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protein folding, molecule design,...
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time-series data natural language

Input Prompt: Recite the first law of robotics

Output:

text generation, translation, chatbots,
text embeddings,...

speech recognition, forecasting



A Dawn of Multi-Agent Applications
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A Dawn of Multi-Agent Applications

Multi-player Game-Playing:
* Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy
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Important notes and
caveats...




(1) Strategic Behavior does not
emerge from standard training




& (1) Strategic Behavior does not emerge
from standard training (cont’d)
ChatGPT

| am the x player in a game of tic-tac-toe, the other player is o, | am supposed to play next,
and the current board configuration looks as follows. Where should | put x?

x| |x
olo|

Based on the current board configuration, you should put an "x" in the middle-right cell to
block your opponent from winning the game.

The updated board would look like this:

x| Ix
olo|x



II) Naively trained models can be manipulate

“airliner”
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“revolver” “mousetrap” “vulture” “orangutan”

[Athalye, Engstrom, llyas, Kwok ICML'18] [Engstrom et al. 2019]




(111) Training without regard to the presence of
other agents can lead to undesirable consequences
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(111) Training without regard to the presence of
other agents can lead to undesirable consequences

Example: Al for dynamic
pricing

Setting: Duopoly w/ two
symmetric firms

Independent Learning:
firms cannot
communicate other than
setting prices, observing
their profit and adjusting
their price using some
standard Al algorithm
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[Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic
Pricing, and Collusion,” American Economic Review, 2020]



(IV) The optimization workhorse of Deep
Learning struggles in multi-agent settings



(IV) The optimization workhorse of Deep
Learning

- STANDARD DEEP LEARNING OPTIMIZATION PROBLEM
ming £(60)

0: high-dimensional
£: nonconvex
essentially only accessible through £(8) and V£(6) queries

el

Gradient Descent Theoretical Guarantee: Even if £ nonconvex, Gradient

Descent efficiently computes local minima
[e.g. Geetal ’15, Lee et al’17]
Empirical Finding: Local minima are good enough

Or1 =0 —1n - VE(6,) -




(IV) The optimization workhorse of Deep
Learning

Prominent Paradigm:
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(IV) The optimization workhorse of Deep Learning (a.k.a.
Gradient Descent) struggles in multi-agent settings

Multi-player Game-Playing: * Multi-robot interactions
* Superhuman GO, Poker, Gran Turismo * Autonomous driving

* Human-level Starcraft, Diplomacy J k' Automated Economic policy design
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Generative Adversarial Networks (GANSs) Adversarial Training
K synthetic data generation J K robustifving models against adversarial attacks/

Practical Experience: While GD converges in single-agent learning settings, GD vs GD (vs GD...) is cyclic
or chaotic in multi-agent settings, and it’s an engineering challenge to make it identify a good solution



(IV) The optimization workhorse of Deep
Learning struggles in multi-agent settings

GAN Training: solve two-player zero-sum game
where generator player, 8, pays discriminator
player, w, depending on how well, (8, w),

Natural Algorithm: Simultaneous Gradient Descent/Ascent

Ory1 =60 — 1 Vof (6, )
Werp = we + 1V, (60, wp)

discriminator distinguishes real vs fake samples

GAN training on MNIST Data:
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GAN training on Gaussian Mixture Data:
Target
dist’n: .. l . .

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

pictures from [Metz et al ICLR’17]



(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; € R%  action: x, € X, € R% action: x,, € X,, € R%n
goal: max uqy (x4, ..., x,) goal: max u,(xq, ..., Xp,) goal: max u, (x4, ..., X5,)
\ (a.k.a. min €1 (x4, ..., x)) (a.k.a. min€,(xy, ..., X)) (a.ka. min €, (xq, ..., %))/

Emerging applications in Machine Learning involve multiple agents who:
> choose high-dimensional strategies x; € X; c R% (e.g. parameters in a DNN)
» maximize utility functions u; (x; ; x_;) that are nonconcave in their own strategy
(a.k.a. minimize loss functions that are nonconvex in their own strategy)

Issue: Game Theory is fragile when utilities are nonconcave
» in particular, Nash equilibrium (and other types of equilibrium) may not exist
» so what is even our recommendation about reasonable optimization targets?



