6.S890:
 Topics in Multiagent Learning

Lecture 2 - Prof. Daskalakis
Fall 2023

Recall: Prisoner's Dilemma

	Deny (cooperate)	Confess (betray)
Deny (cooperate)	-1, -1	-3, 0
Confess (betray)	$0,-3$	-2, -2
("-1" = "1 year in jail")		

Our prediction: both prisoners will confess
Why?
No matter what the other player may play, confessing is optimal for me.

Playing confess is a dominant strategy equilibrium

Recall: Rock-Paper-Scissors

Our prediction: both players play uniformly at random

Why?
If my opponent plays uniformly at random, then playing uniformly at random is optimal for me.

Player u.a.r. is a Nash equilibrium
Remarks:

1. Nash is a much weaker solution of a game compared to dominant strategy equilibrium

- need assumption/knowledge about other player's strategy to justify my strategy

2. No dominant strategy equilibrium exists in Rock-Paper-Scissors
3. No Nash equilibrium exists in pure (i.e. non-randomizing) strategies
4. There is a unique Nash equilibrium in this game

Football vs Theater

	5/6	$1 / 6$	
		Insist on Theater	Accept Football
$1 / 6$	Accept Theater	1,5	0,0
$5 / 6$	Insist on Football	0,0	5,1

Our prediction here?
there are two obvious Nash equilibria
there is a $3^{\text {rd }}$ Nash equilibrium $\quad x_{\text {blue }}=\left(\frac{1}{6}, \frac{5}{6}\right) \quad x_{\text {orange }}=\left(\frac{5}{6}, \frac{1}{6}\right)$
cool fact: in two-player (non-degenerate games) there is always an odd number of Nash eq

Our focus (part I): Normal-Form Games

Normal-form Games: Single-shot, simultaneous move, complete information Games
Complete-information means:

- Every player knows their own objective as well as the objective of every other player

	Rock	Paper	层
Rock 18	0,0	-1,1	1,-1
Paper令	1,-1	0,0	-1,1
Scissors	-1,1	1,-1	0,0

	Deny (cooperate)	Confess (betray)
Deny (cooperate) Confess (betray)	$-1,-1$	$-3,0$
	$0,-3$	$-2,-2$

	Insist on Theater	Accept Football
Accept Theater	1,5	0,0
Insist on Football	0,0	5,1

[if I throw away structure and represent this game as a huge table, whose rows/columns are all possible algorithms (a.k.a. contingency plans) that the two players can use]

More Abstract Game Formulation

- Def: A finite n-player game is described by:
- a set of pure strategies/actions per player: S_{p}
- a utility/payoff function per player: $u_{p}: \times_{q} S_{q} \rightarrow \mathbb{R}$
- Def: A randomized/mixed strategy for player p is any $x_{p} \in \Delta^{S_{p}}$
- assigns probability $x_{p}(j)$ to each $j \in S_{p}$
- i.e. $\Delta^{S_{p}}$ is the simplex whose vertices are identified with the elements of S_{p}
- Def: a player's expected utility is
- $u_{p}\left(x_{1}, \ldots, x_{n}\right)=\sum_{s \in \times_{q} s_{q}} u_{p}(s) x_{1}\left(s_{1}\right) \cdot \ldots \cdot x_{n}\left(s_{n}\right)$

\[

\]

More Abstract Game Formulation

- Def: A finite n-player game is described by:
- a set of pure strategies/actions per player: S_{p}
- a utility/payoff function per player: $u_{p}: \times_{q} S_{q} \rightarrow \mathbb{R}$
- Def: A randomized/mixed strategy for player p is any $x_{p} \in \Delta^{S_{p}}$
- assigns probability $x_{p}(j)$ to each $j \in S_{p}$
- i.e. $\Delta^{S_{p}}$ is the simplex whose vertices are identified with the elements of S_{p}
- Def: a player's expected utility is
- $u_{p}\left(x_{1}, \ldots, x_{n}\right)=\sum_{s \in \times_{q} s_{q}} u_{p}(s) x_{1}\left(s_{1}\right) \cdot \ldots \cdot x_{n}\left(s_{n}\right)$
- A piece of very useful notation: if x_{1}, \ldots, x_{n} are player strategies, then x_{-i} denotes the strategies of all players except player i 's
- Def: a collection of mixed strategies x_{1}, \ldots, x_{n} is a Nash equilibrium iff
- $\forall i, x_{i}^{\prime}: \quad u_{i}\left(x_{i}, x_{-i}\right) \geq u_{i}\left(x_{i}^{\prime}, x_{-i}\right)$
- Def: a collection x_{1}, \ldots, x_{n} is a dominant strategy equilibrium iff
- $\forall i, x_{i}^{\prime}, x_{-i}^{\prime}: \quad u_{i}\left(x_{i}, x_{-i}^{\prime}\right) \geq u_{i}\left(x_{i}^{\prime}, x_{-i}^{\prime}\right)$

