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Recent AI Breakthroughs

image recognition, 
reconstruction, generation, 
super-resolution,…

protein folding, molecule design,…

super-human play

speech recognition, forecasting text generation, translation, chatbots, 
text embeddings,…

images
molecules

games

natural languagetime-series data



A Dawn of Multi-Agent Applications

Generative Adversarial Networks  (GANs)
synthetic data generation

• Multi-robot interactions
• Autonomous driving
• Automated Economic policy design

Multi-player Game-Playing:
• Superhuman GO, Poker, Gran Turismo
• Human-level Starcraft, Diplomacy

! ∼ #(0, ') ∼ )!"#$%!

Adversarial Training 
robustifying models against adversarial attacks

boring randomness neural network interesting randomness



Important notes and 
caveats…

A Dawn of Multi-Agent Applications



This is an inherent limitation for the standard Deep Learning paradigm 

(I) Strategic Behavior does not 
emerge from standard training



ChatGPT

(I) Strategic Behavior does not emerge 
from standard training (cont’d)



[Athalye, Engstrom, Ilyas, Kwok ICML’18] [Engstrom et al. 2019]

(II) Naively trained models can be manipulated



[Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic 
Pricing, and Collusion,” American Economic Review, 2020]

collusive price

competitive 
price

learned price

Example: AI for dynamic 
pricing  

Setting: Duopoly w/ two 
symmetric firms 

Independent Learning: 
firms cannot 

communicate other than 
setting prices, observing 
their profit and adjusting 

their price using some 
standard AI algorithm

(III) Training without regard to the presence of 
other agents can lead to undesirable consequences 



How 
deviations 

are punished 
by the 

learned price 
policies

Example: AI for dynamic 
pricing 

Setting: Duopoly w/ two 
symmetric firms 

Independent Learning: 
firms cannot 

communicate other than 
setting prices, observing 
their profit and adjusting 

their price using some 
standard AI algorithm [Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic 

Pricing, and Collusion,” American Economic Review, 2020]

(III) Training without regard to the presence of 
other agents can lead to undesirable consequences



(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



Theoretical Guarantee: Even if ℓ	nonconvex, Gradient 
Descent efficiently computes local minima

[e.g. Ge et al ’15, Lee et al’17]
Empirical Finding: Local minima are good enough

!: high-dimensional
ℓ: nonconvex
 essentially only accessible through ℓ ! 	and	(ℓ !  queries

!!"# = !! − $ ⋅ &ℓ !!
Gradient Descent

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings

min) ℓ(&) STANDARD DEEP LEARNING OPTIMIZATION PROBLEM
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“Scale is all you need”

Prominent Paradigm:

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



Practical Experience: While GD converges in single-agent learning settings, GD vs GD (vs GD…) is cyclic 
or chaotic in multi-agent settings, and it’s an engineering challenge to make it identify a good solution

(IV) The optimization workhorse of Deep Learning (a.k.a. 
Gradient Descent) struggles in multi-agent settings



GAN training on MNIST Data:

GAN training on Gaussian Mixture Data:

Target 
dist’n:

Target 
dist’n:

pictures from [Metz et al ICLR’17]

!!"# = !! − $ ⋅ ∇$' !! , )!
)!"# = )! + $ ⋅ ∇%' !! , )!

Natural Algorithm: Simultaneous Gradient Descent/AscentGAN Training: solve two-player zero-sum game 
where generator player, $, pays discriminator 
player, %, depending on how well, &($,%), 
discriminator distinguishes real vs fake samples

Gradient Descent Ascent (GDA) 
Dynamics

(IV) The optimization workhorse of Deep 
Learning struggles in multi-agent settings



(V) Finally Game Theory Breaks

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

(a.k.a. minℓ!(*!, … , *#))

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

(a.k.a. minℓ$(*!, … , *#))

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

(a.k.a. minℓ#(*!, … , *#))

Setting:

Emerging applications in Machine Learning involve multiple agents who:
Ø choose high-dimensional strategies #* ∈ %* ⊂ ℝ+! (e.g. parameters in a DNN)
Ø maximize utility functions (*(#*	; #,*) that are nonconcave in their own strategy

(a.k.a. minimize loss functions that are nonconvex in their own strategy)
Issue: Game Theory is fragile when utilities are nonconcave

Ø in particular, Nash equilibrium (and other types of equilibrium) may not exist
Ø so what is even our recommendation about reasonable optimization targets?



