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Recall: Prisoner’s Dilemma

(cogsgxate) (Cboer;fr(;i/s) Our prediction: both prisoners will confess
Deny -1,-1 -3, 0 Why?
(cooperate) No matter what the other player may play, confessing is
confess | 0,-3 | -2, -2 optimal for me.
etray
(“-1” = “1 year in jail”) Playing confess is a dominant strategy equilibrium




Recall: Rock-Paper-Scissors

B 3 &

Rock @ O,

Paper @ 1,

Scissors @ - 1,

-1,1 | 1,
0,0 | -1,
1,-1]0,

Our prediction: both players play uniformly at random

Why?
If my opponent plays uniformly at random, then playing
uniformly at random is optimal for me.

Player u.a.r. is a Nash equilibrium

Remarks:

1. Nash is a much weaker solution of a game compared to dominant strategy equilibrium
* need assumption/knowledge about other player’s strategy to justify my strategy

2. No dominant strategy equilibrium exists in Rock-Paper-Scissors

3. No Nash equilibrium exists in pure (i.e. non-randomizing) strategies

4. There is a unique Nash equilibrium in this game




Football vs Theater

5/6 1/6
Insist on Theater Accept Football
1,5 , 0

0 5, 1

Our prediction here?
there are two obvious Nash equilibria

there is a 37 Nash equilibrium  xp1.. = ( : ) Xorange = (g%)

cool fact: in two-player (non-degenerate games) there is always an odd number of Nash eq



Our focus (part |): Normal-Form Games

Normal-form Games: Single-shot, simultaneous move, complete information Games

Complete-information means:

* Every player knows their own objective as well as the objective of every other player

@ @ _ Deny Confess
% (cooperate) (betray)
y 111 11.-1 Deny -1,-1 -3,0

ok @ 0,0 1-1,111,-1 (cooperate) ’ ’
: i Confess 0. -3 -2 -2

Paper @ 1, O, 1, (betray) ’ ’

Scissors

Insist on Theater Accept Football
) D , 0
’ O 7 1 4 )
p—

§6% AlphaGo  Lee Sedol
AT

[if | throw away structure
and represent this game as
a huge table, whose
rows/columns are all
possible algorithms (a.k.a.
contingency plans) that the
two players can use]



More Abstract Game Formulation

* Def: A finite n-player game is described by:
* aset of pure strategies/actions per player: §,
* autility/payoff function per player: u,:X,S; - R

* Def: A randomized/mixed strategy for player p is any x,, € ASP

* assigns probability x,,(j) toeachj € S,

e j.e. AP is the simplex whose vertices are identified with the elements of Sy

* Def: a player’s expected utility is

* Uy (xl; ---:xn) — Zsequq Uy (S) X1 (51) Coane’ xn(sn)

5/6

1/6

Theater!

Football fine

, 5

, 0

, 0

, 1

Sue =1

Sorange = {Theater!, Football fine}

Uorange

Xorange = (

51
6’6

)



More Abstract Game Formulation

* Def: A finite n-player game is described by:

* aset of pure strategies/actions per player: §,

* autility/payoff function per player: u,:X,S; - R
. . . . . S

Def: A randomized/mixed strategy for player p is any x,, € A°P

* assigns probability x,,(j) toeachj € S,

e j.e. AP is the simplex whose vertices are identified with the elements of Sy
* Def: a player’s expected utility is

* Uy (xl: ---:xn) — Zsexqsq Uy (S) X1 (51) Coane’ xn(sn)

* Def: a collection of mixed strategies x4, ..., X,, is a Nash equilibrium iff
* Vi, x;: w; (o, %) = ui(xf, x_;)

* Def: a collection x4, ..., x,, is a dominant strateqgy equilibrium iff
o Vi,x;,x ;0 wi(,xl;) = u(xg’,xl;)



More Abstract Game Formulation

* Def: a collection x4, ..., x,, is @ Nash equilibrium iff
* Vi, x;: u; (g, x_y) = ui(x;', x_;)

* Def: a collection x4, ..., x,, is a dominant strategy equilibrium iff

Y A A / I
* Vi, x;,x_;: u; (g, xZ;) = ui (', x2 ;)
Theater! Football fine
I5 IO
,0 , 1

. (5 1
X — ’ xorange —\s’5

| =

u (x :xorange) =, 6 +
5 5
u (, ’, xorange) = 6 LU= g 5
. . . u (x g xomnge) = g,v X
u (’ xorange) = 6 + -0 = G

!



