6.S890:
 Topics in Multiagent Learning

Lecture 3 - Prof. Daskalakis
Fall 2023

Game-Theoretic Formalism

- Def: A finite n-player game is described by:
- a set of pure strategies/actions per player: S_{p}
- a utility/payoff function per player: $u_{p}: \times_{q} S_{q} \rightarrow \mathbb{R}$
- u_{p} : can be thought of as n-dimensional tensor
- Def: A randomized/mixed strategy for player p is any $x_{p} \in \Delta^{S_{p}}$
- assigns probability $x_{p}(j)$ to each $j \in S_{p}$
- i.e. $\Delta^{S_{p}}$ is the simplex whose vertices are identified with the elements of S_{p}
- Def: a player's expected utility is
- $u_{p}\left(x_{1}, \ldots, x_{n}\right)=\sum_{s \in \times_{q} s_{q}} u_{p}(s) x_{1}\left(s_{1}\right) \cdot \ldots \cdot x_{n}\left(s_{n}\right) \equiv u_{p} \cdot\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}\right)$
- A 2-player game can be described by a pair of matrices $(R, C)_{m \times n}$
- rows $\stackrel{1-1}{\longleftrightarrow} S_{1} ;$ columns $\stackrel{1-1}{\longleftrightarrow} S_{2}$
- player 1: "row player"; player 2: "column player"
- mixed strategies $x \in \Delta^{m}$ for row player, $y \in \Delta^{n}$ for column player
- expected utility of row player: $x^{T} R y$; expected utility of column player: $x^{T} C y$

Nash Equilibrium

- Def: a collection of mixed strategies x_{1}, \ldots, x_{n} is a Nash equilibrium iff

$$
\forall i, x_{i}^{\prime}: \quad u_{i}\left(x_{i}, x_{-i}\right) \geq u_{i}\left(x_{i}^{\prime}, x_{-i}\right)
$$

(recall that: if x_{1}, \ldots, x_{n} are player strategies, then x_{-i} denotes the strategies of all players except player i 's)

- In 2-player games: (x, y) is Nash equilibrium iff

$$
\begin{aligned}
& \forall x^{\prime}: x^{T} R y \geq x^{T} R y \\
& \forall y^{\prime}: x^{T} C y \geq x^{T} C y^{\prime}
\end{aligned}
$$

Nash's Theorem

[Nash 1950]: Every finite game (i.e. game with a finite number of players and a finite number of pure strategies per player) has a Nash equilibrium.

- Proof (last time): using Brouwer's fixed point theorem.
- [Brouwer 1911]: Every continuous function $f: D \rightarrow D$ from a convex compact set D to itself has a fixed point, i.e. some $x^{*}=f\left(x^{*}\right)$.

Two-player Zero-Sum games

Minimax Theorem [von Neumann'28]: Consider a two-player game zero-sum game ($R, C)_{m \times n}$ i.e. $R+C=0$. Then $\min _{x \in \Delta^{m}} \max _{y \in \Delta^{n}} x^{T} C y=\max _{y \in \Delta^{n}} \min _{x \in \Delta^{m}} x^{T} C y \quad\left(^{*}\right)$

Interpretation:

- (*) says: "If $\forall y, \exists x$ s.t. $x^{T} C y \leq v^{*} \Rightarrow \exists x, \forall y$ s.t. $x^{T} C y \leq v^{* "}$
- If x^{*} is argmin of LHS, y^{*} argmax of RHS, v^{*} optimal value of $\left({ }^{*}\right)$, then $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium, i.e. if min and max adopt x^{*} and y^{*} then (i) min pays v^{*} to max and (ii) no player can improve by unilaterally deviating
- why? Because
- under $\left(x^{*}, y^{*}\right)$ min pays max at most v^{*} (since v^{*} optimum of LHS and x^{*} is argmin)
- under $\left(x^{*}, y^{*}\right)$ max receives from \min at least v^{*} (since v^{*} optimum of RHS and y^{*} is argmax)
- by the above two: under $\left(x^{*}, y^{*}\right)$ min pays exactly v^{*} to max, hence (i) is proven
- to prove (ii), suppose $\exists x$ that is a better response for min to y^{*} i.e. $x^{T} C y^{*}<x^{* T} C y^{*}=v^{*}$
- the existence of such x violates the fact that the optimum of RHS is v^{*} and y^{*} is an argmax for RHS
- similarly the existence of a better response to x^{*} by max violates that the optimum of LHS is v^{*} and x^{*} is an argmin for the LHS

Two-player Zero-Sum games

Minimax Theorem [von Neumann'28]: Consider a two-player game zero-sum game ($R, C)_{m \times n}$ i.e. $R+C=0$. Then $\min _{x \in \Delta^{m}} \max _{y \in \Delta^{n}} x^{T} C y=\max _{y \in \Delta^{n}} \min _{x \in \Delta^{m}} x^{T} C y \quad\left(^{*}\right)$

