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Important Facts for Extensive-Form Games
FACT: There exists a representation of strategies in the tree, called 

sequence-form strategies, such that:

• The strategy set is a convex polytope
• The utility of each player is linear in the player’s strategy

⟹: Computing a Nash equilibrium in a two-player zero-sum 
extensive-form game can be written as

max
!∈#!

min
$∈#"

𝑥%𝐴𝑦

Sequence-form strategy polytope of players
Sequence-form payoff matrix of the game
(See Lecture 13 for how to compute)



Important Facts for Extensive-Form Games
⟹: Computing a Nash equilibrium in a two-player zero-sum 

extensive-form game can be written as

max
!∈#!

min
$∈#"

𝑥%𝐴𝑦

Sequence-form strategy polytope of players
Sequence-form payoff matrix of the game

⟹: As seen in Lecture 13, we can use Linear Programming to solve for 
Nash equilibrium in two-player zero sum games

As discussed in the previous lecture, we can also use learning
(more scalable both in theory and in practice)



Quiz: what is learning and how 
do we use it in games?



Q: What is a no-external-regret
algorithm?

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

Objective: sublinear (external) regret

𝑅($) ≔ max
%&∈(	

*
"*+

$

⟨𝑢("), -𝑥 − 𝑥(")⟩	

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for 
extensive-form games

Building a regret minimizer 

means making sure this 

bound holds, NO MATTER 

THE SEQUENCE OF 

UTILITIES GIVEN TO THE 

LEARNER



Q: How do we use no-external-regret
algorithms in two-player zero-sum normal-form or 
extensive-form games?

max
!∈&

min
$∈'

𝑥%𝐴𝑦

𝑋, 𝑌 = Simplex for normal-form games

𝑋, 𝑌 = sequence-form polytope for 
extensive-form games

Q: What utilities do we supply to the learners?

Answer: we let the learners play against each other

(Gradients of the players’
utility functions)



If we can build a no-external-regret algorithm for 
outputting sequence-form strategies, then we can 
use it to compute a Nash equilibrium in two-player 

zero-sum games (and more)



Q: Other uses of no-external-regret 
algorithms?
• Q: what happens if we use a no-external-regret algorithm against 

static opponents (opponents that play from a fixed strategy)?
• A: The average strategy of the no-external-regret algorithm converges to a 

best response to the opponents

• Q: what equilibrium do we recover if all players play according to a 
no-external-regret algorithm against each other in a general-sum 
multi-player game?
• A: The average play converges to the set of coarse-correlated equilibria



How can we construct a no-
external-regret algorithm for 
extensive-form games?



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

How to sidestep 
exponential size?

Main idea:

Kernelized Multiplicative 
Weights Update

Change of variables: instead of picking a point in the 
strategy polytope, decide how to mix the vertices



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

What is the local 
feedback?

Main idea:

Run a local no-regret algorithm at each 
decision point to update your strategy.

”Process” the utility vector 𝑢(") (which is 
for the whole sequence-form strategy) 
and chop it up into local feedback for 
each decision point.

Counterfactual 
Regret Minimization



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

What regularizers are 
easy to deal with?

Main idea:

The sequence-form polytope is a convex set. So, we can 
apply the FTRL algorithm in its general form, and that 
guarantees no-regret

𝑥()) = argmax
!∈+

⟨𝑈()), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	



Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…

…but is a no-external-regret algorithm for 
sequence-form strategies

🚨 
Papercut 

Alert™

Counterfactual Regret Minimization



Big Picture Idea:

A B
C

D E F

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Each local 
learner is 

responsible for 
refining the 

behavior at their 
decision point 

Can locally use 
regret matching, 

mulFplicaFve 
weights update, 

…



-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form 
strategy)

Strategy

𝑏% 𝑏&

𝑏' 𝑏(

-2.0
+1.4 𝑏%

𝑏&

𝑏%𝑏'

𝑏%𝑏(

Strategy
(in sequence form)

CFR 
Learning

Algorithm-0.7 -0.4

Main question: what utility 
to pass to the local learners?

Local 
Learner

Local 
Learner

Remember: we are trying to construct a no-
external-regret minimizer. Our algorithm must 

guarantee sublinear regret no ma_er the 
sequence of u`li`es!



Counterfactual Utilities

𝑏% 𝑏&

𝑏' 𝑏(

-2.0
+1.4

-0.7 -0.4

Local 
Learner

Local 
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

"𝑢' = −0.7
"𝑢( = −0.4
"𝑢& = +1.4
"𝑢% = −2.0 + 𝑏' ⋅ −0.7 + 𝑏( ⋅ (−0.4)



Why does it work?

• Proof time!



Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅,-.
(%) ≤:

/

max 0, 𝑅/
%

• Therefore: if the local regret minimizers all have regret 𝑂( 𝑇) , then 
CFR has regret 𝑂( 𝑇) (where the 𝑂 hides game-dependent 
constants) 

Decision points Local regret cumulated by learner at j



FTRL in Extensive-Form Games



Follow-the-Regularized-Leader

𝑥()) = argmax
!∈+

	⟨𝑈()), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	

Depending on the choice of strongly convex regularizer 𝜑,
 solving the step above might be impractical

Example: if 𝜑 is the squared Euclidean distance, then the solution can 
be found in polynomial time but it is complicated and expensive in 

practice! (hence, not a popular approach…)



Efficient Regularizers

Idea: construct regularizers that mimic the structure of the 
tree-form decision problem

𝑏% 𝑏&

𝑏' 𝑏(

Local 
reg. 𝜑$

Local 
reg. 𝜑%

Dilated regularizers

𝜑 𝑥 ≔ 𝜑% 𝑏%, 𝑏& + 𝑏% ⋅ 𝜑& 𝑏', 𝑏(

𝑏%

𝑏&

𝑏%𝑏'

𝑏%𝑏(
Strategy
(in sequence form)

𝑥 =
Where 𝑓$ and 𝑓% are local strongly convex regularizers 
(e.g., negative entropy)

It can be shown that 𝜑 is strongly convex, and the 
solution to the FTRL problem can be computed in a 

bottom-up fashion

Only a high level intuition. Good to 
know they exist, but they don’t 
perform nearly as well as CFR!



For large games, regret-based methods are today the scalable state of 
the art

Overall: kernelization gives better theoretical bounds on the regret

CFR gives better empirical performance (beats top poker pros)

FTRL is technically possible, but nobody has figured out how to make it 
work well in practice



We can use the techniques we 
discussed to compute some Nash 

equilibrium in any two-player zero-
sum game



We can use the techniques we 
discussed to compute some Nash 

equilibrium in any two-player zero-
sum game



Are all Nash equilibria equally 
good? Or should we aim for some 

but not other?



Not all Nash equilibria are equally sensible, especially in sequential 
games!

Intuition: Nash equilibria stem from the 
idea that the opponent is as strong as 

possible, and might therefore be completely 
unprepared to handle the case of an 

imperfect opponent Very relevant when playing 
with humans!



Guess-the-Ace game
To make the discussion more concrete, 

consider the following game (due to 
Miltersen and Sorensen)

• At the start a standard 52-card deck is perfectly 
shuffled, face down, by a dealer

• Then, Player 1 decides whether to immediately end 
the game (no money transfer), or offer $1000 to 
Player 2 if they can correctly guess whether the top 
card of the shuffled deck is the ace of spaces or not.

• If Player 2 guesses correctly, the $1000 get 
transferred from Player 1 to Player 2; if not, no 
money is transferred



Guess-the-Ace game
To make the discussion more concrete, 

consider the following game (due to 
Miltersen and Sorensen)

• At the start a standard 52-card deck is perfectly 
shuffled, face down, by a dealer

• Then, Player 1 decides whether to immediately end 
the game (no money transfer), or offer $1000 to 
Player 2 if they can correctly guess whether the top 
card of the shuffled deck is the ace of spaces or not.

• If Player 2 guesses correctly, the $1000 get 
transferred from Player 1 to Player 2; if not, no 
money is transferred

Q: As Player 1, what is the only 
sensible way to play the game?

Answer: the only sensible thing for Player 1 to do is to 
quit immediately

(anything else loses money to Player 1 in expectaCon)

Indeed, that is the only Nash equilibrium 
strategy for Player 1.



Guess-the-Ace game

But then, Player 2 does not get to play. From 
the point of view of the definition of Nash 

equilibrium, anything that Player 2 does is a 
Nash equilibrium strategy Both of these are Nash equilibria. Nash eq. does not distinguish

between the two 

Yet, huge difference 
between the strategies. Only 
one of the two approaches 

can be called “rational”



Imagine that Player 2 is a bot playing against opponents in the real world, blindly following the 
Nash equilibrium strategy it has precomputed

If Player 1 makes a mistake and decides to offer the $1000 instead of immediately quitting, the 
Nash equilibrium that bets that the top card is not the ace of space has an expected utility of > 
$980 whereas the Nash equilibrium that bets that the top card is the ace of spades only has an 

expected utility of < $20.



Formalizing this subtle noCon of raConality within the set of Nash equilibria has been a major 
endeavor for the game-theoreCc literature in the 70s and 80s. Today, we say that the equilibrium 

in Figure 1 (LeV) is sequen2ally irra2onal, while the one on the right is sequenCally raConal. 



Formalizing this subtle notion of rationality within the set of Nash equilibria has been a major 
endeavor for the game-theoretic literature in the 70s and 80s. Today, we say that the equilibrium 

in Figure 1 (Left) is sequentially irrational, while the one on the right is sequentially rational. 

Not all Nash equilibria are equally “good” when the agents 
can make mistakes.

Sequentially-irrational Nash equilibria might leave value 
on the table, by being incapable of
capitalizing on opponents’ mistakes

Trivia: this kind of surprising behavior kicked in during the poker 
tournament with the pros, and people were worried there was 

possibly a bug in the bot. Instead, it was likely the pro that had made 
a mistake and entered an off-equilibrium part of the tree