Nash Eq: A collection of #-∗, …#/∗  s.t. for all ., #*: (* #*∗; #,*∗ ≥ (* #*; #,*∗
Randomized Nash Eq: A collection of distributions 0-, …0/ s.t. for all ., #*: 

E0∗∼1#×⋯×1$[(* #*∗; #,*∗ ] ≥ E0∗∼1#×⋯×1$[(* #*; #,*∗ ]
Coarse Correlated Eq: A joint distribution of 0 s.t. for all ., #*: 

E0∗∼1[(* #*∗; #,*∗ ] ≥ E0∗∼1[(* #*; #,*∗ ]
[Debreu’52, Rosen’65]: If each (* #*; #,* 	is continuous and concave in #* for all #,* and each 
%* is convex and compact, a Nash equilibrium exists. 

(V) Finally Game Theory Breaks

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:



Nash Eq: A collection of #-∗, …#/∗  s.t. for all ., #*: (* #*∗; #,*∗ ≥ (* #*; #,*∗
Randomized Nash Eq: A collection of distributions 0-, …0/ s.t. for all ., #*: 

E0∗∼1#×⋯×1$[(* #*∗; #,*∗ ] ≥ E0∗∼1#×⋯×1$[(* #*; #,*∗ ]
Coarse Correlated Eq: A joint distribution of 0 s.t. for all ., #*: 

E0∗∼1[(* #*∗; #,*∗ ] ≥ E0∗∼1[(* #*; #,*∗ ]
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(V) Finally Game Theory Breaks

…
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Nash Eq: A collection of #-∗, …#/∗  s.t. for all ., #*: (* #*∗; #,*∗ ≥ (* #*; #,*∗
Randomized Nash Eq: A collection of distributions 0-, …0/ s.t. for all ., #*: 

E0∗∼1#×⋯×1$[(* #*∗; #,*∗ ] ≥ E0∗∼1#×⋯×1$[(* #*; #,*∗ ]
Coarse Correlated Eq: A joint distribution of 0 s.t. for all ., #*: 

E0∗∼1[(* #*∗; #,*∗ ] ≥ E0∗∼1[(* #*; #,*∗ ]
[Debreu’52, Rosen’65]: If each (* #*; #,* 	is continuous and concave in #* for all #,* and each 
%* is convex and compact, a Nash equilibrium exists. 
e.g. Nash equilibrium in finite normal-form games [Nash’50]
• in this case: %* = Δ(6*) and (* #*; #,* = ∑4∈×%6%	(* 8 #- 8- ⋯#/(8/)

(V) Finally Game Theory Breaks

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:



If some (* #*; #,* 	is not concave in #* for all #,*, a Nash equilibrium does not necessarily exist
e.g. two-player zero-sum game: (- #-, #8 = −(8 #-, #8 = #- − #8 8 where #-, #8 ∈ [−1,1]

(V) Finally Game Theory Breaks

Nash Eq: A collection of #-∗, …#/∗  s.t. for all ., #*: (* #*∗; #,*∗ ≥ (* #*; #,*∗
Randomized Nash Eq: A collection of distributions 0-, …0/ s.t. for all ., #*: 

E0∗∼1#×⋯×1$[(* #*∗; #,*∗ ] ≥ E0∗∼1#×⋯×1$[(* #*; #,*∗ ]
Coarse Correlated Eq: A joint distribution of 0 s.t. for all ., #*: 

E0∗∼1[(* #*∗; #,*∗ ] ≥ E0∗∼1[(* #*; #,*∗ ]

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:



If some (* #*; #,* 	is not concave in #* for all #,*, a Nash equilibrium does not necessarily exist
e.g.2 Generative adversarial networks

(V) Finally Game Theory Breaks
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Setting:



If some (* #*; #,* 	is not concave in #* for all #,*, Nash equilibrium does not necessarily exist
[Glicksberg’52]: A randomized Nash equilibrium does exist if the %*’s are compact and the (*’s 
are continuous (and not necessarily concave), but support could be uncountably infinite.

