6.S890: Topics in Multiagent Learning

Lecture 18

Fall 2023

Recent AI Breakthroughs

molecules

T0965 / 6D2V

images

image recognition, reconstruction, generation, super-resolution,...

T0954 / 6CVZ

protein folding, molecule design,...

T0955 / 5W9F

games

super-human play

time-series data

Structures: Ground truth (gree Predicted (blue)

speech recognition, forecasting

natural language

text generation, translation, chatbots, text embeddings,...

A Dawn of *Multi-Agent* Applications

Multi-player Game-Playing:

- Superhuman GO, Poker, Gran Turismo
- Human-level Starcraft, Diplomacy

- Multi-robot interactions
- Autonomous driving
- Automated Economic policy design

Generative Adversarial Networks (GANs) synthetic data generation

Adversarial Training robustifying models against adversarial attacks

A Dawn of *Multi-Agent* Applications

Important notes and caveats...

(I) Strategic Behavior does not emerge from standard training

(II) Naively trained models can be manipulated

[Athalye, Engstrom, Ilyas, Kwok ICML'18]

"revolver" "mousetrap" "vulture" [Engstrom et al. 2019] "orangutan"

(III) Training without regard to the presence of other agents can lead to undesirable consequences

standard AI algorithm

[Calvano, Calzolari, Denicolo, Pastorello: "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, 2020]

(III) Training without regard to the presence of other agents can lead to undesirable consequences

standard AI algorithm

[Calvano, Calzolari, Denicolo, Pastorello: "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, 2020]

 $\min_{\theta} \ell(\theta)$

STANDARD DEEP LEARNING OPTIMIZATION PROBLEM

 θ : high-dimensional ℓ : nonconvex

essentially only accessible through $\ell(\theta)$ and $\nabla \ell(\theta)$ queries

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla \ell(\theta_t)$$

Gradient Descent

Theoretical Guarantee: Even if ℓ nonconvex, Gradient Descent efficiently computes *local minima* [e.g. Ge et al '15, Lee et al'17] Empirical Finding: Local minima are good enough

Prominent Paradigm:

(IV) The optimization workhorse of Deep Learning (a.k.a. Gradient Descent) struggles in multi-agent settings

Practical Experience: While GD converges in single-agent learning settings, GD vs GD (vs GD...) is cyclic or chaotic in multi-agent settings, and it's an engineering challenge to make it identify a good solution

GAN Training: solve two-player zero-sum game where generator player, θ , pays discriminator player, ω , depending on how well, $f(\theta, \omega)$, discriminator distinguishes real vs fake samples

GAN training on MNIST Data:

Target dist'n:

GAN training on Gaussian Mixture Data:

Natural Algorithm: Simultaneous Gradient Descent/Ascent

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} f(\theta_t, \omega_t)$$

$$\omega_{t+1} = \omega_t + \eta \cdot \nabla_{\omega} f(\theta_t, \omega_t)$$

pictures from [Metz et al ICLR'17]

Emerging applications in *Machine Learning* involve multiple agents who:

- ≻ choose high-dimensional strategies $x_i \in X_i \subset \mathbb{R}^{d_i}$ (e.g. parameters in a DNN)
- > maximize utility functions $u_i(x_i; x_{-i})$ that are *nonconcave* in their own strategy (a.k.a. minimize loss functions that are **nonconvex** in their own strategy)

Issue: Game Theory is fragile when utilities are nonconcave

- > in particular, Nash equilibrium (and other types of equilibrium) may not exist
- > so what is even our recommendation about reasonable optimization targets?

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

[Debreu'52, Rosen'65]: If each $u_i(x_i; x_{-i})$ is continuous and concave in x_i for all x_{-i} and each X_i is convex and compact, a Nash equilibrium exists.

