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Context: Increasing Interest in Multi-Agent Learning

Multi-player Game-Playing:
e Superhuman Chess, Go, Poker, Gran Turismo
 Good StarCraft, Diplomacy

Y

Z ~N(,1)—
boring neural interesting
randomness network randomness

Generative Adversarial Networks (GANSs)
\ synthetic data generation

* Multi-robot interactions
 Autonomous driving
 Automated Economic policy design

N
A

Authentic Adversarial Adversarial
Input Perturbation Input

Adversarial Training
\ robustifying models against adversarial attacks/




Important Caveats...

* (I) Strategic Behavior does not emerge from standard training
(11) Naively trained models can be manipulated
(

I11) Training without regard to the presence of other agents can lead to
undesirable (e.g. collusive) consequences

* (IV) The optimization workhorse of Deep Learning (a.k.a. gradient
descent) struggles in multi-agent settings

* (V) Finally Game Theory (namely the existence of Nash equilibrium and
other types of equilibrium) breaks
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Today: Rather than imposing extra structure, or going after local equilibria,

accept that strategy-sets might be infinite, e.g. represented by DNNs, or non-
parametric & that utilities might be non-concave

* Go for full generality
* Characterize when eq existence/computation might be possible



Recall Setting: Infinite/Non-Parametric Games

action: x; € X action: x, € X, action: x,, € X,
goal: max uq (x4, ..., x,,) goal: max u,(xq, ..., x;,) goal: max u, (x4, ..., x,,)

Action sets X; : high-dimensional or infinite-dimensional/non-parametric
Utilities u; : arbitrary functions u;:X; X; - R
Questions | want to ask:

Under what conditions do there exist global Nash/Correlated/Coarse Correlated Equilibria?

Are there simple methods converging to equilibria in a finite number of steps?

For Q1: | hope that the answer depends on some complexity measure of the u;’s that | can identify
For Q2: by “simple” | want that each step can be executed efficiently



Obstacle to Eq Existence:
—‘Guess the larger number” Game

—

“TPlayer 2 (max player)
1 2 3 4

’3\.‘ 1 1 1 1 1 A two-player zero-sum game where:
Player1 | 2 | -1 1 1 1 © X=X =N
(min player) 3 1 1 1 1 * ul(xlle) — _uz (xl;xZ) — 1x12x2 o 1x1<x2
| * (so table shows utility of Player 2)
4 1-1 -1 -1 1

[Fact: “Guess the larger number” game has no Nash equilibrium (not even a very coarse approximate one). }

[So “Guess the larger number game” is an obstacle to the existence of Nash equilibrium. }

[What if we exclude it? }




What if we exclude “Guess the larger number”?

e Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash
equilibrium in {—1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {-1,1}-valued two-player zero-sum game has no subgame
which is “Guess the larger number,” then it has an e-approximate Nash equilibrium for all e > 0.
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Player 2 (max player)

~ Threshold dimension of G: size of largest threshold sub-matrix
¢ &

—

P; - . L111 . [Hanneke-Livni-Moran’21]: Tr(G) finite = Minimax Eq exists

ayer

(min player) i i i i i : . : : : .
a1 ) Claim: Tr(G) finite & Littlestone dimension of G finite*

At At *: define Littlestone dimension of G in next slide

G: {-1,1}-valued two-player zero-sum game



[Parenthesis: Littlestone dimension of a Game

Littlestone dimension of a Game
* G:amultiplayer {+1}-valued game with utilities u;: X7 X -+ XX, = {+1}

* For each player, consider the function class H; := {u;(x;,") | x; € X;}
* H; contains binary classifiers mapping each x_; to +1

* Littlestone dimension of G is max{Ldim(H;)}
l

Littlestone dimension of a Concept Class H of binary classifiers, mapping X to {£1}

 TL;DR:
* Ldim(H): characterizes whether and how well (in terms of regret) classifiers can be online learned from a
sequence of adversarial data
* Specifically suppose thatfort =1, ..., T:
* learner chooses distribution p; over h; € H

 adversary chooses (x;, b;) € X x{+1} (with knowledge of learner’s distribution)
1-h¢(x¢) b

* learner samples h; ~ p, and experiences loss £(h;(x;), b;)) = (i.e. 1 if prediction is wrong ow 0)

* [Rakhlin-Sridharan-Tewari’15, Hanneke-Livni-Moran’21]: Can guarantee expected regret 5(\/T - Ldim(H)) ]
(which may be finite even when H is infinite!)
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[Hanneke-Livni-Moran’21]: Tr(G) finite = Minimax Eq exists

52 Claim: Tr(G) finite < Littlestone dimension of G finite

—

Plaier 1 1111 . Littlestone dimension of G: max{Ldim(H,), Ldim(H,)}
(min player) i i i i i where H; := {rows of G viewed as binary classifiers over X, }
1111 1 H, := {columns of G viewed as binary classifiers of X, }

A Al Ldim(H ): characterizes online learnability of H (from stream of examples)

Suggests: perhaps equilibria can be found through learning...
* hold that thought

G: {-1,1}-valued two-player zero-sum game



How about real-valued games?

