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Context: Increasing Interest in Multi-Agent Learning

Generative Adversarial Networks  (GANs)
synthetic data generation

• Multi-robot interactions
• Autonomous driving
• Automated Economic policy design

Multi-player Game-Playing:
• Superhuman Chess, Go, Poker, Gran Turismo
• Good StarCraft, Diplomacy

𝑍 ∼ 𝒩(0, 𝐼) ∼ 𝑃!"#$%!

Adversarial Training 
robustifying models against adversarial attacks

boring 
randomness

neural 
network

interesting 
randomness



• (I) Strategic Behavior does not emerge from standard training
• (II) Naively trained models can be manipulated
• (III) Training without regard to the presence of other agents can lead to 

undesirable (e.g. collusive) consequences
• (IV) The optimization workhorse of Deep Learning (a.k.a. gradient 

descent) struggles in multi-agent settings
• (V) Finally Game Theory (namely the existence of Nash equilibrium and 

other types of equilibrium) breaks

Today: Rather than imposing extra structure, or going after local equilibria, 
accept that strategy-sets might be infinite, e.g. represented by DNNs, or non-
parametric & that utilities might be non-concave
• Go for full generality 
• Characterize when eq existence/computation might be possible

Important Caveats…
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Recall Setting: Infinite/Non-Parametric Games

…

action: 𝑥! ∈ 𝒳!
goal: max 𝑢! 𝑥!, … , 𝑥"

action: 𝑥# ∈ 𝒳#
goal: max 𝑢# 𝑥!, … , 𝑥"

action: 𝑥" ∈ 𝒳"
goal: max 𝑢" 𝑥!, … , 𝑥"

• Action sets 𝒳$ 	: high-dimensional or infinite-dimensional/non-parametric
• Utilities 𝑢$  : arbitrary functions 𝑢$:×$𝒳$ → ℝ
• Questions I want to ask:

• For Q1: I hope that the answer depends on some complexity measure of the 𝑢$’s that I can identify 
• For Q2: by “simple” I want that each step can be executed efficiently

Are there simple methods converging to equilibria in a finite number of steps?

Under what conditions do there exist global Nash/Correlated/Coarse Correlated Equilibria?



Obstacle to Eq Existence: 
“Guess the larger number” Game

1 2 3 4 …

1 1 1 1 1 …

2 -1 1 1 1 …

3 -1 -1 1 1 …

4 -1 -1 -1 1 …

… … … … … …

Player 2 (max player)

Player 1 
(min player)

A two-player zero-sum game where:
• 𝒳! = 𝒳# = ℕ
• 𝑢! 𝑥!, 𝑥# = −𝑢# 𝑥!, 𝑥# = 1%!&%" − 1%!'%"
• (so table shows utility of Player 2)

Fact: “Guess the larger number” game has no Nash equilibrium (not even a very coarse approximate one).

So “Guess the larger number game” is an obstacle to the existence of Nash equilibrium.

What if we exclude it?



What if we exclude “Guess the larger number”?
• Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash 

equilibrium in {−1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {−1,1}-valued two-player zero-sum game has no subgame 
which is “Guess the larger number,” then it has an 𝜖-approximate Nash equilibrium for all 𝜖 > 0.

Threshold dimension of G: size of largest threshold sub-matrix 

[Hanneke-Livni-Moran’21]: Tr(G) finite  ⇒   Minimax Eq exists

Claim: Tr(G) finite    ⟺    Littlestone dimension of G finite*

*: define Littlestone dimension of G in next slide

-1 -1 -1 -1 -    -1
-1 -1 -1 -1   -  1
-1 -1 -1 -1   -  1
-1 -1 -1 -1   -  1

-1 -1 -1 -1        -1 -1       

…

…

…

G: {−1,1}-valued two-player zero-sum game 

Player 1 
(min player)

Player 2 (max player)



[Parenthesis: Littlestone dimension of a Game

Littlestone dimension of a Concept Class	𝐻	of binary classifiers, mapping 𝒳	to {±1}

]

• TL;DR:
• 𝐋𝐝𝐢𝐦(𝐻): characterizes whether and how well (in terms of regret) classifiers can be online learned from a 

sequence of adversarial data
• Specifically suppose that for 𝑡 = 1,… , 𝑇:

• learner chooses distribution 𝑝(  over ℎ( ∈ 𝐻 
• adversary chooses 𝑥( , 𝑏( ∈ 𝒳×{±1} (with knowledge of learner’s distribution)
• learner samples ℎ( ∼ 𝑝(  and experiences loss ℓ ℎ( 𝑥( , 𝑏() = !)*# %# ⋅,#

#
 (i.e. 1 if prediction is wrong ow 0)

• [Rakhlin-Sridharan-Tewari’15, Hanneke-Livni-Moran’21]: Can guarantee expected regret F𝑂 𝑇 ⋅ 𝐋𝐝𝐢𝐦(𝐻)  
        (which may be finite even when H is infinite!)

