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Context: Increasing Interest in Multi-Agent Learning

Generative Adversarial Networks  (GANs)
synthetic data generation

• Multi-robot interactions
• Autonomous driving
• Automated Economic policy design

Multi-player Game-Playing:
• Superhuman Chess, Go, Poker, Gran Turismo
• Good StarCraft, Diplomacy

𝑍 ∼ 𝒩(0, 𝐼) ∼ 𝑃!"#$%!

Adversarial Training 
robustifying models against adversarial attacks

boring 
randomness

neural 
network

interesting 
randomness



Important notes 
and caveats…

Context: Increasing Interest in Multi-Agent Learning



• (I) Strategic Behavior does not emerge from standard training
• (II) Naively trained models can be manipulated
• (III) Training without regard to the presence of other agents can 

lead to undesirable (e.g. collusive) consequences
• (IV) The optimization workhorse of Deep Learning (a.k.a. gradient 

descent) struggles in multi-agent settings
• (V) Finally Game Theory (namely the existence of Nash equilibrium 

and other types of equilibrium) breaks

Important Caveats…



Motivating Questions

Practical Experience: GD vs GD (vs GD…) is cyclic 
or chaotic, and it is a hard engineering challenge 

to make it identify a good solution

Is there a generic optimization framework for Multi-Agent Deep Learning?

What are meaningful and practically attainable optimization targets in this setting? 

Why does GD vs GD struggle even in two-player zero-sum cases?
SUCCESS

NO REAL SUCCESS YET

PARTIAL SUCCESS



Local Nash Equilibrium

First-Order Local Nash: Take “local max” to mean “1st-order local max” i.e. max w.r.t. 1st-order Taylor appx

Equivalently:  ∀𝑖: 𝑥!∗ 	= Π𝒮! $"!∗ 𝑥!∗ 	+ ∇$!𝑢!(𝑥!
∗	; 	𝑥%!	∗ ) ,

      where 𝒮! 𝑥%!∗ = 𝑥!| (𝑥! 	;	𝑥%!∗ ) ∈ 𝒮 , and Π𝒮! $"!∗ ⋅  is the Euclidean projection

Proposition: If 𝒮	is convex and compact, a first-order local  Nash equilibrium exists.

[Daskalakis-Skoulakis-Zampetakis STOC’21]: First-order local Nash equilibrium is intractable even for two-
player zero-sum games.

…

action: 𝑥' ∈ 𝒳' ⊂ ℝ($ 
goal: max 𝑢' 𝑥', … , 𝑥)

action: 𝑥* ∈ 𝒳* ⊂ ℝ(% 	
goal: max 𝑢* 𝑥', … , 𝑥)

action: 𝑥) ∈ 𝒳) ⊂ ℝ(&
goal: max 𝑢) 𝑥', … , 𝑥)

Setting:

   𝑢!  is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
   [allow: global constraints 𝑥', 𝑥*, … , 𝑥) ∈ 𝒮 ⊆×!𝒳!]

Local Nash: A point 𝑥∗ = 𝑥'∗, … , 𝑥)∗ ∈ 𝒮 s.t. for each player 𝑖,  𝑥!∗ is local max of  𝑢!(𝑥! 	; 	𝑥%!∗ )  w.r.t.  𝑥! 	

EXPLAINS WHY GD vs GD FAILS

GENERALIZES LOCAL OPT

BUT WORST-CASE INTRACTABILITY



• Practical Local Nash Equilibrium Computation?
• local Nash is intractable in the worst-case
• …but can exploit connection to Brouwer fixed points to obtain 2nd-order dynamics with 

guaranteed (albeit necessarily not poly-time) convergence [Daskalakis-Golowich-Skoulakis-
Zampetakis COLT’23]

• turn it into a 1st-order method by cutting corners ?
• identify structural properties of games under which it is efficient (beyond worst-case 

analysis of games)

Way Forward 1: Practical Local Nash Equilibrium

gradient descent our algorithm: Stay On the Ridge (or STON’R)

local Nash is at (0,0)



• Local Correlated/Coarse Correlated equilibria?
• what’s a reasonable way to define it in general non-concave games?
• …so that it is also guaranteed to exist and is tractable?
• proposal: ||𝔼!∗∼# ∇!"𝑢$ 𝑥$

∗; 𝑥&$∗ || ≤ 𝜀 (formally: project to the constraint set)
• when 𝑝 has support 1 this is a local Nash eq, so this exists but is intractable 
• is there some polynomial support, so that it is tractable?
• [Cai-Daskalakis-Luo-Wei-Zhang’23]: If 𝒮 is convex and compact and the 𝑢$’s are Lipschitz 

and and smooth, a poly-size supported (in the dimension, in 1/𝜀, in the Lipschitzness and 
the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient 
Descent) J

Way Forward 2: Consider Randomized Equilibria 



Way Forward 3: Special Structure (Lectures 9-17)

extensive form games
stochastic games [Shapley’53]
multi-agent reinforcement learning Littman’94]

Environment
Given state 𝑠, choose 

actions 𝑎! ∈ 𝐴!