/[Daskalakis-GoIowich’ZI] (Real-valued generalization of the above; informal):

If an (infinite) real-valued two-player zero-sum game has no subgame which is e-close to some “scaling” of “Guess
the larger number,” then it has O(€)-approximate Nash equilibrium.

Formal result: requires finiteness of e-Fat Threshold or e-sequential fat shattering dimension (which are
Qespectively generalizations of threshold dimension and Littlestone dimension to real-valued functions).

>0+ €

e Def: e-FatTr(G) is the largest subgame satisfying for some 6.
<0

e Def: E-seqFat(G) = max E_SeqFat (Hl) where Hi — {ul’(xl'f) | X; = Xl} [Rakhlin-Sridharan-Tewari 15
1

* TL;DR: e-seqFat(H) characterizes online learnability of concept class H; achievable regret: O(e - T) + 5(\/T - e—seqFat(H))



Next Question: Equilibrium Learning?

Question: Can we get equilibrium learning dynamics for binary games with finite Littlestone dimension?

* challenge: standard no-regret learning algorithms have cumulative T-round regret: \/log(# actions) T

[Hanneke, Livni, Moran’21] There is a no-regret learning algorithm so that if each player uses it then their
regret is O (Ldim'/2 - T1/2); even in multi-player general-sum binary games.

* remark: no explicit dependence on # actions; note that Ldim < log(#actions) always

[Daskalakis-Golowich, ‘21]: There is a no-regret learning algorithm so that if each player uses it then their
regret is O(Ldim3/4 - T1/%); even in multi-player general-sum binary games.

 remark: when #actions finite, rate dependence on T matches [Syrgkanis et al’15] obtained through optimistic
methods (although not quite the near-optimal poly(log T') rates of [Daskalakis-Fishelson-Golowich’21, ...] )

/Corollary: For the above algorithm, in the two-player zero-sum binary game setting, the empirical averages of A
each player’s iterates are a O (Ldim3/# - T~3/%)-approximate Nash equilibrium.
In the multi-player general-sum binary game setting, the empirical averages of the players’ joint strategy
\profiles are an 5(Ldim3/4 : T‘3/4)-approximate Coarse Correlated Equilibrium. )

Big Practical Issue: All known learning algorithms use the so-called “SOA oracle” which is very inefficient!
e also, missing online learning algorithms for CCE in multi-player real-valued games (exist non-constructive algos)

e also, no understanding of when CE exists (in binary or real-valued settings)



Meanwhile what do people do in practice?

Double Oracle Algorithm [McMahan-Gordon-Blum’03] (also used in PSRO)

Double Oracle Algorithm

Setting: two-player zero-sum game G = (A, B, u), A: minimizer’s strategies
Input: nonempty finite subsets Ay € A, B € B,and € = 0

l:Lett:= O

2: repeat

3: Find @ minimax equilibrium (p;, q;) of subgame (A4;, By, 1)
4: Find some a;,; € BR4(q;) and bs,; € BRg(p;)

50 letAiq = Ay U {agy1}tand Beyq i= By U {be4q}

6 t:=t+1

7:end if u(p;, bryq) —u(ar41,9:) < €

Output: e-equilibrium (p; , g{) of game G

Question (also asked in [Gemp et al.”22]): under what conditions does this end in finite time?

How about multi-player/general-sum generalizations of this algorithm?
[Assos-Atttias-Dagan-Daskalakis-Fishelson’23]: provide answers to both questions!



Computing equilibrium “practically”

e Setting: an infinite zero-sum game (+ extensions to general-sum in our paper)
* Goal: compute a minimax equilibrium using an easy-to-compute oracle

e We’ll assume access to two oracles:

* Best-response (aka ERM) oracle: given a finitely-supported mixed strategy of the opponent, returns a
best response

* Value oracle: given strategies for both players, output the utility

/Theorem [Assos, Attias, Dagan, Daskalakis, Fishelson ‘23]: There is a (variation to the double-oracle) A
algorithm that computes an e-minimax equilibrium using a best-response oracle for both players, in time
\ZO(Ldim/EZ) (if the game has binary values) and time 20(e-seqFat/e?) (if the games has general values)

/
Theorem [Hazan, Koren ‘16]: For any d there exists a two-player zero-sum binary game with Ldim = d,
such that any algorithm that accesses the game solely via best-response and value oracles, requires
KZLdlm/2 oracle calls to compute an € = 1/4 minimax equilibrium. ,

 What'’s the point of our result?
good per iteration complexity (assuming ERM oracle)!



A “Turn-based” Double Oracle algorithm

Algorithm: a variant of Double-Oracle

* The algorithm computes action sets A, € A; € --- € A for the minimizing player (player w/ action set A)
and B, € B; € --- € B for the maximizing player (player w/ action set B) such that

20 (e-seqFat/e

Val(At+1, Bt) — Val(c/q, Bt) S Val(At, Bt) — €
Val(A; 41, Bey1) = Val(4;yq, B) = Val(4yq, Br) + €

* Each iteration is implemented using Best-Response and Value oracle calls

Central Claim: The algorithm is guaranteed to terminate after
2 . .
) (real-valued games) literations!