Littlestone dimension of a Game
• G: a multiplayer ±1 -valued game with utilities 𝑢$: 𝒳!×⋯×𝒳" → {±1}
• For each player, consider the function class 𝐻$ ≔ 𝑢$ 𝑥$ ,⋅ 	| 	𝑥$ ∈ 𝒳$
• 𝐻$  contains binary classifiers mapping each 𝑥)$  to ±1

• Littlestone dimension of 𝐺 is max
$
{𝐋𝐝𝐢𝐦 𝐻$ }



• Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash 
equilibrium in {−1,1}-valued two-player zero-sum games!

Theorem [Hanneke-Livni-Moran’21]: If an (infinite) {−1,1}-valued two-player zero-sum game has no subgame 
which is “Guess the larger number,” then it has an 𝜖-approximate Nash equilibrium for all 𝜖 > 0.

Threshold dimension of G: size of largest threshold sub-matrix 

[Hanneke-Livni-Moran’21]: Tr(G) finite  ⇒   Minimax Eq exists

Claim: Tr(G) finite    ⟺    Littlestone dimension of G finite

Littlestone dimension of G:	 max 𝐋𝐝𝐢𝐦 𝐻! , 𝐋𝐝𝐢𝐦 𝐻#
 where 𝐻! ≔ rows	of	G	viewed	as	binary	classi_iers	over	𝒳#
    𝐻# ≔ columns	of	G	viewed	as	binary	classi_iers	of	𝒳!

𝐋𝐝𝐢𝐦 𝐻 : characterizes online learnability of 𝐻 (from stream of examples).

   

Suggests: perhaps equilibria can be found through learning…
• hold that thought
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What if we exclude “Guess the larger number”?



[Daskalakis-Golowich’21] (Real-valued generalization of the above; informal): 
If an (infinite) real-valued two-player zero-sum game has no subgame which is 𝝐-close to some “scaling” of “Guess 
the larger number,” then it has 𝑂(𝜖)-approximate Nash equilibrium.
Formal result: requires finiteness of 𝝐-Fat Threshold or 𝝐-sequential fat shattering dimension (which are 
respectively generalizations of threshold dimension and Littlestone dimension to real-valued functions).

How about real-valued games?
• Surprising fact: “Guess the larger number” game is the only obstacle to the existence of Nash 

equilibrium in {−1,1}-valued two-player zero-sum games!

[Hanneke-Livni-Moran’21]: If an (infinite) {−1,1}-valued two-player zero-sum game has no subgame which is “Guess 
the larger number” (a.k.a. has finite Tr(G) ⟺ finite Lit(G)) then it has an 𝜖-approximate Nash eq for all 𝜖 > 0.

• Def: 𝝐-FatTr(G) is the largest subgame satisfying                                  for some 𝜃. 

• Def: 𝝐-𝐬𝐞𝐪𝐅𝐚𝐭 𝐺 = max
!
𝝐−𝐬𝐞𝐪𝐅𝐚𝐭 𝐻"   where 𝐻" ≔ 𝑢" 𝑥" ,⋅ 	| 	𝑥" ∈ 𝒳"

• TL;DR: 𝝐−seqFat(H) characterizes online learnability of concept class H; achievable regret: O 𝝐 ⋅ 𝑇 + :𝑂 𝑇 ⋅ 𝝐−seqFat(𝐻)

[Rakhlin-Sridharan-Tewari’15



Big Practical Issue: All known learning algorithms use the so-called “SOA oracle” which is very inefficient!

Next Question: Equilibrium Learning?

[Daskalakis-Golowich, ‘21]: There is a no-regret learning algorithm so that if each player uses it then their 
regret is F𝑂(Ldim-// ⋅ 𝑇!//); even in multi-player general-sum binary games.

• remark: when #actions finite, rate dependence on 𝑇 matches [Syrgkanis et al’15] obtained through optimistic 
methods (although not quite the near-optimal poly(log 𝑇)	rates of [Daskalakis-Fishelson-Golowich’21, …] )

Corollary: For the above algorithm, in the two-player zero-sum binary game setting, the empirical averages of 
each player’s iterates are a F𝑂(Ldim-// ⋅ 𝑇)-//)-approximate Nash equilibrium.
In the multi-player general-sum binary game setting, the empirical averages of the players’ joint strategy 
profiles are an F𝑂(Ldim-// ⋅ 𝑇)-//)-approximate Coarse Correlated Equilibrium.

