess whether the top card of the shuffled deck is the ace of spades or not.
• If Player 2 guesses correctly, the $1000 get transferred from Player 1 to Player 2; if not, no money is transferred
Guess-the-Ace game

To make the discussion more concrete, consider the following game (due to Miltersen and Sorensen)

- At the start a standard 52-card deck is perfectly shuffled, face down, by a dealer.
- Then, Player 1 decides whether to immediately end the game (no money transfer), or offer $1000 to Player 2 if they can correctly guess whether the top card of the shuffled deck is the ace of spades or not.
- If Player 2 guesses correctly, the $1000 gets transferred from Player 1 to Player 2; if not, no money is transferred.

Q: As Player 1, what is the only sensible way to play the game?

Answer: the only sensible thing for Player 1 to do is to quit immediately (anything else loses money to Player 1 in expectation).

Indeed, that is the only Nash equilibrium strategy for Player 1.
But then, Player 2 does not get to play. From the point of view of the definition of Nash equilibrium, anything that Player 2 does is a Nash equilibrium strategy.

Yet, huge difference between the strategies. Only one of the two approaches can be called “rational.”

Both of these are Nash equilibria. Nash eq. does not distinguish between the two.
Imagine that Player 2 is a bot playing against opponents in the real world, blindly following the Nash equilibrium strategy it has precomputed.

If Player 1 makes a mistake and decides to offer the $1000 instead of immediately quitting, the Nash equilibrium that bets that the top card is not the ace of space has an expected utility of > $980 whereas the Nash equilibrium that bets that the top card is the ace of spades only has an expected utility of < $20.
Formalizing this subtle notion of rationality within the set of Nash equilibria has been a major endeavor for the game-theoretic literature in the 70s and 80s. Today, we say that the equilibrium in Figure 1 (Left) is **sequentially irrational**, while the one on the right is sequentially rational.

![Diagram of Nash equilibria](image-url)
Formalizing this subtle notion of rationality within the set of Nash equilibria has been a major endeavor for the game-theoretic literature in the 70s and 80s. Today, we say that the equilibrium in Figure 1 (Left) is **sequentially irrational**, while the one on the right is sequentially rational.

Not all Nash equilibria are equally “good” when the agents can make mistakes. **Sequentially-irrational Nash equilibria might leave value on the table**, by being incapable of capitalizing on opponents’ mistakes.

Trivia: this kind of surprising behavior kicked in during the poker tournament with the pros, and people were worried there was possibly a bug in the bot. Instead, it was likely the pro that had made a mistake and entered an off-equilibrium part of the tree.