Interpretation:

- (*) says: "If $\forall y, \exists x$ s.t. $x^{T} C y \leq v^{*} \Rightarrow \exists x, \forall y$ s.t. $x^{T} C y \leq v^{* "}$
- If x^{*} is argmin of LHS, y^{*} argmax of RHS, v^{*} optimal value of $\left({ }^{*}\right)$, then $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium, i.e. if min and max adopt x^{*} and y^{*} then (i) min pays v^{*} to max and (ii) no player can improve by unilaterally deviating
- thus von Neumann's theorem establishes the existence of a Nash equilibrium in two-player zero-sum games
von Neumann: "As far as I can see, there could be no theory of games ... without that theorem ...
I thought there was nothing worth publishing until the Minimax Theorem was proved"

Connection to mathematical programming:

- [von Neumann-Dantzig'47, Adler'13, Brooks-Reny'21]: minimax eq computation \Leftrightarrow Linear Programming
- Generalizes to convex-concave objectives w/ general convex compact constraint sets
- In this case, equivalence to convex programming

Proof of von Neumann's Minimax Theorem

Minimax Theorem [von Neumann'28]: Consider a two-player game zero-sum game ($R, C)_{m \times n}$ i.e.
$R+C=0$. Then $\left.\min _{x \in \Delta^{m}} \max _{y \in \Delta^{n}} x^{T} C y=\max _{y \in \Delta^{n}} \min _{x \in \Delta^{m}} x^{T} C y \quad{ }^{*}\right)$

- Here we'll do a proof using Strong Linear Programming duality
- Proof:

LHS:

$$
\begin{aligned}
& \text { LP1: } \quad \min z \\
& x^{T} C e_{j} \leq z, \forall j \\
& x \in \Delta^{m}
\end{aligned}
$$

RHS:

$$
\begin{array}{cl}
\text { LP2: } & \max w \\
e_{i}^{T} C y \geq w, \forall i & \text { Strong LP duality: LP1=LP2 } \\
y \in \Delta^{n}
\end{array}
$$

LP1 and LP2 are duals!

von Neumann and Dantzig

[picture from Game Theory Alive, by Anna Karlin and Yuval Peres]

- On October 3, 1947, I visited him (von Neumann) for the first time at the Institute for Advanced Study at Princeton.
- I remember trying to describe to von Neumann, as I would to an ordinary mortal, the Air Force problem. I began with the formulation of the linear programming model in terms of activities and items, etc.
- Von Neumann did something which I believe was uncharacteristic of him. "Get to the point," he said impatiently. Having at times a somewhat low kindling-point, I said to myself "O.K., if he wants a quicky, then that's what he will get."
- In under one minute I slapped the geometric and algebraic version of the problem on the blackboard. Von Neumann stood up and said "Oh that!" Then for the next hour and a half, he proceeded to give me a lecture on the mathematical theory of linear programs.
- At one point seeing me sitting there with my eyes popping and my mouth open (after I had searched the literature and found nothing), von Neumann said: "I don't want you to think I am pulling all this out of my sleeve at the spur of the moment like a magician. I have just recently completed a book with Oskar Morgenstern on the theory of games. What I am doing is conjecturing that the two problems are equivalent. The theory that I am outlining for your problem is an analogue to the one we have developed for games." Thus I learned about Farkas' Lemma, and about duality for the first time.

Nash Equilibrium Existence: two-player zero-sum games

0,0	$-1,1$	$1,-1$
$1,-1$	0,0	$-1,1$
$-1,1$	$1,-1$	0,0

Nash Equilibrium Existence: general games

[John Nash '50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.
Proof non-constructive (uses Brouwer's fixed point theorem)
No simpler proof has been discovered
[Daskalakis-Goldberg-Papadimitriou'06]: no simpler proof exists
i.e.

$$
\begin{aligned}
& \text { Brouwer's Fixed } \\
& \text { Point Theorem }
\end{aligned}
$$

$c f$ lectures week after next

Beyond Nash Equilibrium?

Consider other equilibrium concepts
e.g. correlated equilibrium

Consider outcomes of dynamical behavior
e.g. no-regret learning

Data-Set from Microsoft's Bing
"Econometrics for Learning Agents" [Nekipelov, Syrgkanis, Tardos'15] Stationarity of behavior inconsistent with data-sets

Menu

- Refresher: Nash \& von Neumann
- Correlated Equilibrium

Menu

- Refresher: Nash \& von Neumann
- Correlated Equilibrium

Traffic Lights

Consider the following two-player traffic light game:

	STOP	GO
STOP	$(0,0)$	$(0,1)$
GO	$(1,0)$	$(-100,-100)$

Two pure strategy Nash Equilibria: (GO,STOP), and (STOP,GO)

- but under these one player never gets any utility...