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

[Debreu'52, Rosen'65]: If each $u_i(x_i; x_{-i})$ is continuous and concave in x_i for all x_{-i} and each X_i is convex and compact, a Nash equilibrium exists.

e.g. Nash equilibrium in finite normal-form games [Nash'50]

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

[Debreu'52, Rosen'65]: If each $u_i(x_i; x_{-i})$ is continuous and concave in x_i for all x_{-i} and each X_i is convex and compact, a Nash equilibrium exists.

e.g. Nash equilibrium in finite normal-form games [Nash'50]

• in this case:
$$\mathcal{X}_i = \Delta(A_i)$$
 and $u_i(x_i; x_{-i}) = \sum_{a \in \times_j A_j} u_i(a) x_1(a_1) \cdots x_n(a_n)$

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , a Nash equilibrium does not necessarily exist e.g. two-player zero-sum game: $u_1(x_1, x_2) = -u_2(x_1, x_2) = (x_1 - x_2)^2$ where $x_1, x_2 \in [-1, 1]$

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , a Nash equilibrium does not necessarily exist e.g.2 Generative adversarial networks

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , Nash equilibrium does not necessarily exist **[Glicksberg'52]**: A *randomized* Nash equilibrium does exist if the X_i 's are compact and the u_i 's are continuous (and not necessarily concave), but support could be uncountably infinite.

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i : $E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \cdots \times p_n} [u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , Nash equilibrium does not necessarily exist If the X_i 's are non-compact, even randomized Nash/correlated eq do not necessarily exist e.g. "Guess-the-larger-number" game

• two players choose a real; whoever chooses the largest real receives one point from the other

Summary so far...

- (I) Strategic Behavior does not emerge from standard training
- (II) Naively trained models can be manipulated
- (III) Training without regard to the presence of other agents can lead to undesirable (e.g. collusive) consequences
- (IV) The optimization workhorse of Deep Learning (a.k.a. gradient descent) struggles in multi-agent settings
- (V) Finally Game Theory (namely the existence of Nash equilibrium and other types of equilibrium) breaks

Motivating Questions

- Superhuman GO, Poker, Gran Turismo
- Human-level <u>Starcraft</u>, Diplomacy

- Multi-robot interactions
- Autonomous driving
- Automated Economic policy design

Adversarial Training robustifving models against adversarial attacks

Practical Experience: GD vs GD (vs GD...) is cyclic or chaotic, and it is a hard engineering challenge to make it identify a good solution

What are meaningful and practically attainable optimization targets in this setti	<u>ıg?</u>	
	GENERALIZATIONS OF LOCAL C	OPTIMUM?
Why does GD vs GD struggle even in two-player zero-sum cases?		
	INTRACTABILITY? or WRONG N	VETHOD?
Is there a generic optimization framework for Multi-Agent Deep Learning?		
is there a generie optimization namework for matting gene beep zearning.	OR DO WE NEED STRUCTURE?	

Intermission: Sign-up for project presentations!

PROJECT PRESENTATIONS

- 11/30 Projects
- 12/5 Projects
- 12/7 Projects

Presentation format: 15 mins + 5 mins Q & A

```
Write-up format: 10 pages + appendix (due 12/14)
```


Setting:

action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$

action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$

action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$ goal: max $u_n(x_1, \dots, x_n)$

 u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e. [allow: global constraints $(x_1, x_2, ..., x_n) \in S \subseteq \times_i X_i$]

Overarching Q: What are meaningful and practically attainable optimization targets in this setting?

"meaningful:" at the very least universal, verifiable with the info that agents have about their loss functions "practically attainable:" efficiently reachable via gradient descent-like (or similar light-weight) method

Q: Perhaps some generalization to this setting of local optimum?

A weak optimization target: Local Nash Equilibrium [Ratliff-Burden-Sastry'16, Daskalakis-Panageas'18, Mazumdar-Ratliff'18, Jin-Netrapali-Jordan'20] A point $x^* = (x_1^*, \dots, x_n^*) \in S$ such that, for each player *i*, x_i^* is local max of $u_i(x_i; x_{-i}^*)$ w.r.t. x_i

Weakest variant: First-Order Local Nash Equilibrium

Take "local max" to mean "First-order local max" i.e. max w.r.t. first-order Taylor appx

