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Game-Theoretic Formalism
• Def: A finite n-player game is described by:

• a set of pure strategies/actions per player: 𝑆!
• a utility/payoff function per player: 𝑢!:×"𝑆" → ℝ
• 𝑢!: can be thought of as 𝑛-dimensional tensor

• Def: A randomized/mixed strategy for player 𝑝 is any 𝑥! ∈ Δ"!
• assigns probability 𝑥!(𝑗) to each 𝑗 ∈ 𝑆!
• i.e. Δ#!  is the simplex whose vertices are identified with the elements of 𝑆!

• Def: a player’s expected utility is
• 𝑢! 𝑥$, … , 𝑥% = ∑&∈×"#" 𝑢! 𝑠 𝑥$ 𝑠$ ⋅ … ⋅ 𝑥% 𝑠% ≡ 𝑢! ⋅ (𝑥$⊗𝑥)⊗⋯⊗𝑥%)

• A 2-player game can be described by a pair of matrices 𝑅	, 𝐶 #×%

• rows 
$*$

𝑆$;  columns 
$*$

𝑆)
• player 1: “row player”; player 2: “column player”
• mixed strategies 𝑥 ∈ Δ+ for row player, 𝑦 ∈ Δ% for column player
• expected utility of row player: 𝑥,𝑅𝑦; expected utility of column player: 𝑥,𝐶𝑦



Nash Equilibrium

• Def: a collection of mixed strategies 𝑥&, … , 𝑥% is a Nash equilibrium iff
∀𝑖, 𝑥'(: 	 𝑢' 𝑥' , 𝑥)' ≥ 𝑢' 𝑥'′, 𝑥)'

(recall that: if 𝑥$, … , 𝑥% are player strategies, then 𝑥*- denotes the strategies of all 
players except player 𝑖’s)

• In 2-player games: (𝑥, 𝑦) is Nash equilibrium iff
∀𝑥(: 𝑥*𝑅𝑦 ≥ 𝑥(*𝑅𝑦
∀𝑦(: 𝑥*𝐶𝑦 ≥ 𝑥*𝐶𝑦′



Nash’s Theorem

[Nash 1950]: Every finite game (i.e. game with a finite number of players and a finite 
number of pure strategies per player) has a Nash equilibrium.

• Proof (last time): using Brouwer’s fixed point theorem.

• [Brouwer 1911]: Every continuous function 𝑓: 𝐷 → 𝐷 from a convex compact set 𝐷 to 
itself has a fixed point, i.e. some 𝑥∗ = 𝑓 𝑥∗ .



Minimax Theorem [von Neumann’28]: Consider a two-player game zero-sum game 𝑅, 𝐶 #×% i.e. 
𝑅 + 𝐶 = 0. Then min

,∈."
max
/∈.#

𝑥*𝐶𝑦 = max
/∈.#

min
,∈."

𝑥*𝐶𝑦   (*)

Interpretation:  
• (*) says:  “If ∀𝑦, ∃𝑥	s. t. 	𝑥!𝐶𝑦 ≤ 𝑣∗ ⇒ ∃𝑥, ∀𝑦	 s. t. 	 𝑥!𝐶𝑦 ≤ 𝑣∗”
• If 𝑥∗ is argmin of LHS, 𝑦∗ argmax of RHS, 𝑣∗ optimal value of (*), then 𝑥∗, 𝑦∗  is a Nash equilibrium, i.e. if min 

and max adopt 𝑥∗ and 𝑦∗ then (i) min pays 𝑣∗ to max and (ii) no player can improve by unilaterally deviating
• why? Because
• under (𝑥∗, 𝑦∗) min pays max at most 𝑣∗ (since 𝑣∗	optimum of LHS and  𝑥∗ is argmin)
• under (𝑥∗, 𝑦∗) max receives from min at least 𝑣∗ (since 𝑣∗	optimum of RHS and  𝑦∗ is argmax)
• by the above two: under (𝑥∗, 𝑦∗)  min pays exactly 𝑣∗ to max, hence (i) is proven
• to prove (ii), suppose ∃𝑥 that is a better response for min to 𝑦∗i.e. 𝑥!𝐶𝑦∗ < 𝑥∗!𝐶𝑦∗ = 𝑣∗

- the existence of such 𝑥 violates the fact that the optimum of RHS is 𝑣∗ and 𝑦∗ is an argmax for RHS
- similarly the existence of a better response to 𝑥∗ by max violates that the optimum of LHS is 𝑣∗ and 𝑥∗ is 

an argmin for the LHS

Two-player Zero-Sum games



Minimax Theorem [von Neumann’28]: Consider a two-player game zero-sum game 𝑅, 𝐶 #×% i.e. 
𝑅 + 𝐶 = 0. Then min

,∈."
max
/∈.#

𝑥*𝐶𝑦 = max
/∈.#

min
,∈."