More Abstract Game Formulation

- Def: a collection x_{1}, \ldots, x_{n} is a Nash equilibrium iff

$$
\text { - } \forall i, x_{i}^{\prime}: \quad u_{i}\left(x_{i}, x_{-i}\right) \geq u_{i}\left(x_{i}^{\prime}, x_{-i}\right)
$$

- Def: a collection x_{1}, \ldots, x_{n} is a dominant strategy equilibrium iff
- $\forall i, x_{i}^{\prime}, x_{-i}^{\prime}: \quad u_{i}\left(x_{i}, x_{-i}^{\prime}\right) \geq u_{i}\left(x_{i}^{\prime}, x_{-i}^{\prime}\right)$

	Theater!	Football fine
Theater fine	1,5	0,0
Football!	0,0	5,1

$$
x_{\text {blue }}=\left(\frac{1}{6}, \frac{5}{6}\right) \quad x_{\text {orange }}=\left(\frac{5}{6}, \frac{1}{6}\right)
$$

$u_{\text {blue }}\left(x_{\text {blue }}, x_{\text {orange }}\right)=\frac{1}{6} \cdot \frac{5}{6} \cdot 1+\frac{5}{6} \cdot \frac{1}{6} \cdot 5=\frac{5}{6}$
$\begin{aligned} & u_{\text {blue }}\left(\text { 'theater fine', } x_{\text {orange }}\right)=\frac{5}{6} \cdot 1+\frac{1}{6} \cdot 0=\frac{5}{6} \\ & u_{\text {blue }}\left(\text { 'football!', } x_{\text {orrange }}\right)=\frac{5}{6} \cdot 0+\frac{1}{6} \cdot 5=\frac{5}{6}\end{aligned} \quad u_{\text {bue }}\left(x_{\text {bue }}{ }^{\prime}, x_{\text {orange }}\right)=\frac{5}{6}, \forall x_{\text {blue }}$ '

Nash's Theorem

[Nash 1950]: Every finite game (i.e. with a finite number of players and a finite number of pure strategies per player) has a Nash equilibrium.

- We'll prove it!
- We'll make use of Brouwer's fixed point theorem, following a proof that Nash produced in 1951; his original proof used Kakutani's fixed point theorem.

Menu

- Refresher and game-theoretic formalism
- Nash's theorem
- von Neumann's theorem

Menu

- Refresher and game-theoretic formalism
- Nash's theorem
- von Neumann's theorem

Brouwer's Fixed Point Theorem

[Brouwer 1910]: Let $f: D \rightarrow D$ be a continuous function from a convex and compact subset D of the Euclidean space to itself. Then there exists an $x \in D$ s.t. $x=f(x)$.

Below we show a few examples, when D is the 2-dimensional disk.

N.B. All conditions in the statement of the theorem are necessary.

Brouwer's Fixed Point Theorem

Brouwer's Fixed Point Theorem

fixed point

Brouwer's Fixed Point Theorem

Visualizing Nash's Proof

Penalty Shot Game

$f:[0,1]^{2} \rightarrow[0,1]^{2}$, continuous such that
fixed points \equiv Nash eq.

Visualizing Nash's Proof

Kick Dive	Left	Right
Left	$1,-1$	$-1,1$
Right	$-1,1$	$1,-1$

Penalty Shot Game

Visualizing Nash's Proof

Kick Dive	Left	Right
Left	$1,-1$	$-1,1$
Right	$-1,1$	$1,-1$

Penalty Shot Game

Visualizing Nash's Proof

Kick Dive	Left	Right
Left	$1,-1$	$-1,1$
Right	$-1,1$	$1,-1$

Penalty Shot Game

Visualizing Nash's Proof

		$1 / 2$
Kick Dive	Left	Right
$1 / 2$	Left	$1,-1$
$1 / 2$	$-1,1$	
Right	$-1,1$	$1,-1$

Penalty Shot Game

fixed point
Real proof: on the board

[Nash'50]: Every finite game has a Nash Equilibrium
Prof: © (1) Define a function $f: \Delta^{5^{4}} \times \Delta^{5_{1}} \times \ldots \times \Delta^{5_{n}} \rightarrow \Delta^{4_{1}} \times \Delta^{5^{1}} \times \ldots \times \Delta^{5}=\Delta$

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \stackrel{f}{\longmapsto}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

where \forall_{i} : y_{i} is ${ }^{1}$ soft best response of player i to $x_{-i} i^{\prime \prime}$
many $\forall s_{i}\left(S_{i}: y_{i}\left(s_{i}\right)=\frac{x_{i}\left(s_{i}\right)+\operatorname{Gain}_{i, s_{i}}(x)}{1+\sum_{s_{i}^{\prime}} \operatorname{Gain}_{i, s_{i}^{\prime}}(x)}\right.$