(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; € R%  action: x, € X, ¢ R%2
\ goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

[Debreu’52, Rosen’65]: If each u; (x;; x_;) is continuous and concave in x; for all x_; and each
X; is convex and compact, a Nash equilibrium exists.
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/ Setting:

action: x; € X; ¢ R4 action: x, € X, € R%2 action: x,, € X,, € R%
\ goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

[Debreu’52, Rosen’65]: If each u; (x;; x_;) is continuous and concave in x; for all x_; and each
X; is convex and compact, a Nash equilibrium exists.
e.g. Nash equilibrium in finite normal-form games [Nash’50]




(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; ¢ R4 action: x, € X, € R%2 action: x,, € X,, € R%
\ goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

[Debreu’52, Rosen’65]: If each u; (x;; x_;) is continuous and concave in x; for all x_; and each
X; is convex and compact, a Nash equilibrium exists.

e.g. Nash equilibrium in finite normal-form games [Nash’50]

* inthiscase: X; = A(4;) and u;(x;; x_;) = ZaexjAj u;(a)x,(ay) - x,(ay)




(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; ¢ R4 action: x, € X, € R%2 action: x,, € X,, € R%
\ goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

If some u;(x;; x_;) is not concave in x; for all x_;, a Nash equilibrium does not necessarily exist
e.g. two-player zero-sum game: u; (x1, x) = —u, (%1, x,) = (x; — x,)% where x4, x, € [—1,1]




(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; ¢ R4 action: x, € X, € R%2 action: x,, € X,, € R%
\ goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

If some u;(x;; x_;) is not concave in x; for all x_;, a Nash equilibrium does not necessarily exist
e.g.2 Generative adversarial networks




(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; ¢ R4 action: x, € X, € R%2 action: x,, € X,, € R%
\ goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

If some u;(x;; x_;) is not concave in x; for all x_;, Nash equilibrium does not necessarily exist
[Glicksberg’52]: A randomized Nash equilibrium does exist if the X;’s are compact and the u;’s
are continuous (and not necessarily concave), but support could be uncountably infinite.




(V) Finally Game Theory Breaks

/ Setting:

action: x; € X; ¢ R4 action: x, € X, € R%2 action: x,, € X,, € R%
goal: max uqy(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., X5,) /

If some u;(x;; x_;) is not concave in x; for all x_;, Nash equilibrium does not necessarily exist
If the X;’s are non-compact, even randomized Nash/correlated eq do not necessarily exist

e.g. “Guess-the-larger-number” game
* two players choose a real; whoever chooses the largest real receives one point from the other




Summary so far...

* (I) Strategic Behavior does not emerge from standard training
* (I1) Naively trained models can be manipulated

* (Il) Training without regard to the presence of other agents can
lead to undesirable (e.g. collusive) consequences

* (IV) The optimization workhorse of Deep Learning (a.k.a. gradient
descent) struggles in multi-agent settings

* (V) Finally Game Theory (namely the existence of Nash equilibrium
and other types of equilibrium) breaks




Multi-player Game-Playing:
* Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy
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Motivating Questions
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Practical Experience: GD vs GD (vs GD...) is cyclic
or chaotic, and it is a hard engineering challenge
to make it identify a good solution

What are meaningful and practically attainable optimization targets in this setting?

GENERALIZATIONS OF LOCAL OPTIMUM?

Why does GD vs GD struggle even in two-player zero-sum cases?

INTRACTABILITY? or WRONG METHOD?

Is there a generic optimization framework for Multi-Agent Deep Learning?

OR DO WE NEED STRUCTURE?