Nash’s Theorem

[Nash 1950]: Every finite game (i.e. with a finite number of players and a finite
number of pure strategies per player) has a Nash equilibrium.

e We'll prove it!

* We’ll make use of Brouwer’s fixed point theorem, following a proof that Nash
produced in 1951; his original proof used Kakutani’s fixed point theorem.




Menu
 Refresher and game-theoretic formalism

e Nash’s theorem
e von Neumann’s theorem



Menu
* Refresher and game-theoretic formalism

e Nash’s theorem
e von Neumann’s theorem



Brouwer




Brouwer’s Fixed Point Theorem

[Brouwer 1910]: Let f : D - D be a continuous function from a convex and compact subset D
of the Euclidean space to itself. Then there existsan x € D st. x = f(x). \

&

. , , , closed and bounded
Below we show a few examples, when D is the 2-dimensional disk.

f
%

N.B. All conditions in the statement of the theorem are necessary.




Brouwer’s Fixed Point Theorem

fixed point



Brouwer’s Fixed Point Theorem

fixed point




Brouwer’s Fixed Point Theorem

fixed point




' Brouwer = Nash




Visualizing Nash’s Proof

4

4

Penalty Shot Game

f:10,1]° —[0,1]?, continuous
such that
fixed points = Nash eq.



Visualizing Nash’s Proof
0 Pr[Right] 1

Kick
Dive

Left | Right

Pr[Right]

Left 1,-1} -1,1

Right |-1,1| 1,-1

Penalty Shot Game !
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Visualizing Nash’s Proof
0 Pr[Right] 1

Kick
Dive

Left | Right

Pr[Right]

Left 1,-1} -1,1

Right |-1,1| 1,-1

Penalty Shot Game !

A

blue | %% yeiio{
red

e




Visualizing Nash’s Proof

y 1 OO PﬂElht] 1
Kick , T
Left | Right el

S S = > _ o e -

Dive

Y Left 1,-1} -1,1

Pl . G S

% | Right |-1,1| 1,-1

Penalty Shot Game 1 I
fixed point

0

blue yelio

Real proof: on the board

red
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Menu
* Refresher and game-theoretic formalism

* Nash’s theorem
* Brouwer’s theorem
 Nash from Brouwer
e von Neumann’s theorem



Menu
* Refresher and game-theoretic formalism

* Nash’s theorem
* Brouwer’s theorem
 Nash from Brouwer

* von Neumann’s theorem



Two-player games

Def: A finite n-player game is described by:
* aset of pure strategies/actions per player: S,
* a utility/payoff function per player: u,:X,S, - R

A 2-player can be summarized by two matrices (R, C),xn
* rows : indexed by pure strategies of “row player”
e columns : indexed by pure strategies of “column player”

Mixed strategy for row player: x € A™

Mixed strategy for column player: y € A"
Expected utility of row player: u,ow(x,v) = x'Ry = 2.ijRijx;y;

Expected utility of column player: Ucoiymn (X, V) = x ' Cy = 2.ij Cijx;y;
(x,y) is Nash equilibrium iff

vx':xTRy = x'"Ry

vy':xTCy = xTCy'



Two-player Zero-Sum games

Minimax Theorem [von Neumann’28]: Consider a two-player game zero-sum game (R, C).,,x, i.€.

R+ C =0.Then min maxx'Cy = max min x’Cy (*)
XxeEA™ ye Al YEAT xeA™

Interpretation:
e (*)says: “IfVy,dxs.t. xICy < v* = Ax,Vy s.t. xICy <v*”
* If x* is argmin of LHS, y* argmax of RHS, v* optimal value of (*), then (x*, y*) is a Nash equilibrium, i.e. if min
and max adopt x™ and y”* then (i) min pays v* to max and (ii) no player can improve by unilaterally deviating
 why? Because
* under (x*, y*) min pays max at most v™* (since v* optimum of LHS and x™ is argmin)
* under (x*, y*) max receives from min at least v* (since v* optimum of RHS and y™ is argmax)
* by the above two: under (x*, y*) min pays exactly v* to max, hence (i) is proven
* to prove (ii), suppose Ix that is a better response for min to y*i.e. x' Cy* < x*TCy* = v’

- the existence of such x violates the fact that the optimum of RHS is v™ and y™ is an argmax for RHS
- similarly the existence of a better response to x™ by max violates that the optimum of LHS is v* and x* is

an argmin for the LHS