$\Delta:$ convex + comped Chem: fixed point of f is Nash Equilibrium
Proof: - Suffices to show $\forall i, s_{i} \in S_{i}: G_{\text {ain }}^{i, s_{i}}\left(x^{x}\right)=0 \Leftrightarrow u_{i}\left(s_{i} ; x_{-i}^{x}\right) \leq u_{i}\left(x^{*}\right) \quad \forall i, \forall s_{i}$

- Suppose this is hot true
\Rightarrow then $3 i, \overline{s_{i}}$ st. Gain $_{i, s i}\left(x^{\lambda}\right)>0 \quad\left(\Leftrightarrow u_{i}\left(s_{i} ; x_{i}^{*}\right)-u_{i}\left(x^{*}\right)>0\right)$

$\Rightarrow \exists s_{i}^{\prime \prime}$ st. $x_{i}^{*}\left(s_{i}^{\prime \prime}\right)>0$
and $u_{i}\left(s_{i}^{\prime \prime} ; x_{-i}^{*}\right)-u_{i}\left(x^{*}\right)<0$

in particular

$$
\begin{aligned}
& \operatorname{Gain}_{i, s_{1}^{\prime \prime}}\left(x^{*}\right)=0 \\
& \text { But } x_{i}^{r}\left(S_{i}^{\prime \prime}\right)=\frac{x_{i}^{*}\left(s_{i}^{\prime \prime}\right)+\operatorname{Guin}_{i, s_{i}^{\prime \prime}}\left(x^{x}\right)}{1+\sum_{S_{i}^{\prime}}^{\operatorname{Guin}_{i, s_{i}^{\prime}}\left(x^{x}\right)}}=0 \frac{x_{i}^{*}\left(S_{i}^{\prime \prime}\right)}{\|}
\end{aligned}
$$

Menu

- Refresher and game-theoretic formalism
- Nash's theorem
- Brouwer's theorem
- Nash from Brouwer
- von Neumann's theorem

Menu

- Refresher and game-theoretic formalism
- Nash's theorem
- Brouwer's theorem
- Nash from Brouwer
- von Neumann's theorem

Two-player games

- Def: A finite n-player game is described by:
- a set of pure strategies/actions per player: S_{p}
- a utility/payoff function per player: $u_{p}: \times_{q} S_{q} \rightarrow \mathbb{R}$
- A 2-player can be summarized by two matrices $(R, C)_{m \times n}$
- rows : indexed by pure strategies of "row player"
- columns : indexed by pure strategies of "column player"
- Mixed strategy for row player: $x \in \Delta^{m}$
- Mixed strategy for column player: $y \in \Delta^{n}$
- Expected utility of row player: $u_{\text {row }}(x, y)=x^{T} R y=\sum_{i j} R_{i j} x_{i} y_{j}$
- Expected utility of column player: $u_{\text {column }}(x, y)=x^{T} C y=\sum_{i j} C_{i j} x_{i} y_{j}$
- (x, y) is Nash equilibrium iff

$$
\begin{aligned}
& \forall x^{\prime}: x^{T} R y \geq x^{\prime T} R y \\
& \forall y^{\prime}: x^{T} C y \geq x^{T} C y^{\prime}
\end{aligned}
$$

Two-player Zero-Sum games

Minimax Theorem [von Neumann'28]: Consider a two-player game zero-sum game ($R, C)_{m \times n}$ i.e. $R+C=0$. Then $\min _{x \in \Delta^{m}} \max _{y \in \Delta^{n}} x^{T} C y=\max _{y \in \Delta^{n}} \min _{x \in \Delta^{m}} x^{T} C y \quad\left(^{*}\right)$

Interpretation:

- (*) says: "If $\forall y, \exists x$ s.t. $x^{T} C y \leq v^{*} \Rightarrow \exists x, \forall y$ s.t. $x^{T} C y \leq v^{* "}$
- If x^{*} is argmin of LHS, y^{*} argmax of RHS, v^{*} optimal value of $\left({ }^{*}\right)$, then $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium, i.e. if min and max adopt x^{*} and y^{*} then (i) min pays v^{*} to max and (ii) no player can improve by unilaterally deviating
- why? Because
- under $\left(x^{*}, y^{*}\right)$ min pays max at most v^{*} (since v^{*} optimum of LHS and x^{*} is argmin)
- under $\left(x^{*}, y^{*}\right)$ max receives from \min at least v^{*} (since v^{*} optimum of RHS and y^{*} is argmax)
- by the above two: under $\left(x^{*}, y^{*}\right)$ min pays exactly v^{*} to max, hence (i) is proven
- to prove (ii), suppose $\exists x$ that is a better response for min to y^{*} i.e. $x^{T} C y^{*}<x^{* T} C y^{*}=v^{*}$
- the existence of such x violates the fact that the optimum of RHS is v^{*} and y^{*} is an argmax for RHS
- similarly the existence of a better response to x^{*} by max violates that the optimum of LHS is v^{*} and x^{*} is an argmin for the LHS