Intermission: Sign-up for project
presentations!

PROJECT PRESENTATIONS

11/30 Projects
12/5 Projects

12/7 Projects

Presentation format: 15 mins + 5 mins Q & A

Write-up format: 10 pages + appendix (due 12/14)



Local Nash Equilibrium

/Setting:

action: x; € X; € R%  action: x, € X, € R% action: x,, € X,, € R%n
goal: max uq(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., x5,)
u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
K [allow: global constraints (x4, X5, ..., X,) € § €X;X;]

Overarching Q: What are meaningful and practically attainable optimization targets in this setting?

“meaningful:” at the very least universal, verifiable with the info that agents have about their loss functions
“practically attainable:” efficiently reachable via gradient descent-like (or similar light-weight) method

Q: Perhaps some generalization to this setting of local optimum?

A weak optimization target: Local Nash Equilibrium [Ratliff-Burden-Sastry’16, Daskalakis-
Panageas’18, Mazumdar-Ratliff’18, Jin-Netrapali-Jordan’20]
A point x* = (x7, ..., X5,) € S such that, for each player i, x; is local max of u;(x;; xZ;) w.rt. x;

Weakest variant: First-Order Local Nash Equilibrium

Take “local max” to mean “First-order local max” i.e. max w.r.t. first-order Taylor appx




First-Order Local Nash Equilibrium: agent i’s viewpoint

x; best response to x*; as
far as the first-order Taylor
approximation can tell

xi + Vi (x5 x2;)

OR

x{k = HSi(Xii)(xlik + inul-(x{k; Xii ))

a.k.a. fixed point of GD vs GD (vs GD...)

'Si (Xii)



Local Nash Equilibrium: Existence

/Setting:

action: x; € X; € R%  action: x, € X, € R% action: x,, € X,, € R%n
goal: max uq(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., x5,)

u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
\ [allow: global constraints (x4, X5, ..., X,) € § €X;X;]

Def: A strategy profile x* = (x3, ..., x,) € § is a (first-order) local Nash equilibrium iff for all i:
X{k = HSi(xii)(xlik ~+ Vxl.ul-(x{k; Xii))
where §;(xZ;) = {x;| (x; ; xZ;) € §}, and Hgi(xii)(-) is the Euclidean projection onto the set §;(x*;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities



Local Nash Equilibrium: Existence

/Setting:

action: x; € X; € R%  action: x, € X, € R% action: x,, € X,, € R%n
goal: max uq(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., x5,)

u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
\ [allow: global constraints (x4, X5, ..., X,) € § €X;X;]

Def: A strategy profile x* = (x3, ..., x,) € § is a (first-order) local Nash equilibrium iff for all i:
xf = Hé‘i(xii)(x; ~+ inui(x{k; Xil))
where §;(xZ;) = {x;| (x; ; xZ;) € §}, and Hgi(xii)(-) is the Euclidean projection onto the set §;(x*;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities
are they practically attainable?



Local Nash Equilibrium: Complexity

fSetting:

action: x; € X; € R%  action: x, € X, € R% action: x,, € X,, € R%n
goal: max uq(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (xq, ..., X,,)

u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
\ [allow: global constraints (x4, x5, ..., X)) € § EX;X;] j

Def: A strategy profile x* = (x3, ..., x,) € § is a (first-order) local Nash equilibrium iff for all i:
X;k = HSi(xii)(xlik + inui(xlf"; Xil))
where 8;(x%;) = {x;| (x;; xZ;) € §}, and Hgi(xii)(-) is the Euclidean projection onto the set §;(x~;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC’21]: Even in two-player zero-sum smooth non-concave
games, any method accessing the u;’s via value and gradient value queries needs exponentially
many queries (in the dimension and/or 1/¢) to compute even an g-approximate local Nash

X; — Hg(xii)(xf + Vo ui (x5 ; xii))” <e.