(V) Finally Game Theory Breaks
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If some (* #*; #,* 	is not concave in #* for all #,*, Nash equilibrium does not necessarily exist
If  the %*’s are non-compact, even randomized Nash/correlated eq do not necessarily exist
e.g. “Guess-the-larger-number” game
• two players choose a real; whoever chooses the largest real receives one point from the other

(V) Finally Game Theory Breaks

Nash Eq: A collection of #-∗, …#/∗  s.t. for all ., #*: (* #*∗; #,*∗ ≥ (* #*; #,*∗
Randomized Nash Eq: A collection of distributions 0-, …0/ s.t. for all ., #*: 

E0∗∼1#×⋯×1$[(* #*∗; #,*∗ ] ≥ E0∗∼1#×⋯×1$[(* #*; #,*∗ ]
Coarse Correlated Eq: A joint distribution of 0 s.t. for all ., #*: 

E0∗∼1[(* #*∗; #,*∗ ] ≥ E0∗∼1[(* #*; #,*∗ ]

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:



• (I) Strategic Behavior does not emerge from standard training
• (II) Naively trained models can be manipulated
• (III) Training without regard to the presence of other agents can 

lead to undesirable (e.g. collusive) consequences
• (IV) The optimization workhorse of Deep Learning (a.k.a. gradient 

descent) struggles in multi-agent settings
• (V) Finally Game Theory (namely the existence of Nash equilibrium 

and other types of equilibrium) breaks

Summary so far…



Motivating Questions

Practical Experience: GD vs GD (vs GD…) is cyclic 
or chaotic, and it is a hard engineering challenge 

to make it identify a good solution

Is there a generic optimization framework for Multi-Agent Deep Learning?

What are meaningful and practically attainable optimization targets in this setting? 

Why does GD vs GD struggle even in two-player zero-sum cases?
INTRACTABILITY? or WRONG METHOD?

OR DO WE NEED STRUCTURE?

GENERALIZATIONS OF LOCAL OPTIMUM?



Intermission: Sign-up for project 
presentations!

Presentation format: 15 mins + 5 mins Q & A

Write-up format: 10 pages + appendix (due 12/14)



Local Nash Equilibrium

Overarching Q: What are meaningful and practically attainable optimization targets in this setting? 
“meaningful:” at the very least universal, verifiable with the info that agents have about their loss functions
“practically attainable:” efficiently reachable via gradient descent-like (or similar light-weight) method

A weak optimization target:  Local Nash Equilibrium [Ratliff-Burden-Sastry’16, Daskalakis-
Panageas’18, Mazumdar-Ratliff’18, Jin-Netrapali-Jordan’20]
A point *∗ = *!∗, … , *#∗ ∈ 7 such that, for each player 8,  *&∗ is local max of  /&(*&	; 	*'&∗ )  w.r.t.  *&	
Weakest variant: First-Order Local Nash Equilibrium
Take “local max” to mean “First-order local max” i.e. max w.r.t. first-order Taylor appx

Q: Perhaps some generalization to this setting of local optimum?

   /& is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:

   [allow: global constraints *!, *$, … , *# ∈ 7 ⊆×&,&]



First-Order Local Nash Equilibrium: agent !’s viewpoint

*+ +,+∗

#*∗

#*∗ +∇0!(*(#*∗	; 	#,*	∗ )

#*∗

*+ +,+∗

OR
∇()/& *&∗	; 	*'&	∗ = 0

9*∗ best response to 9,*∗  as 
far as the first-order Taylor 

approximation can tell

*&∗ 	= Π*) (-)∗ *&∗ + ∇()/&(*&∗	; 	*'&	∗ )

a.k.a. fixed point of GD vs GD (vs GD…)



Local Nash Equilibrium: Existence

Def: A strategy profile *∗ = *!∗, … , *#∗ ∈ 	7	is a (first-order) local  Nash equilibrium iff for all 8:
*&∗ 	= Π*) (-)∗ *&∗ 	+ ∇()/&(*&∗	; 	*'&	∗ )

where 7& *'&∗ = *&| (*&	;	*'&∗ ) ∈ 7 , and Π*) (-)∗ ⋅  is the Euclidean projection onto the set 7& *'&∗