First-Order Local Nash Equilibrium: agent *i*'s viewpoint

Def: A strategy profile
$$x^* = (x_1^*, ..., x_n^*) \in S$$
 is a *(first-order) local Nash equilibrium* iff for all *i*:
 $x_i^* = \prod_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$
where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\prod_{S_i(x_{-i}^*)} (\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

i

Proposition: If S is convex and compact, a *(first-order) local Nash equilibrium* exists.

so both universal and verifiable with the info that players have about their utilities

Def: A strategy profile
$$x^* = (x_1^*, ..., x_n^*) \in S$$
 is a *(first-order) local Nash equilibrium* iff for all i :
 $x_i^* = \prod_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$
where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\prod_{S_i(x_{-i}^*)} (\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

Proposition: If S is convex and compact, a *(first-order) local Nash equilibrium* exists.

so both universal and verifiable with the info that players have about their utilities *are they* practically attainable?

Local Nash Equilibrium: Complexity

Setting:

Def: A strategy profile
$$x^* = (x_1^*, ..., x_n^*) \in S$$
 is a *(first-order) local Nash equilibrium* iff for all *i*:
 $x_i^* = \prod_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$

where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\Pi_{S_i(x_{-i}^*)}(\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

Proposition: If S is convex and compact, a *(first-order) local Nash equilibrium* exists.

Theorem [w/ Skoulakis & Zampetakis STOC'21]: Even in two-player zero-sum smooth non-concave games, any method accessing the u_i 's via value and gradient value queries needs exponentially many queries (in the dimension and/or $1/\varepsilon$) to compute even an ε -approximate local Nash equilibrium, i.e. some x^* such that for all i: $\|x_i^* - \prod_{\mathcal{S}(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))\| \le \varepsilon$.

Local Nash Equilibrium: Complexity

Setting:

Def: A strategy profile
$$x^* = (x_1^*, ..., x_n^*) \in S$$
 is a *(first-order) local Nash equilibrium* iff for all i :
 $x_i^* = \prod_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$

where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\Pi_{S_i(x_{-i}^*)}(\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

Proposition: If S is convex and compact, a (*first-order*) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC'21]: Even in two-player zero-sum smooth non-concave games, any method at all needs super-polynomial-time (in the dimension and/or $1/\varepsilon$) to compute even an ε -approximate local Nash equilibrium, unless PPAD=P.

The Complexity of Local Nash Equilibrium

Traveling Salesman Problem

Computing approximate Brouwer Fixed Points of Lipschitz functions, and mixed Nash equilibria in genereal-sum normalform games are both PPAD-complete problems, i.e. in PPAD and no easier than any problem in PPAD [Papadimitriou'94, Daskalakis-Goldberg-Papadimitriou'06, Chen-Deng'06]

[Daskalakis-Skoulakis-Zampetakis STOC'21]: Computing local Nash equilibria *(even in two-player zero-sum and smooth)* non-concave games is exactly as hard as (i) computing approximate Brouwer fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form games; and (iii) at least as hard as any other problem in **PPAD**.

Intuition: why are even two players too many?

Compare properties of objective-improving moves in single-player optimization problems (where finding approximate local optima is known to be tractable) and better-response dynamics in two-player zero-sum games (where we show that finding approximate local Nash equilibria is intractable)

objective value decreases along objectiveimproving path, thus: (i) moving along path makes progress towards (local) optimum

(ii) quantitative version: for bounded objectives (e.g. continuous objective over compact space), function value along ε -improving path bounds distance from the end of the path (memory/information gain)

better-response paths may be cyclic :S

objective value along non-cyclic ε -better-response path does not reveal information about distance to end of the path!

to turn this intuition into an intractability proof, need to hide exponentially long better-response path within ambient space s.t. *no matter where the function is queried* little information is revealed about location of local Nash equilibria

Rough Proof Idea: Reduce from Sperner

Lemma: If boundary coloring is valid, then no matter how the internal nodes are colored there exists a tri-chromatic triangle. In fact, an odd number of them.

Rough Proof Idea: Reduce from Sperner

Lemma: If boundary coloring is valid, then no matter how the internal nodes are colored there exists a tri-chromatic triangle. In fact, an odd number of them.