* An e-minimax equilibrium can be computed from there!

20(Ldim/e®) (hinary-valued games) or

Maximizing
Player

VALUE

Minimizing
Player

- B

C

B,

Computing B;. ¢ (similarly 4;, 1)

e Alternatingly, over multiple rounds, Player A
updates her randomization over A; 4
(which is finite!) using a no-regret learning
algorithm, and Player B plays her best-
response over the full set B (using ERM
oraclel!) against A’s average history so far
(i.e. runs Be-The-Leader algorithm)

* B,., < B, U {actions played by Player B}
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Analyzing the game: binary case

* Assume that the algorithm proceeds for T iterations (want to show must be finite)

* Claim: can find ty, ty, ..., ty=e(re) and a threshold 6 such that
Val (A, B, ) S0 if i >j;Val (4, B) 20 +€if i <)

* Hence, there exists an e-separated “guess-the-larger-number” subgame of mixed strategies p;_, ..., D¢, ,
t,s - qt,, Where (pti, qti) is minmax strategy of the finite subgame

* By [Hanneke-Livni-Moran ’21], [Assos, Attias, Dagan, Daskalakis, Fishelson ‘23], there exists a guess-the-
larger-number subgame of pure strategies of size about log k.* (*if time permits)

* Since threshold dimension is bounded (a.k.a. Littlestone is bounded), the size of this subgame is bounded.

* This yields a bound on the number of iterations Player B (max player)
I\/Ia;limizing Bo - B1 - Bz i, 49t, 95 | ey
ayer Dt
Player A | Pq, = 0 T €
VALUE (min player)
ptg
p, | S0
Minimizing
Player




Analyzing the game: binary case

Large = Large-ish
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Analyzing the game: binary case

Forall i > J, there exists k, £ € |Q] such that u(a f) = —1 and u(a b{)) =1

cholors
(k, 1)
2 L )i
1 3
\ Ramsey: Original graph size N =
: log N
/ monochromatic n = 02
Q 4
There exist t4, t,, ***, t,, such that'u(ak b{)) = —1 foralli > j and u(ak b{)) =1 foralli <j
1, Lo, Uy - ti» Dt ] ti Pt;) = =)
91 42 493 .. (qn b; b, bz .. b,
P1 a,
Py =>0+e€ o 1
Large pe = Large-ish a
<0 | 1
Pn an | ..

Assume bounded Tr(G), VC(G): number of algorithm iterations = g0(TDim-Q*) — O(TDim-VCDim?/e*)

Can also get bound in terms of Ldim(G) : gO(LDim/e?)



General Results

Setting Time per iter. | BR calls/it. #iterations
Minmax, 0-1 valued t/e logt/e CLit(G)/€” p ¢~CVC(G)" tr(G)/€"
Minmax, real valued t/e log t/e Csfat(Gie)/€* p ¢—CI(G) fattr(G,e) /€’
CCE, 0-1 valued kt/ € klogt/e2 | CW/€)ILIMG) p —C(k°/c”) VC(G)” tx(G)
CCE, real valued kt/ € klogt/e? | Ck/€)sfat(G.e) p ¢—~C(k"/€°)I(G)" fattr(Gie)

Table 2: The table describes the time per iteration, the number of best-response calls per iteration
and the number of iterations of our algorithms, up to polylogarithmic factors for finding an
O(e)-approximate Nash in a zero-sum two player game (minmax equilibrium) and Coarse
Correlated Equilibrium (CCE) in general games G. Here, C' > 0 is a universal constant,
and Lit, VC, tr, sfat, fat, fattr denote Littlestone, VC, threshold, sequential fat, fat and

2
fat-threshold dimensions of G, I(G) = fol (\/ fat(G, 5)d5) and A denotes a minimum

of two terms.




Conclusions

* ML developments motivate deeper study of high-dimensional/non-parametric/non-concave games

* In these games, pure Nash equilibria may fail to exist, while mixed Nash equilibria, correlated equilibria and
other game-theoretic solution concepts may fail to exist or, if they do exist, they can be infinitely supported

* This motivates studying:
* local notions of stability, e.g. local pure Nash equilibria [c.f. lecture 18]
* games w/ special structure, e.g. stochastic games, extensive-form games [c.f. lectures 9-17]

e or arbitrary games [lectures 19 + 20 (today!)]
e characterize existence of finitely supported equilibria

* develop algorithms for learning equilibria

* in particular, we showed characterization results for the existence of finitely supported Nash and Coarse
Correlated Equilibria, and identified algorithms whose iterations can be executed efficiently and are

guaranteed to converge to equilibrium.

* correlated?
* [Dagan-Daskalakis-Golowich-Fishelson’23]: no-regret learning possible = correlated equilibria exist!

* Broad topic that is widely unexplored!

e Let us call it a class!



