6.S890: Topics in Multiagent Learning

Lecture 19

Fall 2023

Context: Increasing Interest in Multi-Agent Learning

Multi-player Game-Playing:

- Superhuman Chess, Go, Poker, Gran Turismo
- Good StarCraft, Diplomacy

Multi-robot interactions • Autonomous driving • Automated Economic policy design

synthetic data generation

Adversarial Training robustifying models against adversarial attacks

Context: Increasing Interest in Multi-Agent Learning

Important notes and caveats...

Important Caveats...

- (I) Strategic Behavior does not emerge from standard training
- (II) Naively trained models can be manipulated
- (III) Training without regard to the presence of other agents can lead to undesirable (e.g. collusive) consequences
- (IV) The optimization workhorse of Deep Learning (a.k.a. gradient descent) struggles in multi-agent settings
- (V) Finally Game Theory (namely the existence of Nash equilibrium and other types of equilibrium) breaks

Motivating Questions

What are meaningful and practically attainable optimization targets in th

Why does GD vs GD struggle even in two-player zero-sum cases?

Is there a generic optimization framework for Multi-Agent Deep Learning

Practical Experience: GD vs GD (vs GD...) is cyclic or chaotic, and it is a hard engineering challenge to make it identify a good solution

nis setting?	
	PARTIAL SUCCESS
	SUCCESS
σγ	
5'	NO REAL SUCCESS YET

Local Nash Equilibrium

Local Nash: A point $x^* = (x_1^*, \dots, x_n^*) \in S$ s.t. for each player *i*, x_i^* is **local max** of $u_i(x_i; x_{-i}^*)$ w.r.t. x_i

First-Order Local Nash: Take "**local max**" to mean "**1st-order local max**" i.e. max w.r.t. 1st-order Taylor appx

Equivalently:
$$\forall i: x_i^* = \prod_{\mathcal{S}_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*)),$$

where $\mathcal{S}_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in \mathcal{S}\}, \text{ and } \prod_{\mathcal{S}_i(x_{-i}^*)} (\cdot) \text{ is }$

Proposition: If S is convex and compact, a *first-order local Nash equilibrium* exists.

[Daskalakis-Skoulakis-Zampetakis STOC'21]: First-order local Nash equilibrium is intractable even for twoplayer zero-sum games. **EXPLAINS WHY GD vs GD FAILS**

action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$ goal: max $u_n(x_1, \dots, x_n)$

s the Euclidean projection

GENERALIZES LOCAL OPT

BUT WORST-CASE INTRACTABILITY

Way Forward 1: Practical Local Nash Equilibrium

- Practical Local Nash Equilibrium Computation?
 - local Nash is intractable in the worst-case
 - ...but can exploit connection to Brouwer fixed points to obtain 2nd-order dynamics with guaranteed (albeit necessarily not poly-time) convergence [Daskalakis-Golowich-Skoulakis-Zampetakis COLT'23]
 - turn it into a 1st-order method by cutting corners ?
 - identify structural properties of games under which it is efficient (beyond worst-case) analysis of games)

Way Forward 2: Consider Randomized Equilibria

- *Local* Correlated/Coarse Correlated equilibria?
 - what's a reasonable way to define it in general non-concave games?
 - ...so that it is also guaranteed to exist and is tractable?
 - proposal: $||\mathbb{E}_{x^* \sim p} [\nabla_{x_i} u_i(x_i^*; x_{-i}^*)]|| \le \varepsilon$ (formally: project to the constraint set)
 - when p has support 1 this is a local Nash eq, so this exists but is intractable
 - is there some polynomial support, so that it is tractable?
 - [Cai-Daskalakis-Luo-Wei-Zhang'23]: If S is convex and compact and the u_i 's are Lipschitz and and smooth, a poly-size supported (in the dimension, in $1/\varepsilon$, in the Lipschitzness and the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient Descent) 😳

+ $x_{t+1} \leftarrow x_t - \nabla_x \ell(x_t)$ +

Way Forward 3: Special Structure (Lectures 9-17)

extensive form games

Way Forward 4: *Global* Randomized Equilibria!?!

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions p_1, \dots, p_n s.t. for all i, x_i : $E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , Nash equilibrium does not necessarily exist [Glicksberg'52]: A randomized Nash equilibrium does exist if the \mathcal{X}_i 's are compact and the u_i 's are continuous (and not necessarily concave), but support could be uncountably infinite.

