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Context: Increasing Interest in Multi-Agent Learning

Multi-player Game-Playing:
e Superhuman Chess, Go, Poker, Gran Turismo
 Good StarCraft, Diplomacy
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Important notes
and caveats...




Important Caveats...

* (1) Strategic Behavior does not emerge from standard training
* (I1) Naively trained models can be manipulated

* (I1l) Training without regard to the presence of other agents can
lead to undesirable (e.g. collusive) consequences

* (IV) The optimization workhorse of Deep Learning (a.k.a. gradient
descent) struggles in multi-agent settings

* (V) Finally Game Theory (hamely the existence of Nash equilibrium
and other types of equilibrium) breaks



Multi-player Game-Playing:
* Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy
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Motivating Questions

e Multi-robot interactions
* Autonomous driving

4

\° Automated Economic policy design

“Stop Sign! “Yield Sign
i + >

Authentic Adversarial Adversarial
Input Perturbation Input

y

Adversarial Training
\ robustifving models against adversarial attacksj

Practical Experience: GD vs GD (vs GD...) is cyclic
or chaotic, and it is a hard engineering challenge
to make it identify a good solution

What are meaningful and practically attainable optimization targets in this settini?

Why does GD vs GD struggle even in two-player zero-sum cases?

Is there a generic optimization framework for Multi-Agent Deep Learning?




Local Nash Equilibrium

ﬁetting:

action: x; € X; ¢ R% action: x, € X, ¢ R%2 action: x,, € X,, € R4
goal: max uq (x4, ..., x,,) goal: max u, (x4, ..., x,) goal: max u, (x4, ..., X,,)

u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
K [allow: global constraints (x4, x5, ..., X,,) € S ©€X;X;] /

Local Nash: A point x* = (x5, ..., x;,) € S s.t. for each player i, x; is local max of u;(x;; x;) w.rt. x;

First-Order Local Nash: Take “local max” to mean “1st-order local max” i.e. max w.r.t. 1st-order Taylor appx

Equivalently: Vi: x; = Fﬁgi(xii)(xf + Vo, u; (x5 x:)),
where §;(x”;) = {x;] (x; ; x~;) € §}, and HSi(xii)(') is the Euclidean projection

Proposition: If S is convex and compact, a first-order local Nash equilibrium exists. |GENERALIZES LOCALOPTY

[Daskalakis-Skoulakis-Zampetakis STOC’21]: First-order local Nash equilibrium is intractable even for two-

player zero-sum games. | EXPLAINS WHY GD vs GD FAILS | | BUT WORST-CASE INTRACTABILITY




Way Forward 1: Practical Local Nash Equilibrium

* Practical Local Nash Equilibrium Computation?
* |ocal Nash is intractable in the worst-case

e ...but can exploit connection to Brouwer fixed points to obtain 2"%-order dynamics with
guaranteed (albeit necessarily not poly-time) convergence | -Golowich-Skoulakis-
Zampetakis COLT’23]

e turn it into a 1s*-order method by cutting corners ?

* identify structural properties of games under which it is efficient (beyond worst-case
analysis of games)

(@) f1(6,w). (@) f1(6,w).
gradient descent our algorithm: Stay On the Ridge (or STON’R)



Way Forward 2: Consider Randomized Equilibria

* Local Correlated/Coarse Correlated equilibria?

what’s a reasonable way to define it in general non-concave games?

.50 that it is also guaranteed to exist and is tractable?

proposal: [|E,+.,, [inui (xf5x2)|Il < € (formally: project to the constraint set)
when p has support 1 this is a local Nash eq, so this exists but is intractable

is there some polynomial support, so that it is tractable?

