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Recall: Prisoner’s Dilemma

Deny 
(cooperate)

Confess 
(betray)

Deny 
(cooperate)

-1, -1 -3, 0

Confess 
(betray)

0, -3 -2, -2

(“-1” = “1 year in jail”)

Our prediction: both prisoners will confess

Why? 
No matter what the other player may play, confessing is 
optimal for me.

Playing confess is a dominant strategy equilibrium



Recall: Rock-Paper-Scissors

Our prediction: both players play uniformly at random

Why? 
If my opponent plays uniformly at random, then playing 
uniformly at random is optimal for me. 

Player u.a.r. is a Nash equilibrium

Remarks: 
1. Nash is a much weaker solution of a game compared to dominant strategy equilibrium 
• need assumption/knowledge about other player’s strategy to justify my strategy

2. No dominant strategy equilibrium exists in Rock-Paper-Scissors
3. No Nash equilibrium exists in pure (i.e. non-randomizing) strategies
4. There is a unique Nash equilibrium in this game



Football vs Theater

Our prediction here?
 there are two obvious Nash equilibria

 there is a 3rd Nash equilibrium 
 

 cool fact: in two-player (non-degenerate games) there is always an odd number of Nash eq

1/6

5/6

1/65/6

𝑥!"#$ =
1
6
,
5
6

𝑥%&'()$ =
5
6
,
1
6



Our focus (part I): Normal-Form Games
Normal-form Games: Single-shot, simultaneous move, complete information Games
Complete-information means:
• Every player knows their own objective as well as the objective of every other player

[if I throw away structure 
and represent this game as 
a huge table, whose 
rows/columns are all 
possible algorithms (a.k.a. 
contingency plans) that the 
two players can use]



More Abstract Game Formulation
• Def: A finite n-player game is described by:

• a set of pure strategies/actions per player: 𝑆!
• a utility/payoff function per player: 𝑢!:×"𝑆" → ℝ

• Def: A randomized/mixed strategy for player 𝑝 is any 𝑥! ∈ Δ"!
• assigns probability 𝑥!(𝑗) to each 𝑗 ∈ 𝑆!
• i.e. Δ#! is the simplex whose vertices are identified with the elements of 𝑆!

• Def: a player’s expected utility is
• 𝑢! 𝑥$, … , 𝑥% = ∑&∈×"#" 𝑢! 𝑠 𝑥$ 𝑠$ ⋅ … ⋅ 𝑥% 𝑠%

Theater! Football fine

Theater fine 1, 5 0, 0

Football! 0, 0 5, 1

𝑆!"#$ = {𝑇ℎ𝑒𝑎𝑡𝑒𝑟	𝑓𝑖𝑛𝑒, 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙!}

𝑆%&'()$ = {𝑇ℎ𝑒𝑎𝑡𝑒𝑟!, 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙	𝑓𝑖𝑛𝑒}
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More Abstract Game Formulation
• Def: A finite n-player game is described by:

• a set of pure strategies/actions per player: 𝑆!
• a utility/payoff function per player: 𝑢!:×"𝑆" → ℝ

• Def: A randomized/mixed strategy for player 𝑝 is any 𝑥! ∈ Δ"!
• assigns probability 𝑥!(𝑗) to each 𝑗 ∈ 𝑆!
• i.e. Δ#! is the simplex whose vertices are identified with the elements of 𝑆!

• Def: a player’s expected utility is
• 𝑢! 𝑥$, … , 𝑥% = ∑&∈×"#" 𝑢! 𝑠 𝑥$ 𝑠$ ⋅ … ⋅ 𝑥% 𝑠%

• A piece of very useful notation: if 𝑥#, … , 𝑥$ are player strategies, then 
𝑥%&  denotes the strategies of all players except player 𝑖’s

• Def: a collection of mixed strategies 𝑥#, … , 𝑥$ is a Nash equilibrium iff
• ∀𝑖, 𝑥&': 	 𝑢& 𝑥& , 𝑥%& ≥ 𝑢& 𝑥&', 𝑥%&

• Def: a collection 𝑥#, … , 𝑥$ is a dominant strategy equilibrium iff
• ∀𝑖, 𝑥&', 𝑥%&' : 	 𝑢& 𝑥& , 𝑥%&' ≥ 𝑢& 𝑥&′, 𝑥%&'



More Abstract Game Formulation
• Def: a collection 𝑥!, … , 𝑥" is a Nash equilibrium iff

• ∀𝑖, 𝑥EF: 	 𝑢E 𝑥E , 𝑥GE ≥ 𝑢E 𝑥E′, 𝑥GE
• Def: a collection 𝑥!, … , 𝑥" is a dominant strategy equilibrium iff

• ∀𝑖, 𝑥EF, 𝑥GEF : 	 𝑢E 𝑥E , 𝑥GEF ≥ 𝑢E 𝑥E′, 𝑥GEF

Theater! Football fine

Theater fine 1, 5 0, 0

Football! 0, 0 5, 1

there exists no dominant strategy equilibrium

there exist three Nash equilibria, e.g. 𝑥"#$% =
&
'
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Nash’s Theorem

[Nash 1950]: Every finite game (i.e. with a finite number of players and a finite 
number of pure strategies per player) has a Nash equilibrium.