Receive rewards 𝑟!(𝑠, 𝑎)
Transition to 𝑠" ∼ ℙ(⋅ |𝑠, 𝑎)



If some 𝑢$ 𝑥$; 𝑥&$ 	is not concave in 𝑥$  for all 𝑥&$, Nash equilibrium does not necessarily exist
[Glicksberg’52]: A randomized Nash equilibrium does exist if the 𝒳$’s are compact and the 𝑢$’s 
are continuous (and not necessarily concave), but support could be uncountably infinite.

Nash Eq: A collection of 𝑥'∗, … 𝑥(∗  s.t. for all 𝑖, 𝑥$: 𝑢$ 𝑥$∗; 𝑥&$∗ ≥ 𝑢$ 𝑥$; 𝑥&$∗

Randomized Nash Eq: A collection of distributions 𝑝', … 𝑝( s.t. for all 𝑖, 𝑥$: 
E!∗∼##×⋯×#$[𝑢$ 𝑥$

∗; 𝑥&$∗ ] ≥ E!∗∼##×⋯×#$[𝑢$ 𝑥$; 𝑥&$
∗ ]

Coarse Correlated Eq: A joint distribution of 𝑝 s.t. for all 𝑖, 𝑥$: 
E!∗∼#[𝑢$ 𝑥$∗; 𝑥&$∗ ] ≥ E!∗∼#[𝑢$ 𝑥$; 𝑥&$∗ ]

…

action: 𝑥' ∈ 𝒳' ⊂ ℝ($ 
goal: max 𝑢' 𝑥', … , 𝑥)

action: 𝑥* ∈ 𝒳* ⊂ ℝ(% 	
goal: max 𝑢* 𝑥', … , 𝑥)

action: 𝑥) ∈ 𝒳) ⊂ ℝ(&
goal: max 𝑢) 𝑥', … , 𝑥)

Setting:

Way Forward 4: Global Randomized Equilibria!?!



If some 𝑢$ 𝑥$; 𝑥&$ 	is not concave in 𝑥$  for all 𝑥&$, Nash equilibrium does not necessarily exist
If  the 𝒳$’s are non-compact, even randomized Nash/correlated eq do not necessarily exist

Nash Eq: A collection of 𝑥'∗, … 𝑥(∗  s.t. for all 𝑖, 𝑥$: 𝑢$ 𝑥$∗; 𝑥&$∗ ≥ 𝑢$ 𝑥$; 𝑥&$∗

Randomized Nash Eq: A collection of distributions 𝑝', … 𝑝( s.t. for all 𝑖, 𝑥$: 
E!∗∼##×⋯×#$[𝑢$ 𝑥$

∗; 𝑥&$∗ ] ≥ E!∗∼##×⋯×#$[𝑢$ 𝑥$; 𝑥&$
∗ ]

Coarse Correlated Eq: A joint distribution of 𝑝 s.t. for all 𝑖, 𝑥$: 
E!∗∼#[𝑢$ 𝑥$∗; 𝑥&$∗ ] ≥ E!∗∼#[𝑢$ 𝑥$; 𝑥&$∗ ]

…

action: 𝑥' ∈ 𝒳' ⊂ ℝ($ 
goal: max 𝑢' 𝑥', … , 𝑥)

action: 𝑥* ∈ 𝒳* ⊂ ℝ(% 	
goal: max 𝑢* 𝑥', … , 𝑥)

action: 𝑥) ∈ 𝒳) ⊂ ℝ(&
goal: max 𝑢) 𝑥', … , 𝑥)

Setting:

Way Forward 4: Global Randomized Equilibria!?!



Infinite/Non-Parametric Games

…

action: 𝑥' ∈ 𝒳'
goal: max 𝑢' 𝑥', … , 𝑥)

action: 𝑥* ∈ 𝒳*
goal: max 𝑢* 𝑥', … , 𝑥)

action: 𝑥) ∈ 𝒳)
goal: max 𝑢) 𝑥', … , 𝑥)

• Action sets 𝒳! 	: high-dimensional or infinite-dimensional/non-parametric
• Utilities 𝑢!  : arbitrary functions 𝑢!:×!𝒳! → ℝ
• Questions I want to ask:

• For Q1: I hope that the answer depends on some complexity measure of the 𝑢!’s that I can identify 
• For Q2: by “simple” I want that each step can be executed efficiently

Are there simple methods converging to equilibria in a finite number of steps?