Question: Can we get equilibrium learning dynamics for binary games with finite Littlestone dimension?
• challenge: standard no-regret learning algorithms have cumulative 𝑇-round regret: log #	actions 𝑇
 

• also, missing online learning algorithms for CCE in multi-player real-valued games (exist non-constructive algos) 
• also, no understanding of when CE exists (in binary or real-valued settings)

[Hanneke, Livni, Moran’21]  There is a no-regret learning algorithm so that if each player uses it then their 
regret is F𝑂(Ldim!/# ⋅ 𝑇!/#); even in multi-player general-sum binary games.
• remark: no explicit dependence on # actions; note that Ldim ≤ log(#actions) always



Meanwhile what do people do in practice?
Double Oracle Algorithm [McMahan-Gordon-Blum’03] (also used in PSRO)

Double Oracle Algorithm

Setting: two-player zero-sum game 𝐺	 = 	 (𝒜, ℬ, 𝑢), 𝒜: minimizer’s strategies  
Input: nonempty finite subsets 𝐴0 ⊆ 𝒜, 𝐵0 	⊆ ℬ, and  𝜀 ≥ 0 

1: Let t: = 	0	
2: repeat 
3:  Find a minimax equilibrium (𝑝(∗, 𝑞(∗) of subgame (𝐴( , 𝐵( , 𝑢)	
4:  Find some 𝑎(2! ∈ BR𝒜(𝑞(∗) and 𝑏(2! ∈ BRℬ(𝑝(∗)	
5:  Let 𝐴(2! ∶= 𝐴( 	∪ 	 {𝑎(2!} and 𝐵(2! ∶= 𝐵$ 	∪ 	 {𝑏(2!} 
6:  𝑡 ≔ 𝑡 + 1
7: end if 𝑢(𝑝(∗, 𝑏(2!) − 𝑢(𝑎(2!, 𝑞(∗) ≤ 𝜀	

Output: 𝜀-equilibrium (𝑝(∗	, 𝑞(∗)	of game 𝐺

Question (also asked in [Gemp et al.’22]): under what conditions does this end in finite time? 
How about multi-player/general-sum generalizations of this algorithm?
[Assos-Atttias-Dagan-Daskalakis-Fishelson’23]: provide answers to both questions!



Computing equilibrium “practically”
• Setting: an infinite zero-sum game (+ extensions to general-sum in our paper)
• Goal: compute a minimax equilibrium using an easy-to-compute oracle
• We’ll assume access to two oracles:

• Best-response (aka ERM) oracle: given a finitely-supported mixed strategy of the opponent, returns a 
best response

• Value oracle: given strategies for both players, output the utility

Theorem [Assos, Attias, Dagan, Daskalakis, Fishelson ‘23]: There is a (variation to the double-oracle) 
algorithm that computes an 𝜖-minimax equilibrium using a best-response oracle for both players, in time 
25 𝐋𝐝𝐢𝐦/:"  (if the game has binary values) and time 25 𝝐-𝐬𝐞𝐪𝐅𝐚𝐭/:"  (if the games has general values)

Theorem [Hazan, Koren ‘16]: For any 𝑑 there exists a two-player zero-sum binary game with Ldim = 𝑑, 
such that any algorithm that accesses the game solely via best-response and value oracles, requires 
2BCDE/# oracle calls to compute an 𝜖 = 1/4 minimax equilibrium.

• What’s the point of our result? 
good per iteration complexity (assuming ERM oracle)!



Algorithm: a variant of Double-Oracle
• A “Turn-based” Double Oracle algorithm
• The algorithm computes action sets 𝐴0 ⊆ 𝐴! ⊆ ⋯ ⊆ 𝒜 for the minimizing player (player  w/ action set 𝒜) 

and 𝐵0 ⊆ 𝐵! ⊆ ⋯ ⊆ ℬ for the maximizing player (player w/ action set ℬ) such that

Val 𝐴(2!, 𝐵( = Val 𝒜, 𝐵( ≤ Val 𝐴( , 𝐵( − 𝜖
Val 𝐴(2!, 𝐵(2! = Val 𝐴(2!, ℬ ≥ Val 𝐴(2!, 𝐵( + 𝜖

• Each iteration is implemented using Best-Response and Value oracle calls

• Central Claim: The algorithm is guaranteed to terminate after 25 𝐋𝐝𝐢𝐦/:" (binary-valued games) or 
25 𝝐-𝐬𝐞𝐪𝐅𝐚𝐭/:" (real-valued games) Iiterations!
• An 𝜖-minimax equilibrium can be computed from there!