• We’ll prove it!
• We’ll make use of Brouwer’s fixed point theorem, following a proof that Nash 

produced in 1951; his original proof used Kakutani’s fixed point theorem.



Menu
• Refresher and game-theoretic formalism
• Nash’s theorem
• von Neumann’s theorem
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Brouwer



Brouwer’s Fixed Point Theorem

f

[Brouwer 1910]:  Let 𝑓 ∶ 	𝐷 → 𝐷  be a continuous function from a convex and compact subset 𝐷 
of the Euclidean space to itself. Then there exists an  𝑥 ∈ 𝐷  s.t.  𝑥	 = 	𝑓(𝑥) .

N.B. All conditions in the statement of the theorem are necessary.

closed and bounded

D D

Below we show a few examples, when D is the 2-dimensional disk.

→



fixed point

Brouwer’s Fixed Point Theorem



fixed point
Brouwer’s Fixed Point Theorem



fixed point

Brouwer’s Fixed Point Theorem



Brouwer ⇒ Nash



ƒ: [0,1]2 ®[0,1]2, continuous
such that

fixed points º Nash eq.

Kick 
Dive       Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1

Penalty Shot Game

Visualizing Nash’s Proof
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ƒ: [0,1]2 ®[0,1]2, cont.
such that

fixed point º Nash eq.

0 1
0

1

Pr[Right]

Pr
[R
ig
ht
]

fixed point

½½

½

½

Real proof: on the board

Kick 
Dive       Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1

Penalty Shot Game

Visualizing Nash’s Proof
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Two-player games

• Def: A finite n-player game is described by:
• a set of pure strategies/actions per player: 𝑆!
• a utility/payoff function per player: 𝑢!:×"𝑆" → ℝ

• A 2-player can be summarized by two matrices 𝑅	, 𝐶 (×$
• rows : indexed by pure strategies of “row player”
• columns : indexed by pure strategies of “column player”

• Mixed strategy for row player: 𝑥 ∈ Δ(

• Mixed strategy for column player: 𝑦 ∈ Δ$

• Expected utility of row player: 𝑢*+, 𝑥, 𝑦 = 𝑥-𝑅𝑦 = ∑&. 𝑅&.𝑥&𝑦.
• Expected utility of column player: 𝑢/+0123 𝑥, 𝑦 = 𝑥-𝐶𝑦 = ∑&. 𝐶&.𝑥&𝑦.
• (𝑥, 𝑦) is Nash equilibrium iff

∀𝑥#: 𝑥$𝑅𝑦 ≥ 𝑥#$𝑅𝑦
∀𝑦#: 𝑥$𝐶𝑦 ≥ 𝑥$𝐶𝑦′



Minimax Theorem [von Neumann’28]: Consider a two-player game zero-sum game 𝑅, 𝐶 (×$ i.e. 
𝑅 + 𝐶 = 0. Then min

4∈6.
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𝑥-𝐶𝑦 = max
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min
4∈6.

𝑥-𝐶𝑦   (*)

Interpretation:  
• (*) says:  “If ∀𝑦, ∃𝑥	s. t. 	𝑥M𝐶𝑦 ≤ 𝑣∗ ⇒ ∃𝑥, ∀𝑦	 s. t. 	 𝑥M𝐶𝑦 ≤ 𝑣∗”
• If 𝑥∗ is argmin of LHS, 𝑦∗ argmax of RHS, 𝑣∗ optimal value of (*), then 𝑥∗, 𝑦∗  is a Nash equilibrium, i.e. if min 

and max adopt 𝑥∗ and 𝑦∗ then (i) min pays 𝑣∗ to max and (ii) no player can improve by unilaterally deviating
• why? Because
• under (𝑥∗, 𝑦∗) min pays max at most 𝑣∗ (since 𝑣∗	optimum of LHS and  𝑥∗ is argmin)
• under (𝑥∗, 𝑦∗) max receives from min at least 𝑣∗ (since 𝑣∗	optimum of RHS and  𝑦∗ is argmax)
• by the above two: under (𝑥∗, 𝑦∗)  min pays exactly 𝑣∗ to max, hence (i) is proven
• to prove (ii), suppose ∃𝑥 that is a better response for min to 𝑦∗i.e. 𝑥M𝐶𝑦∗ < 𝑥∗M𝐶𝑦∗ = 𝑣∗

- the existence of such 𝑥 violates the fact that the optimum of RHS is 𝑣∗ and 𝑦∗ is an argmax for RHS
- similarly the existence of a better response to 𝑥∗ by max violates that the optimum of LHS is 𝑣∗ and 𝑥∗ is 

an argmin for the LHS

Two-player Zero-Sum games