[Cai-Daskalakis-Luo-Wei-Zhang’23]: If S is convex and compact and the u;’s are Lipschitz
and and smooth, a poly-size supported (in the dimension, in 1/¢, in the Lipschitzness and
the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient

Descent) ©
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Way Forward 3: Special Structure (Lectures 9-17)

“nature”

1 gets Jack Given state s, choose
° ° @ 2ctions a; € 4; Environment

......... *rT R &

e Receive rewards 1;(s, a)
Transitionto s’ ~ P(: |s, a)

player 1

- I S A N stochastic games [Shapley’53]
multi-agent reinforcement learning Littman’94]

extensive form games




Way Forward 4: G/obal Randomized Equilibria!?!

/ Setting:

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R
goal: max uq(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)

If some u;(x;; x_;) is not concave in x; for all x_;, Nash equilibrium does not necessarily exist
[Glicksberg’52]: A randomized Nash equilibrium does exist if the X;’s are compact and the u;’s
are continuous (and not necessarily concave), but support could be uncountably infinite.




Way Forward 4: G/obal Randomized Equilibria!?!

/ Setting:

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R
goal: max uq(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)

If some u;(x;; x_;) is not concave in x; for all x_;, Nash equilibrium does not necessarily exist
If the X;’s are non-compact, even randomized Nash/correlated eq do not necessarily exist




Infinite/Non-Parametric Games

action: x; € X action: x, € X, action: x,, € X,
goal: max uq (x4, ..., x,,) goal: max u,(xq, ..., x;,) goal: max u, (x4, ..., x,,)

Action sets X; : high-dimensional or infinite-dimensional/non-parametric
Utilities u; : arbitrary functions u;:X; X; - R
Questions | want to ask:

Under what conditions do there exist global Nash/Correlated/Coarse Correlated Equilibria?

Are there simple methods converging to equilibria in a finite number of steps?

For Q1: | hope that the answer depends on some complexity measure of the u;’s that | can identify
For Q2: by “simple” | want that each step can be executed efficiently



~“@uess the larger number” Game

Player 2 (max player)
1 2 3 4

 (sotable shows utility of Player 2)

7\5‘ 1 1 1 1 1 A two-player zero-sum game where:
8 Player 1 2 1-1 1 1 1 .. * X=X =N
(min player) i * U (g, x2) = —uUy (X, xp) = Ly o, = Ly <x,
4 1

[Fact: “Guess the larger number” game has no Nash equilibrium (not even a very coarse approximate one). }

Proof: Suppose (P, Q) is a pair of distributions over N.

* Suppose WLOG that Player 2 has expected utility = 0 under (P, Q).
 Canfind x € N such that x is greater than 0.999 fraction of the mass of 0.
* If min-player deviates to x her utility is > 0.99.

[So “Guess the larger number game” is an obstacle to the existence of Nash equilibrium. }




What if we exclude “Guess the larger number”?

e Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash
equilibrium in {—1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {-1,1}-valued two-player zero-sum game has no subgame
which is “Guess the larger number,” then it has an e-approximate Nash equilibrium for all e > 0.

o~ T
L)
S—

-
Player 2 (max player)

~ Threshold dimension of G: size of largest threshold sub-matrix
¢ &

—

P; - . L111 . [Hanneke-Livni-Moran’21]: Tr(G) finite = Minimax Eq exists

ayer

(min player) i i i i i : . : : : .
a1 ) Claim: Tr(G) finite & Littlestone dimension of G finite*

At At *: define Littlestone dimension of G in next slide

G: {-1,1}-valued two-player zero-sum game



[Parenthesis: Littlestone dimension of a Concept Class

 H: binary classifiers over feature set X

 TL;DR:
* Ldim(H): characterizes whether and how well (in terms of regret) classifiers can be online learned from a
sequence of adversarial data (x;, b;) € X xX{+1}
* [Analogously to how VC(H) dimension characterizes learnability of H given a batch of i.i.d. data]

* Detailed description:
* Consider online learning setting wherefort =1, ..., T:
* learner chooses distribution p; over h; € H

 adversary chooses (x;, b;) € X xX{£1} (with knowledge of learner’s distribution)
1—h¢(x¢) b

* learner samples h; ~ p; and experiences loss £(h;(x;), b;)) = (i.e. 1 if prediction is wrong ow 0)

e Learner’s goal: minimize expected regret Y, £(h,(x;), b;)) — mhin >+ £(h(x:), bt))

* Clearly can get expected regret 0(\/T - log |H|) (by doing MWU over H)
 But whatif His infinite?