One mixed strategy equilibrium: each player plays GO w/prob $\frac{1}{101}$ STOP w/ prob $\frac{100}{101}$

- results in an accident w/ probability $\approx 0.01 \%$
- no player goes w/ probability 98\%

Traffic Lights

A better outcome would be the following, which is fair, has social welfare 1, and doesn't risk death:

	STOP	GO
STOP	0%	50%
GO	50%	0%

No Nash equilibrium attains the above probabilities
Worse still: no pair of mixed strategies can attain this distribution over action profiles

Traffic lights do!
by correlating players' behavior
Obeying traffic lights is not just a matter of obedience...
following the suggestion of the traffic light is a best response!

Correlated Equilibrium [Aumann'74]

Def: A correlated equilibrium is a joint distribution $D\left(s_{1}, \ldots, s_{n}\right)$ over pure strategy profiles such that for every player i, every pair of pure strategies s_{i} and s_{i}^{\prime} s.t. s_{i} is sampled with non-zero probability by D for player i :

$$
\mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}, s_{-i}\right)\right] \geq \mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right]
$$

In words: "A distribution D over pure strategy profiles such that after a profile s is drawn from D, playing s_{i} is optimal for player i conditioned on seeing s_{i} but not seeing s_{-i} and assuming everyone else will play according to s_{-i}."

For example: Conditioned on seeing STOP, you know your opponent will see GO, so STOP is a best response for you assuming opponent will follow the GO recommendation. Conditioned on seeing GO, you know your opponent will see STOP, so GO is a best response assuming opponent will follow the STOP recommendation.

Hierarchies

1. Observe: Nash Equilibria are also Correlated Equilibria - they just correspond to product measures (wherein s_{i} contains no information about s_{-i}).
2. But Correlated Equilibria are a larger/richer set.
3. We can define still larger sets!

Def: A coarse correlated equilibrium is a distribution $D\left(s_{1}, \ldots, s_{n}\right)$ over pure strategy profiles such that for every player i and every pure strategy s_{i}^{\prime} :

$$
\mathbb{E}_{s \sim D}\left[u_{i}(s)\right] \geq \mathbb{E}_{s \sim D}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right]
$$

4. The difference: the recommendation just has to be optimal on average, not conditioned on having seen it.
5. Whether it is sensible depends on whether you have to commit to following the correlating "device" D up front, or have the option of deviating after seeing its suggestion.

Hierarchies

Consider game:

	A	B	C
A	$(1,1)$	$(-1,-1)$	$(0,0)$
B	$(-1,-1)$	$(1,1)$	$(0,0)$
C	$(0,0)$	$(0,0)$	$(-1.1,-1.1)$

		A	B	C
and joint distribution $D:$	A	$1 / 3$		
	B		$1 / 3$	
	C			$1 / 3$

Expected payoff of, say the row player, from committing to follow recommendation of D assuming that the column player does also is >0

Expected payoff of row from playing fixed strategy A or B assuming that the column player follows the recommendation of D is: $(1 / 3) \cdot 1-(1 / 3) \cdot 1+(1 / 3) \cdot 0=0$

Expected payoff of row from playing fixed strategy C assuming that the column player follows the recommendation of D is: less than zero.

Hence this is a CCE even though conditioned on being told to play C, it is not a best response.
This means that the given distribution is a CCE but not a CE.

Hierarchies

Solution Concept Recap:
 $D S E \subset{ }^{*} P S N E \subset M S N E \subset C E \subset C C E$

1. Starting at MSNE, we have guaranteed existence.
2. Claim: Starting at CE, we have computational tractability.

- First, can write CE as a linear program - today
- Second, no-regret learning converges to CCE in general (and with extra work can define no-regret learner that converge to CE) - next week

```
Key
DSE : dominant strategy equilibrium
PSNE : pure Nash equilibrium
MSNE : (mixed) Nash equilibrium
CE : correlated equilibrium
CCE : coarse correlated equilibrium
\subset ~ : ~ s t r i c t ~ i n c l u s i o n ~ f o r ~ s o m e ~ g a m e s ~
    inclusion for all games
C* : inclusion for games w/ no
    identical-payoff strategies;
    otherwise DSE \subsetMSNE
```