equilibrium, i.e. some x™ such that for all i: ‘




Local Nash Equilibrium: Complexity

/Setting:

action: x; € X; € R%  action: x, € X, € R% action: x,, € X,, € R%n
goal: max uq(xq, ..., x,) goal: max u,(xq, ..., X,,) goal: max u, (x4, ..., x5,)
u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
K [allow: global constraints (x4, X5, ..., X,) € § €X;X;]

Def: A strategy profile x* = (x3, ..., x,) € § is a (first-order) local Nash equilibrium iff for all i:
sz = HSi(xii)(xlik + inui(xlf"; Xil))
where §;(xZ;) = {x;| (x; ; xZ;) € §}, and Hsi(xii)(') is the Euclidean projection onto the set §;(x*;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC’21]: Even in two-player zero-sum smooth non-concave
games, any method at all needs super-polynomial-time (in the dimension and/or 1/¢) to compute
even an g-approximate local Nash equilibrium, unless PPAD=P.




The Complexity of Local Nash Equilibrium

e — Traveling Salesman Problem

NP-complete

Computing approximate Brouwer Fixed
Points of Lipschitz functions, and mixed
Nash equilibria in genereal-sum normal-
form games are both PPAD-complete
problems, i.e. in PPAD and no easier than
any problem in PPAD [Papadimitriou’94,
Daskalakis-Goldberg-Papadimitriou’06,
Chen-Deng’06]

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local Nash equilibria (even in two-player
zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer
fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form
games; and (iii) at least as hard as any other problem in PPAD.

Linear
Programming




Intuition: why are even two players too many?

Compare properties of objective-improving moves in single-player optimization problems (where
finding approximate local optima is known to be tractable) and better-response dynamics in two-player
zero-sum games (where we show that finding approximate local Nash equilibria is intractable)

21. 2.0 019 . I 3. g .1 2
—* " single-agent two-player 7 , 3, & .1
? non-convex zero-sum non- 1 2 ‘ | 2
15.‘—1.6 " minimization I concave game 203 — .
- . 1 2 3
14‘| /non (showing 2 | , ,
e 2 a1 5. % 3 concave I olayer 1’s R L = ey
‘.10 6.| |.2 maximization I value) ’ ’ I.2
min e e e o1 max L —— o3
I 9 8 7 I I 3 2 1
<—>min <——>min
objective value decreases along objective- | better-response paths may be cyclic :S
improvin h, thus: (i) moving alon h mak S :
proving path, thus: (i) moving alo -g path makes | objective value along non-cyclic e-better-response path does
progress towards (local) optimum

not reveal information about distance to end of the path!
(ii) guantitative version: for bounded objectives (e.g. I

continuous objective over compact space), function |
value along e-improving path bounds distance from I
the end of the path (memory/information gain)

to turn this intuition into an intractability proof, need to hide
exponentially long better-response path within ambient
space s.t. no matter where the function is queried little

. information is revealed about location of local Nash equilibria



Rough Proof Idea: Reduce from Sperner
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Lemma: If boundary coloring is valid, then no matter how the internal nodes are
colored there exists a tri-chromatic triangle. In fact, an odd number of them.




Rough Proof Idea: Reduce from Sperner
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Lemma: If boundary coloring is valid, then no matter how the internal nodes are
colored there exists a tri-chromatic triangle. In fact, an odd number of them.



Rough Proof Idea: Edge-Triangle Game
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- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash
in two-player zero-sum games



Rough Proof Idea: Edge-Triangle Game

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash
in two-player zero-sum games by having the Max player choose a triangle, the Min player choose an edge of the
triangle



Rough Proof Idea: Edge-Triangle Game

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash
in two-player zero-sum games by having the Max player choose a triangle, the Min player choose an edge of the
triangle, and assigning payoffs depending on whether Max chose a triangle that has at least one red-yellow edge,



Rough Proof Idea: Edge-Triangle Game

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash
in two-player zero-sum games by having the Max player choose a triangle, the Min player choose an edge of the
triangle, and assigning payoffs depending on whether Max chose a triangle that has at least one red-yellow edge,
whether Min chose a red-yellow edge in that triangle,



Rough Proof Idea: Edge-Triangle Game

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash
in two-player zero-sum games by having the Max player choose a triangle, the Min player choose an edge of the
triangle, and assigning payoffs depending on whether Max chose a triangle that has at least one red-yellow edge,
whether Min chose a red-yellow edge in that triangle, as well as the orientation of the chosen edge in that

triangle.