* [Rakhlin-Sridharan-Tewari’15, Hanneke-Livni-Moran’21]: can get expected regret 5(\/T ~ Ldim(H))
 Ldim(H) may be finite even when H is infinite; also Ldim(H) < log |H| always




Littlestone dimension: formal definition

H: binary classifiers over feature set X

* Detailed definition of Ldim(H ) considers trees, whose internal vertices are labeled by X and edges by +1 or -1

& h

Defn: For a binary tree with all internal nodes labeled by elements

of X, edges labeled by {—1,1}:
* Itisshattered by H if for each leaf £ there is some h, € H

which labels all nodes on the root-to-leaf path for £ according

to the labels on the edges.
e E.g., forthe green leaf:

\ need hf(xl) = —1, hf(x21) =1, hf(xBZ) = 1. /

~

Defn: Littlestone dimension of hypothesis class H, denoted Ldim(H), is largest d so that there exists tree of
depth d shattered by H.

-



Littlestone dimension of a Game

Littlestone dimension of a Concept Class
* H:binary classifiers over feature set X’
* TL;DR:
* Ldim(H): characterizes whether and how well (in terms of regret) classifiers can be online learned from a

sequence of adversarial data (x;, b;) € X x{+1}
* [Analogously to how VC(H) dimension characterizes learnability of H given a batch of i.i.d. data]

* Claim: can get expected regret 5(\/T - Ldim(H)) (which may be finite even when H is infinite!)

Littlestone dimension of a Game
* G:a multiplayer {+1}-valued game with utilities u;: Xy X - XX, = {+1}

* For each player, consider the function class H; = {u;(x;,") | x; € X;}
* H; contains binary classifiers mapping each x_; to +1

* Littlestone dimension of G is max{Ldim(H;)}
l



What if we exclude “Guess the larger number”?

e Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash
equilibrium in {—1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {-1,1}-valued two-player zero-sum game has no subgame
which is “Guess the larger number,” then it has an e-approximate Nash equilibrium for all e > 0.

, .-;. Threshold dimension of G: size of largest threshold sub-matrix

Player 2 (rﬁax player)

[Hanneke-Livni-Moran’21]: Tr(G) finite = Minimax Eq exists

Claim: Tr(G) finite < Littlestone dimension of G finite
° s

—

(7 Littlestone dimension of G: max{Ldim(H,), Ldim(H,)}
Player 1 1111 X where H; := {rows of G viewed as binary classifiers over X, }
(min player) 1-11 1 1 H, = {columns of G viewed as binary classifiers of X} }
-1-1-11 1

11141 .. o Ldim(H): characterizes online learnability of H (from stream of examples)
(analogous to VC(H) which characterizes batch learning)

G: {-1,1}-valued two-player zero-sum game Suggests: perhaps equilibria can be found through learning...



How about real-valued games?

/[Daskalakis-GoIowich’ZI] (Real-valued generalization of the above; informal):

If an (infinite) real-valued two-player zero-sum game has no subgame which is e-close to some “scaling” of “Guess
the larger number,” then it has O(€)-approximate Nash equilibrium.

Formal result: requires finiteness of e-Fat Threshold or e-sequential fat shattering dimension (which are
Qespectively generalizations of threshold dimension and Littlestone dimension to real-valued functions).

>0+ €

e Def: e-FatTr(G) is the largest subgame satisfying for some 6.
<0

e Def: E-seqFat(G) = max E_SeqFat (Hl) where Hi — {ul’(xl'f) | X; = Xl} [Rakhlin-Sridharan-Tewari 15
1

* TL;DR: e-seqFat(H) characterizes online learnability of concept class H; achievable regret: O(e - T) + 5(\/T - e—seqFat(H))



Next Time: Equilibrium Learning?