Way Forward 4: *Global* Randomized Equilibria!?!

Nash Eq: A collection of $x_1^*, ..., x_n^*$ s.t. for all $i, x_i: u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Randomized Nash Eq: A collection of distributions p_1, \dots, p_n s.t. for all i, x_i : $E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i : $E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , Nash equilibrium does not necessarily exist If the \mathcal{X}_i 's are non-compact, even randomized Nash/correlated eq do not necessarily exist

Infinite/Non-Parametric Games

- Action sets X_i : high-dimensional or infinite-dimensional/non-parametric ۲
- Utilities u_i : arbitrary functions $u_i:\times_i \mathcal{X}_i \to \mathbb{R}$
- Questions I want to ask:

Under what conditions do there exist **global** Nash/Correlated/Coarse Correlated Equilibria?

Are there simple methods converging to equilibria in a finite number of steps?

- For Q1: I hope that the answer depends on some complexity measure of the u_i 's that I can identify
- For Q2: by "simple" I want that each step can be executed efficiently

action: $x_n \in \mathcal{X}_n$ goal: max $u_n(x_1, \ldots, x_n)$

...

...

Fact: "Guess the larger number" game has no Nash equilibrium (not even a very coarse approximate one).

Proof: Suppose (P, Q) is a pair of distributions over \mathbb{N} .

...

- Suppose WLOG that Player 2 has expected utility ≥ 0 under (P, Q).
- Can find $x \in \mathbb{N}$ such that x is greater than 0.999 fraction of the mass
- If min-player deviates to x her utility is > 0.99.

...

...

...

So "Guess the larger number game" is an obstacle to the existence of Nash equilibrium.

$$(x_2) = 1_{x_1 \ge x_2} - 1_{x_1 < x_2}$$

of Player 2)

What if we exclude "Guess the larger number"?

Surprising fact: "Guess the larger number" game is the only obstacle to the existence of Nash \bullet equilibrium in $\{-1,1\}$ -valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran'21]: If an (infinite) {-1,1}-valued two-player zero-sum game has no subgame which is "Guess the larger number," then it has an ϵ -approximate Nash equilibrium for all $\epsilon > 0$.

G: {-1,1}-valued two-player zero-sum game

Threshold dimension of G: size of largest threshold sub-matrix

[Hanneke-Livni-Moran'21]: Tr(G) finite \Rightarrow Minimax Eq exists

Claim: Tr(G) finite \Leftrightarrow Littlestone dimension of G finite*

*: define Littlestone dimension of G in next slide

[Parenthesis: Littlestone dimension of a Concept Class

- *H*: binary classifiers over feature set X•
- TL;DR: \bullet
 - Ldim(H): characterizes whether and how well (in terms of regret) classifiers can be online learned from a sequence of adversarial data $(x_t, b_t) \in \mathcal{X} \times \{\pm 1\}$
 - [Analogously to how VC(H) dimension characterizes learnability of H given a batch of i.i.d. data] ullet
- Detailed description: •
 - Consider online learning setting where for t = 1, ..., T:
 - learner chooses distribution p_t over $h_t \in H$
 - adversary chooses $(x_t, b_t) \in \mathcal{X} \times \{\pm 1\}$ (with knowledge of learner's distribution) • learner samples $h_t \sim p_t$ and experiences loss $\ell(h_t(x_t), b_t)) = \frac{1 - h_t(x_t) \cdot b_t}{2}$ (i.e. 1 if prediction is wrong ow 0) Learner's goal: minimize expected regret $\sum_t \ell(h_t(x_t), b_t)) - \min_h \sum_t \ell(h(x_t), b_t))$ • •
 - Clearly can get expected regret $O(\sqrt{T \cdot \log |H|})$ (by doing MWU over H)
 - But what if H is infinite? lacksquare
 - [Rakhlin-Sridharan-Tewari'15, Hanneke-Livni-Moran'21]: can get expected regret $\tilde{O}(\sqrt{T \cdot Ldim(H)})$ ٠
 - Ldim(H) may be finite even when H is infinite; also Ldim(H) $\leq \log |H|$ always ullet

Littlestone dimension: formal definition

- *H*: binary classifiers over feature set Xullet
- Detailed definition of Ldim(H) considers trees, whose internal vertices are labeled by X and edges by +1 or -1 ullet

Defn: Littlestone dimension of hypothesis class H, denoted Ldim(H), is largest d so that there exists tree of depth d shattered by H.