Rough Proof Idea: Edge-Triangle Game

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash
in two-player zero-sum games by having the Max player choose a triangle, the Min player choose an edge of the
triangle, and assigning payoffs depending on whether Max chose a triangle that has at least one red-yellow edge,
whether Min chose a red-yellow edge in that triangle, as well as the orientation of the chosen edge in that
trianegle. GOAL: best-response dvnamics simulate paths on SPERNER graph



-Triangle Game (Vin-Max)

function value=+1
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-Triangle Game (Vin-Max)
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-Triangle Game (Vin-Max)

function value=+1
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Challenges
1. function value outside the path?
we need to make sure that no spurious solutions are created



Challenges

2. function needs to be Lipschitz continuous and smooth
challenging problem in high-dimensions!



The Complexity of Local Nash Equilibrium

e — Traveling Salesman Problem

NP-complete

Computing approximate Brouwer Fixed
Points of Lipschitz functions, and mixed
Nash equilibria in genereal-sum normal-
form games are both PPAD-complete
problems, i.e. in PPAD and no easier than
any problem in PPAD [Papadimitriou’94,
Daskalakis-Goldberg-Papadimitriou’06,
Chen-Deng’06]

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local Nash equilibria (even in two-player
zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer
fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form
games; and (iii) at least as hard as any other problem in PPAD.

Linear
Programming




Way Forward: Practical Local Nash Equilibrium

* Practical Local Nash Equilibrium Computation?
* |ocal Nash is intractable in general

* ...but can exploit connection to Brouwer fixed points to obtain 2"%-order dynamics with
guaranteed (albeit necessarily not poly-time) convergence | -Golowich-Skoulakis-
Zampetakis COLT’23]

e turn it into a 1s%-order method by cutting corners ?

* identify structural properties of games under which it is efficient (beyond worst-case
analysis of games)
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Way Forward: Consider Randomized Equilibria

* Local Correlated/Coarse Correlated equilibria?
* what’s a reasonable way to define it in general non-concave games?
...s0 that it is also guaranteed to exist and is tractable?
proposal: || Ey+, [Vxl.ui(x{‘; x*)|Il < & (formally: project to the constraint set)
when p has support 1 this is a local Nash eq, so this exists but is intractable

is there some polynomial support, so that it is tractable?

[Cai-Daskalakis-Luo-Wei-Zhang’23]: If S is convex and compact and the u;’s are Lipschitz
and and smooth, a poly-size supported (in the dimension, in 1/¢, in the Lipschitzness and
the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient
Descent) ©

[0310700100101007010
40 101001800701070 11
£ 1001010101009010100

P
—~

3 RS
PV

t Xe+1 < Xt = fo(xt) + 019 0010 10T0R08 1018406
o ~1310010101010019121° "
31010070010100101

H il
1 Nt
2=

semi-agnostic



Next Time: Global Randomized Equilibria

Multi-player Game-Playing:
* Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy
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Z ~ N(O, I)_’, "' Ptarget
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neural
network

boring
randomness

interesting
randomness

Generative Adversarial Networks (GANs)
synthetic data generation

/
~

* Multi-robot interactions
* Autonomous driving

4

* Automated Economic policy design

\
P

Authentic Adversarial Adversarial
Input Perturbation Input

Adversarial Training

\ robustifving models against adversarial attacksj