Maximizing 
Player

Minimizing 
Player

VALUE

𝐵!

𝐴!

0.5

𝐴"

0.2

⊆

𝐵"⊆
0.8

𝐴#⊆

0.6

𝐵#⊆

0.7

𝐴$⊆

0.6 ⋯

Computing 𝑩𝒕2𝟏 (similarly 𝑨𝒕2𝟏)
• Alternatingly, over multiple rounds, Player A 

updates her randomization over 𝐴(2!	
(which	is	finite!)	using a no-regret learning 
algorithm, and Player B plays her best-
response over the full set ℬ (using ERM 
oracle!) against A’s average history so far 
(i.e. runs Be-The-Leader algorithm)

• 𝐵(2! ← 𝐵( ∪	{actions	played	by	Player	B}
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Analyzing the game: binary case
• Assume that the algorithm proceeds for 𝑇 iterations (want to show must be finite)

• Claim: can find 𝑡!, 𝑡#, … , 𝑡HIJ(L:) and a threshold 𝜃 such that 
Val 𝐴($ , 𝐵(% ≤ 𝜃 if 𝑖 > 𝑗 ; Val 𝐴($ , 𝐵(% ≥ 𝜃 + 𝜖 if 𝑖 ≤ 𝑗

• Hence, there exists an 𝜖-separated “guess-the-larger-number” subgame of mixed strategies 𝑝(! , … , 𝑝(&, 
𝑞(! , … , 𝑞(&, where (𝑝($ , 𝑞($) is minmax strategy of the finite subgame
• By [Hanneke-Livni-Moran ’21], [Assos, Attias, Dagan, Daskalakis, Fishelson ‘23], there exists a guess-the-

larger-number subgame of pure strategies of size about log 𝑘.*  (*if time permits)
• Since threshold dimension is bounded (a.k.a. Littlestone is bounded), the size of this subgame is bounded.
• This yields a bound on the number of iterations

𝒒𝒕𝟏 𝒒𝒕𝟐 𝒒𝒕𝟑 𝒒𝒕𝟒 …

𝒑𝒕𝟏 …

𝒑𝒕𝟐 …

𝒑𝒕𝟑 …

𝒑𝒕𝟒 …

… … … … … …
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(min player)
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≤ 𝜃
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⊆
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𝐴#⊆

0.6

𝐵#⊆

0.7

𝐴$⊆

0.6 ⋯𝜃
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1

−1
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For all 𝑖 > 𝑗, there exists 𝑘, ℓ ∈ [𝑄] such that 𝑢 𝑎%& , 𝑏'ℓ = −1 and 𝑢(𝑎'& , 𝑏%ℓ) = 1

1

2

3

4𝑄

𝑗𝑖

𝑄# colors
(𝑘, 𝑙)

Ramsey: Original graph size 𝑁 ⟹ 
    monochromatic 𝑛 ≈ )*$ +

,!
 -size clique must exist!

There exist 𝑡", 𝑡#, ⋯, 𝑡" such that: 𝑢 𝑎)*
& , 𝑏)+

ℓ = −1 for all 𝑖 > 𝑗 and 𝑢(𝑎)*
& , 𝑏)+

ℓ ) = 1 for all 𝑖 ≤ 𝑗

Assume bounded 𝐓𝐫(𝐺), 𝐕𝐂(𝐺): number of algorithm iterations ≈ 𝜖*(,-%.⋅0,) = 𝜖*(,-%.⋅23-%.,/5-)

Analyzing the game: binary case

Can also get bound in terms of 𝐋𝐝𝐢𝐦(𝐺)	: 𝑒*(6-%./5,)



General Results



Conclusions
• ML developments motivate deeper study of high-dimensional/non-parametric/non-concave games
• In these games, pure Nash equilibria may fail to exist, while mixed Nash equilibria, correlated equilibria and 

other game-theoretic solution concepts may fail to exist or, if they do exist, they can be infinitely supported

• This motivates studying:
• local notions of stability, e.g. local pure Nash equilibria [c.f. lecture 18]
• games w/ special structure, e.g. stochastic games, extensive-form games [c.f. lectures 9-17]
• or arbitrary games [lectures 19 + 20 (today!)]

• characterize existence of finitely supported equilibria
• develop algorithms for learning equilibria
• in particular, we showed characterization results for the existence of finitely supported Nash and Coarse 

Correlated Equilibria, and identified algorithms whose iterations can be executed efficiently and are 
guaranteed to converge to equilibrium.

• correlated? 
• [Dagan-Daskalakis-Golowich-Fishelson’23]: no-regret learning possible ⇒ correlated equilibria exist!

• Broad topic that is widely unexplored!

• Let us call it a class!