Proposition: If 7	is convex and compact, a (first-order) local  Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:

   /& is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
   [allow: global constraints *!, *$, … , *# ∈ 7 ⊆×&,&]



Local Nash Equilibrium: Existence

Def: A strategy profile *∗ = *!∗, … , *#∗ ∈ 	7	is a (first-order) local  Nash equilibrium iff for all 8:
*&∗ 	= Π*) (-)∗ *&∗ 	+ ∇()/&(*&∗	; 	*'&	∗ )

where 7& *'&∗ = *&| (*&	;	*'&∗ ) ∈ 7 , and Π*) (-)∗ ⋅  is the Euclidean projection onto the set 7& *'&∗

Proposition: If 7	is convex and compact, a (first-order) local  Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities
are they practically attainable?

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:

   /& is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
   [allow: global constraints *!, *$, … , *# ∈ 7 ⊆×&,&]



Local Nash Equilibrium: Complexity

Def: A strategy profile *∗ = *!∗, … , *#∗ ∈ 	7	is a (first-order) local  Nash equilibrium iff for all 8:
*&∗ 	= Π*) (-)∗ *&∗ 	+ ∇()/&(*&∗	; 	*'&	∗ )

where 7& *'&∗ = *&| (*&	;	*'&∗ ) ∈ 7 , and Π*) (-)∗ ⋅  is the Euclidean projection onto the set 7& *'&∗

Proposition: If 7	is convex and compact, a (first-order) local  Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC’21]: Even in two-player zero-sum smooth non-concave 
games, any method accessing the /&’s via value and gradient value queries needs exponentially 
many queries (in the dimension and/or 1/C) to compute even an C-approximate local Nash 
equilibrium, i.e. some *∗ such that for all 8: *&∗ 	− Π* (-)∗ *&∗ 	+ ∇()/&(*&∗	; 	*'&	∗ ) ≤ C.

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:

   /& is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
   [allow: global constraints *!, *$, … , *# ∈ 7 ⊆×&,&]



Local Nash Equilibrium: Complexity

Theorem [w/ Skoulakis & Zampetakis STOC’21]: Even in two-player zero-sum smooth non-concave 
games, any method at all needs super-polynomial-time (in the dimension and/or 1/C) to compute 
even an C-approximate local Nash equilibrium, unless PPAD=P.

Def: A strategy profile *∗ = *!∗, … , *#∗ ∈ 	7	is a (first-order) local  Nash equilibrium iff for all 8:
*&∗ 	= Π*) (-)∗ *&∗ 	+ ∇()/&(*&∗	; 	*'&	∗ )

where 7& *'&∗ = *&| (*&	;	*'&∗ ) ∈ 7 , and Π*) (-)∗ ⋅  is the Euclidean projection onto the set 7& *'&∗

Proposition: If 7	is convex and compact, a (first-order) local  Nash equilibrium exists.

…

action: *! ∈ ,! ⊂ ℝ"& 
goal: max /! *!, … , *#

action: *$ ∈ ,$ ⊂ ℝ"'	
goal: max /$ *!, … , *#

action: *# ∈ ,# ⊂ ℝ"(
goal: max /# *!, … , *#

Setting:

   /& is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
   [allow: global constraints *!, *$, … , *# ∈ 7 ⊆×&,&]



P

NP

NP-complete

PPAD

Computing approximate Brouwer Fixed 
Points of Lipschitz functions, and mixed 
Nash equilibria in genereal-sum normal-
form games are both PPAD-complete 
problems, i.e. in PPAD  and no easier than 
any problem in PPAD [Papadimitriou’94, 
Daskalakis-Goldberg-Papadimitriou’06, 
Chen-Deng’06]

The Complexity of Local Nash Equilibrium

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local Nash equilibria (even in two-player 
zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer 
fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form 
games; and (iii) at least as hard as any other problem in PPAD.