Menu

- Refresher: Nash \& von Neumann
- Correlated Equilibrium

Menu

- Refresher: Nash \& von Neumann
- Correlated Equilibrium
- computation

Linear Programming Formulation

Def: A correlated equilibrium is a joint distribution $D\left(s_{1}, \ldots, s_{n}\right)$ over pure strategy profiles such that for every player i, every pair of pure strategies s_{i} and s_{i}^{\prime} s.t. s_{i} is sampled with non-zero probability by D for player i :

$$
\mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}, s_{-i}\right)\right] \geq \mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right]
$$

$$
\begin{aligned}
\text { s.t. } \quad \forall i, \forall s_{i}, s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}{ }^{\prime}, s_{-i}\right) \\
\forall s: & D(s) \geq 0 \\
& \sum_{s} D(s)=1
\end{aligned}
$$

N.B. first constraint same as

$$
\begin{aligned}
\forall i, \forall s_{i}, s_{i}^{\prime}: & D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \\
\Leftrightarrow \forall i, \forall s_{i} s . t . D\left(s_{i}\right)>0, \forall s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
\end{aligned}
$$

Linear Programming Formulation

Def: A correlated equilibrium is a joint distribution $D\left(s_{1}, \ldots, s_{n}\right)$ over pure strategy profiles such that for every player i, every pair of pure strategies s_{i} and s_{i}^{\prime} s.t. s_{i} is sampled with non-zero probability by D for player i :

$$
\mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}, s_{-i}\right)\right] \geq \mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right]
$$

$$
\begin{aligned}
\text { s.t. } \quad \forall i, \forall s_{i}, s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}{ }^{\prime}, s_{-i}\right) \\
\forall s: & D(s) \geq 0 \\
& \sum_{s} D(s)=1
\end{aligned}
$$

N.B. first constraint same as

$$
\begin{aligned}
\forall i, \forall s_{i}, s_{i}^{\prime}: & D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \\
\Leftrightarrow \forall i, \forall s_{i} s . t . D\left(s_{i}\right)>0, \forall s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
\end{aligned}
$$

Linear Programming Formulation

Def: A correlated equilibrium is a joint distribution $D\left(s_{1}, \ldots, s_{n}\right)$ over pure strategy profiles such that for every player i, every pair of pure strategies s_{i} and s_{i}^{\prime} s.t. s_{i} is sampled with non-zero probability by D for player i :

$$
\mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}, s_{-i}\right)\right] \geq \mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right]
$$

$$
\begin{aligned}
& \max \sum_{s} D(s) \sum_{i} u_{i}(s) \quad \text { (social welfare) } \\
\text { s.t. } \quad \forall i, \forall s_{i}, s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}{ }^{\prime}, s_{-i}\right) \\
\forall s: & D(s) \geq 0 \\
& \sum_{s} D(s)=1
\end{aligned}
$$

N.B. first constraint same as

$$
\begin{aligned}
\forall i, \forall s_{i}, s_{i}^{\prime}: & D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \\
\Leftrightarrow \forall i, \forall s_{i} s . t . D\left(s_{i}\right)>0, \forall s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
\end{aligned}
$$

Linear Programming Formulation

Def: A correlated equilibrium is a joint distribution $D\left(s_{1}, \ldots, s_{n}\right)$ over pure strategy profiles such that for every player i, every pair of pure strategies s_{i} and s_{i}^{\prime} s.t. s_{i} is sampled with non-zero probability by D for player i :

$$
\mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}, s_{-i}\right)\right] \geq \mathbb{E}_{s_{-i} \sim D\left(\cdot \mid s_{i}\right)}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right]
$$

		$\max \sum_{s} D(s) u_{i^{*}}(s) \quad$ (welfare of a particular player $\left.i^{*}\right)$
s.t. $\quad \forall i, \forall s_{i}, s_{i}^{\prime}:$	$\sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$	
	$\forall s:$	$D(s) \geq 0$
	$\sum_{s} D(s)=1$	

N.B. first constraint same as

$$
\begin{aligned}
\forall i, \forall s_{i}, s_{i}^{\prime}: & D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq D\left(s_{i}\right) \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \\
\Leftrightarrow \forall i, \forall s_{i} s . t . D\left(s_{i}\right)>0, \forall s_{i}^{\prime}: & \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} D\left(s_{-i} \mid s_{i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
\end{aligned}
$$

N.B.

- LP has as many variables as there are pure strategy profiles
- n players, s strategies each: s^{n}
- so to solve this LP need time poly $\left(s^{n}\right)$
- Technically, this is polynomial in the description of the game, as every utility tensor has as many entries as there are variables in the LP
- Can we do better?
- Yes, if we are OK with approximate CE/CCE computation
- using no-regret learning (next week!) can find CCE/CE in time roughly: $\frac{\text { poly }(s, n)}{\epsilon^{2}}$
- Yes, if the game has more structure,
- e.g. graphical game (every player's utility depends on d other players, where $d \ll n$)
- use "Ellipsoid Against Hope" algorithm of [Papadimitriou'05]