Under what conditions do there exist global Nash/Correlated/Coarse Correlated Equilibria?



“Guess the larger number” Game

1 2 3 4 …

1 1 1 1 1 …

2 -1 1 1 1 …

3 -1 -1 1 1 …

4 -1 -1 -1 1 …

… … … … … …

Player 2 (max player)

Player 1 
(min player)

A two-player zero-sum game where:
• 𝒳' = 𝒳* = ℕ
• 𝑢' 𝑥', 𝑥* = −𝑢* 𝑥', 𝑥* = 1$$+$% − 1$$,$%
• (so table shows utility of Player 2)

Fact: “Guess the larger number” game has no Nash equilibrium (not even a very coarse approximate one).

Proof: Suppose (𝑃, 𝑄) is a pair of distributions over ℕ.
• Suppose WLOG that Player 2 has expected utility ≥ 0 under 𝑃, 𝑄 .
• Can find 𝑥 ∈ ℕ such that 𝑥 is greater than 0.999 fraction of the mass of 𝑄.
• If min-player deviates to 𝑥 her utility is > 0.99.

So “Guess the larger number game” is an obstacle to the existence of Nash equilibrium.



What if we exclude “Guess the larger number”?
• Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash 

equilibrium in {−1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {−1,1}-valued two-player zero-sum game has no subgame 
which is “Guess the larger number,” then it has an 𝜖-approximate Nash equilibrium for all 𝜖 > 0.

Threshold dimension of G: size of largest threshold sub-matrix 

[Hanneke-Livni-Moran’21]: Tr(G) finite  ⇒   Minimax Eq exists

Claim: Tr(G) finite    ⟺    Littlestone dimension of G finite*

*: define Littlestone dimension of G in next slide

-1 -1 -1 -1 -    -1
-1 -1 -1 -1   -  1
-1 -1 -1 -1   -  1
-1 -1 -1 -1   -  1

-1 -1 -1 -1        -1 -1       

…

…

…

G: {−1,1}-valued two-player zero-sum game 

Player 1 
(min player)

Player 2 (max player)



[Parenthesis: Littlestone dimension of a Concept Class

• 𝐻: binary classifiers over feature set 𝒳	

• TL;DR:
• 𝐋𝐝𝐢𝐦(𝐻): characterizes whether and how well (in terms of regret) classifiers can be online learned from a 

sequence of adversarial data 𝑥- , 𝑏- ∈ 𝒳×{±1} 
• [Analogously to how 𝐕𝐂(𝐻) dimension characterizes learnability of 𝐻 given a batch of i.i.d. data]

• Detailed description: 
• Consider online learning setting where for 𝑡 = 1,… , 𝑇:
• learner chooses distribution 𝑝-  over ℎ- ∈ 𝐻 
• adversary chooses 𝑥- , 𝑏- ∈ 𝒳×{±1} (with knowledge of learner’s distribution)
• learner samples ℎ- ∼ 𝑝-  and experiences loss ℓ ℎ- 𝑥- , 𝑏-) = '%.' $' ⋅0'

*
 (i.e. 1 if prediction is wrong ow 0)

• Learner’s goal: minimize expected regret ∑- ℓ ℎ- 𝑥- , 𝑏-) − min
.
∑- ℓ ℎ 𝑥- , 𝑏-)

• Clearly can get expected regret 𝑂 𝑇 ⋅ log |𝐻|  (by doing MWU over 𝐻)
• But what if H is infinite?
• [Rakhlin-Sridharan-Tewari’15, Hanneke-Livni-Moran’21]: can get expected regret �̀� 𝑇 ⋅ 𝐋𝐝𝐢𝐦(𝐻)
•  𝐋𝐝𝐢𝐦(𝐻) may be finite even when H is infinite; also 𝐋𝐝𝐢𝐦 𝐻 ≤ log |𝐻| always



Littlestone dimension: formal definition

Defn: Littlestone dimension of hypothesis class 𝐻, denoted 𝐋𝐝𝐢𝐦(𝐻), is largest 𝑑 so that there exists tree of 
depth 𝑑 shattered by 𝐻.

𝑥%

𝑥&% 𝑥&&

𝑥'% 𝑥'& 𝑥'' 𝑥'(

-1

-1 -1

-1 -1 -1 -1

1

1 1

1 1 1 1

Defn: For a binary tree with all internal nodes labeled by elements 
of 𝒳, edges labeled by −1,1 :
• It is shattered by 𝐻 if for each leaf ℓ there is some ℎℓ ∈ 𝐻 

which labels all nodes on the root-to-leaf path for ℓ according 
to the labels on the edges.