Traveling Salesman Problem

Linear 
Programming



Intuition: why are even two players too many?
Compare properties of objective-improving moves in single-player optimization problems (where 

finding approximate local optima is known to be tractable) and better-response dynamics in two-player 
zero-sum games (where we show that finding approximate local Nash equilibria is intractable)

(ii) quantitative version: for bounded objectives (e.g. 
continuous objective over compact space), function 
value along C-improving path bounds distance from 

the end of the path (memory/information gain)

better-response paths may be cyclic :S 
objective value along non-cyclic C-better-response path does 

not reveal information about distance to end of the path!
to turn this intuition into an intractability proof, need to hide 

exponentially long better-response path within ambient 
space s.t. no matter where the function is queried little 

information is revealed about location of local Nash equilibria

objective value decreases along objective- 
improving path, thus: (i) moving along path makes 

progress towards (local) optimum

two-player 
zero-sum non-
concave game

single-agent 
non-convex 
minimization
/non-
concave 
maximization

(showing 
player 1’s 
value)



Lemma: If boundary coloring is valid, then no matter how the internal nodes are 
colored there exists a tri-chromatic triangle. In fact, an odd number of them.

Rough Proof Idea: Reduce from Sperner
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Rough Proof Idea: Edge-Triangle Game

- Reduce an arbitrary instance of SPERNER (which is PPAD-complete, when colors are given by circuit) to local Nash 
in two-player zero-sum games by having the GH* player choose a triangle, the G8I player choose an edge of the 
triangle, and assigning payoffs depending on whether GH* chose a triangle that has at least one red-yellow edge, 
whether G8I chose a red-yellow edge in that triangle, as well as the orientation of the chosen edge in that 
triangle. GOAL: best-response dynamics simulate paths on SPERNER graph
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Edge-Triangle Game (Min-Max)

function value = + 1
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function value = + 1
no edge flip for edge player ⇒ local min-max equilibrium
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1. function value outside the path?

?

Challenges

Edge-Triangle Game (Min-Max)

we need to make sure that no spurious solutions are created



2. function needs to be Lipschitz continuous and smooth

Edge-Triangle Game (Min-Max)

Challenges

challenging problem in high-dimensions!



P

NP

NP-complete

PPAD

Computing approximate Brouwer Fixed 
Points of Lipschitz functions, and mixed 
Nash equilibria in genereal-sum normal-
form games are both PPAD-complete 
problems, i.e. in PPAD  and no easier than 
any problem in PPAD [Papadimitriou’94, 
Daskalakis-Goldberg-Papadimitriou’06, 
Chen-Deng’06]

The Complexity of Local Nash Equilibrium

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local Nash equilibria (even in two-player 
zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer 
fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form 
games; and (iii) at least as hard as any other problem in PPAD.

Traveling Salesman Problem

Linear 
Programming



• Practical Local Nash Equilibrium Computation?
• local Nash is intractable in general
• …but can exploit connection to Brouwer fixed points to obtain 2nd-order dynamics with 

guaranteed (albeit necessarily not poly-time) convergence [Daskalakis-Golowich-Skoulakis-
Zampetakis COLT’23]

• turn it into a 1st-order method by cutting corners ?
• identify structural properties of games under which it is efficient (beyond worst-case 

analysis of games)

Way Forward: Practical Local Nash Equilibrium

gradient descent our algorithm: Stay On the Ridge (or STON’R)

local Nash is at (0,0)



• Local Correlated/Coarse Correlated equilibria?
• what’s a reasonable way to define it in general non-concave games?
• …so that it is also guaranteed to exist and is tractable?
• proposal: ||?0∗∼1 ∇0"(* #*∗; #,*∗ || ≤ A (formally: project to the constraint set)
• when 0 has support 1 this is a local Nash eq, so this exists but is intractable 
• is there some polynomial support, so that it is tractable?
• [Cai-Daskalakis-Luo-Wei-Zhang’23]: If B is convex and compact and the (*’s are Lipschitz 

and and smooth, a poly-size supported (in the dimension, in 1/A, in the Lipschitzness and 
the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient 
Descent) J

Way Forward: Consider Randomized Equilibria 



Next Time: Global Randomized Equilibria