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash in two-player zero-sum games

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash in two-player zero-sum games by having the *Max* player choose a triangle, the *Min* player choose an edge of the triangle

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash in two-player zero-sum games by having the *Max* player choose a triangle, the *Min* player choose an edge of the triangle, and assigning payoffs depending on whether *Max* chose a triangle that has at least one red-yellow edge,

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash in two-player zero-sum games by having the *Max* player choose a triangle, the *Min* player choose an edge of the triangle, and assigning payoffs depending on whether *Max* chose a triangle that has at least one red-yellow edge, whether *Min* chose a red-yellow edge in that triangle,

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash in two-player zero-sum games by having the *Max* player choose a triangle, the *Min* player choose an edge of the triangle, and assigning payoffs depending on whether *Max* chose a triangle that has at least one red-yellow edge, whether *Min* chose a red-yellow edge in that triangle, as well as the orientation of the chosen edge in that triangle.

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash in two-player zero-sum games by having the *Max* player choose a triangle, the *Min* player choose an edge of the triangle, and assigning payoffs depending on whether *Max* chose a triangle that has at least one red-yellow edge, whether *Min* chose a red-yellow edge in that triangle, as well as the orientation of the chosen edge in that triangle. GOAL: best-response dynamics simulate paths on SPERNER graph

function value = + 1

function value = - 1

function value = +1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = - 1

function value = +1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = - 1

function value = + 1

function value = + 1 no edge flip for edge player \Rightarrow local min-max equilibrium

Challenges

1. function value outside the path?

we need to make sure that no spurious solutions are created

Challenges

2. function needs to be Lipschitz continuous and smooth challenging problem in high-dimensions!

The Complexity of Local Nash Equilibrium

Traveling Salesman Problem

Computing approximate Brouwer Fixed Points of Lipschitz functions, and mixed Nash equilibria in genereal-sum normalform games are both PPAD-complete problems, i.e. in PPAD and no easier than any problem in PPAD [Papadimitriou'94, Daskalakis-Goldberg-Papadimitriou'06, Chen-Deng'06]

[Daskalakis-Skoulakis-Zampetakis STOC'21]: Computing local Nash equilibria *(even in two-player zero-sum and smooth)* non-concave games is exactly as hard as (i) computing approximate Brouwer fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form games; and (iii) at least as hard as any other problem in **PPAD**.

Way Forward: Practical Local Nash Equilibrium

- Practical Local Nash Equilibrium Computation?
 - local Nash is intractable in general
 - ...but can exploit connection to Brouwer fixed points to obtain 2nd-order dynamics with guaranteed (albeit necessarily not poly-time) convergence [Daskalakis-Golowich-Skoulakis-Zampetakis COLT'23]
 - turn it into a 1st-order method by cutting corners ?
 - identify structural properties of games under which it is efficient (beyond worst-case analysis of games)

Way Forward: Consider Randomized Equilibria

- *Local* Correlated/Coarse Correlated equilibria?
 - what's a reasonable way to define it in general non-concave games?
 - ...so that it is also guaranteed to exist and is tractable?
 - proposal: $||\mathbb{E}_{x^* \sim p} [\nabla_{x_i} u_i(x_i^*; x_{-i}^*)]|| \le \varepsilon$ (formally: project to the constraint set)
 - when p has support 1 this is a local Nash eq, so this exists but is intractable
 - is there some polynomial support, so that it is tractable?
 - [Cai-Daskalakis-Luo-Wei-Zhang'23]: If S is convex and compact and the u_i 's are Lipschitz and and smooth, a poly-size supported (in the dimension, in $1/\varepsilon$, in the Lipschitzness and the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient Descent) S

semi-agnostic

Next Time: Global Randomized Equilibria

Multi-player Game-Playing:

- Superhuman GO, Poker, Gran Turismo
- Human-level Starcraft, Diplomacy

- Multi-robot interactions
- Autonomous driving
- Automated Economic policy design

Adversarial Training robustifving models against adversarial attacks