• E.g., for the green leaf: 
 need ℎℓ 𝑥' = −1, ℎℓ 𝑥*' = 1, ℎℓ 𝑥2* = 1.

• 𝐻: binary classifiers over feature set 𝒳	

]

• Detailed definition of 𝐋𝐝𝐢𝐦 𝐻  considers trees, whose internal vertices are labeled by 𝒳 and edges by +1 or -1 



Littlestone dimension of a Game

Littlestone dimension of a Concept Class
• 𝐻: binary classifiers over feature set 𝒳	

]

• TL;DR:
• 𝐋𝐝𝐢𝐦(𝐻): characterizes whether and how well (in terms of regret) classifiers can be online learned from a 

sequence of adversarial data 𝑥- , 𝑏- ∈ 𝒳×{±1} 
• [Analogously to how 𝐕𝐂(𝐻) dimension characterizes learnability of 𝐻 given a batch of i.i.d. data]

• Claim: can get expected regret �̀� 𝑇 ⋅ 𝐋𝐝𝐢𝐦(𝐻)  (which may be finite even when H is infinite!)

Littlestone dimension of a Game
• G: a multiplayer ±1 -valued game with utilities 𝑢!: 𝒳'×⋯×𝒳) → {±1}
• For each player, consider the function class 𝐻! ≔ 𝑢! 𝑥! ,⋅ 	| 	𝑥! ∈ 𝒳!
• 𝐻!  contains binary classifiers mapping each 𝑥%!  to ±1

• Littlestone dimension of 𝐺 is max
!
{𝐋𝐝𝐢𝐦 𝐻! }



What if we exclude “Guess the larger number”?
• Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash 

equilibrium in {−1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {−1,1}-valued two-player zero-sum game has no subgame 
which is “Guess the larger number,” then it has an 𝜖-approximate Nash equilibrium for all 𝜖 > 0.

Threshold dimension of G: size of largest threshold sub-matrix 

[Hanneke-Livni-Moran’21]: Tr(G) finite  ⇒   Minimax Eq exists

Claim: Tr(G) finite    ⟺    Littlestone dimension of G finite

Littlestone dimension of G:	 max 𝐋𝐝𝐢𝐦 𝐻' , 𝐋𝐝𝐢𝐦 𝐻*
 where 𝐻' ≔ rows	of	G	viewed	as	binary	classisiers	over	𝒳*
    𝐻* ≔ columns	of	G	viewed	as	binary	classisiers	of	𝒳'

𝐋𝐝𝐢𝐦 𝐻 : characterizes online learnability of 𝐻 (from stream of examples).

   (analogous to 𝑽𝑪(𝐻) which characterizes batch learning)

Suggests: perhaps equilibria can be found through learning…

-1 -1 -1 -1 -    -1
-1 -1 -1 -1   -  1
-1 -1 -1 -1   -  1
-1 -1 -1 -1   -  1

-1 -1 -1 -1        -1 -1       

…

…

…

G: {−1,1}-valued two-player zero-sum game 

Player 1 
(min player)

Player 2 (max player)



[Daskalakis-Golowich’21] (Real-valued generalization of the above; informal): 
If an (infinite) real-valued two-player zero-sum game has no subgame which is 𝝐-close to some “scaling” of “Guess 
the larger number,” then it has 𝑂(𝜖)-approximate Nash equilibrium.
Formal result: requires finiteness of 𝝐-Fat Threshold or 𝝐-sequential fat shattering dimension (which are 
respectively generalizations of threshold dimension and Littlestone dimension to real-valued functions).

How about real-valued games?
• Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash 

equilibrium in {−1,1}-valued two-player zero-sum games!

[Hanneke-Livni-Moran’21]: If an (infinite) {−1,1}-valued two-player zero-sum game has no subgame which is “Guess 
the larger number” (a.k.a. has finite Tr(G) ⟺ finite Lit(G)) then it has an 𝜖-approximate Nash eq for all 𝜖 > 0.

• Def: 𝝐-FatTr(G) is the largest subgame satisfying                                  for some 𝜃. 

• Def: 𝝐-𝐬𝐞𝐪𝐅𝐚𝐭 𝐺 = max
)
𝝐−𝐬𝐞𝐪𝐅𝐚𝐭 𝐻*   where 𝐻* ≔ 𝑢* 𝑥* ,⋅ 	| 	𝑥* ∈ 𝒳*

• TL;DR: 𝝐−seqFat(H) characterizes online learnability of concept class H; achievable regret: O 𝝐 ⋅ 𝑇 + :𝑂 𝑇 ⋅ 𝝐−seqFat(𝐻)

[Rakhlin-Sridharan-Tewari’15



Next Time: Equilibrium Learning?