Defn: For a binary tree with all internal nodes labeled by elements

It is shattered by H if for each leaf ℓ there is some $h_{\ell} \in H$ which labels all nodes on the root-to-leaf path for ℓ according

$$h_{\ell}(x_{21}) = 1, h_{\ell}(x_{32}) = 1.$$

Littlestone dimension of a Game

Littlestone dimension of a Concept Class

- H: binary classifiers over feature set \mathcal{X}
- TL;DR:
 - Ldim(H): characterizes whether and how well (in terms of regret) classifiers can be online learned from a sequence of adversarial data $(x_t, b_t) \in \mathcal{X} \times \{\pm 1\}$
 - [Analogously to how VC(H) dimension characterizes learnability of H given a batch of i.i.d. data]
 - **Claim:** can get expected regret $\tilde{O}(\sqrt{T \cdot \text{Ldim}(H)})$ (which may be finite even when H is infinite!)

Littlestone dimension of a Game

- G: a multiplayer $\{\pm 1\}$ -valued game with utilities $u_i: \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \{\pm 1\}$
- For each player, consider the function class $H_i \coloneqq \{u_i(x_i, \cdot) \mid x_i \in \mathcal{X}_i\}$
 - H_i contains binary classifiers mapping each x_{-i} to ± 1
- Littlestone dimension of G is $\max_{i} \{ Ldim(H_i) \}$

What if we exclude "Guess the larger number"?

Surprising fact: "Guess the larger number" game is the only obstacle to the existence of Nash equilibrium in $\{-1,1\}$ -valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran'21]: If an (infinite) {-1,1}-valued two-player zero-sum game has no subgame which is "Guess the larger number," then it has an ϵ -approximate Nash equilibrium for all $\epsilon > 0$.

Threshold dimension of G: size of largest threshold sub-matrix

[Hanneke-Livni-Moran'21]: Tr(G) finite \Rightarrow Minimax Eq exists

Claim: Tr(G) finite \Leftrightarrow Littlestone dimension of G finite

Littlestone dimension of G: $max{Ldim(H_1), Ldim(H_2)}$

G: {-1,1}-valued two-player zero-sum game Suggests: perhaps equilibria can be found through learning...

- where $H_1 \coloneqq \{\text{rows of G viewed as binary classifiers over } X_2\}$ $H_2 \coloneqq \{\text{columns of G viewed as binary classifiers of } \mathcal{X}_1\}$
- **Ldim**(H): characterizes online learnability of H (from stream of examples) (analogous to VC(H) which characterizes batch learning)

How about real-valued games?

Surprising fact: "Guess the larger number" game is the only obstacle to the existence of Nash equilibrium in $\{-1,1\}$ -valued two-player zero-sum games!

[Hanneke-Livni-Moran'21]: If an (infinite) {-1,1}-valued two-player zero-sum game has no subgame which is "Guess the larger number" (a.k.a. has finite $Tr(G) \Leftrightarrow$ finite Lit(G)) then it has an ϵ -approximate Nash eq for all $\epsilon > 0$.

[Daskalakis-Golowich'21] (Real-valued generalization of the above; informal): If an (infinite) real-valued two-player zero-sum game has no subgame which is ϵ -close to some "scaling" of "Guess" the larger number," then it has $O(\epsilon)$ -approximate Nash equilibrium.

Formal result: requires finiteness of ϵ -Fat Threshold or ϵ -sequential fat shattering dimension (which are respectively generalizations of threshold dimension and Littlestone dimension to real-valued functions).

Def:
 e-FatTr(G) is the largest subgame satisfying

Def: ϵ -seqFat(G) = max ϵ -seqFat(H_i) where $H_i \coloneqq \{u_i(x_i, \cdot) \mid x_i \in \mathcal{X}_i\}$ •

• TL;DR: ϵ -seqFat(H) characterizes online learnability of concept class H; achievable regret: $O(\epsilon \cdot T) + \tilde{O}(\sqrt{T \cdot \epsilon} - \text{seqFat}(H))$

for some θ .

[Rakhlin-Sridharan-Tewari'15

Next Time: Equilibrium Learning?