𝑥*𝐶𝑦   (*)

Interpretation:  
• (*) says:  “If ∀𝑦, ∃𝑥	s. t. 	𝑥!𝐶𝑦 ≤ 𝑣∗ ⇒ ∃𝑥, ∀𝑦	 s. t. 	 𝑥!𝐶𝑦 ≤ 𝑣∗”
• If 𝑥∗ is argmin of LHS, 𝑦∗ argmax of RHS, 𝑣∗ optimal value of (*), then 𝑥∗, 𝑦∗  is a Nash equilibrium, i.e. if min 

and max adopt 𝑥∗ and 𝑦∗ then (i) min pays 𝑣∗ to max and (ii) no player can improve by unilaterally deviating
• thus von Neumann’s theorem establishes the existence of a Nash equilibrium in two-player zero-sum games

von Neumann: “As far as I can see, there could be no theory of games … without that theorem … 
I thought there was nothing worth publishing until the Minimax Theorem was proved”

Connection to mathematical programming: 
• [von Neumann-Dantzig’47, Adler’13, Brooks-Reny’21]: minimax eq computation ⇔ Linear Programming
• Generalizes to convex-concave objectives w/ general convex compact constraint sets
• In this case, equivalence to convex programming

Two-player Zero-Sum games



Minimax Theorem [von Neumann’28]: Consider a two-player game zero-sum game 𝑅, 𝐶 #×% i.e. 
𝑅 + 𝐶 = 0. Then min

,∈."
max
/∈.#

𝑥*𝐶𝑦 = max
/∈.#

min
,∈."

𝑥*𝐶𝑦   (*)

• Here we’ll do a proof using Strong Linear Programming duality
• Proof:
LHS: 

𝐿𝑃1:	 min 𝑧	
𝑥*𝐶𝑒0 ≤ 𝑧, ∀𝑗

𝑥 ∈ Δ#
RHS: 

𝐿𝑃2:	 max𝑤	
𝑒'*𝐶𝑦 ≥ 𝑤, ∀𝑖

𝑦 ∈ Δ%

Proof of von Neumann’s Minimax Theorem

LP1 and LP2 are duals!
Strong LP duality: LP1=LP2



von Neumann and Dantzig

• On October 3, 1947, I visited him (von Neumann) for the first time at the Institute for Advanced Study at 
Princeton. 

• I remember trying to describe to von Neumann, as I would to an ordinary mortal, the Air Force problem. I 
began with the formulation of the linear programming model in terms of activities and items, etc.

• Von Neumann did something which I believe was uncharacteristic of him. “Get to the point,” he said 
impatiently. Having at times a somewhat low kindling-point, I said to myself “O.K., if he wants a quicky, then 
that’s what he will get.” 

• In under one minute I slapped the geometric and algebraic version of the problem on the blackboard. Von 
Neumann stood up and said “Oh that!” Then for the next hour and a half, he proceeded to give me a lecture 
on the mathematical theory of linear programs. 

• At one point seeing me sitting there with my eyes popping and my mouth open (after I had searched the 
literature and found nothing), von Neumann said: “I don’t want you to think I am pulling all this out of my 
sleeve at the spur of the moment like a magician. I have just recently completed a book with Oskar 
Morgenstern on the theory of games. What I am doing is conjecturing that the two problems are equivalent. 
The theory that I am outlining for your problem is an analogue to the one we have developed for games.” 
Thus I learned about Farkas’ Lemma, and about duality for the first time.

[picture from Game Theory Alive, by 
Anna Karlin and Yuval Peres]
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[von Neumann ’28:] 
In two-player zero-sum games, it always exists. LP duality

[Danzig ’47]

[original proof used fixed point arguments] [Adler ’13]

No-regret Learning
cf next week lectures

Nash Equilibrium Existence: 
two-player zero-sum games

[Brooks-Reny’21]



[John Nash ’50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.

Proof non-constructive (uses Brouwer’s fixed point theorem)

No simpler proof has been discovered

[Daskalakis-Goldberg-Papadimitriou’06]: no simpler proof exists

i.e. Nash 
Equilibrium

Brouwer’s Fixed 
Point Theorem

Nash Equilibrium Existence: general games

cf lectures week after next



Consider other equilibrium concepts
e.g. correlated equilibrium

Consider outcomes of dynamical behavior
e.g. no-regret learning

Beyond Nash Equilibrium?
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Data-Set from Microsoft’s Bing
“Econometrics for Learning Agents” [Nekipelov, 
Syrgkanis, Tardos’15] Stationarity of behavior 
inconsistent with data-sets



Menu
• Refresher: Nash & von Neumann
• Correlated Equilibrium



Menu
• Refresher: Nash & von Neumann
• Correlated Equilibrium



Consider the following two-player traffic light game:

STOP GO
STOP (0,0) (0,1)
GO (1,0) (-100,-100)

Two pure strategy Nash Equilibria: (GO,STOP), and (STOP,GO)
• but under these one player never gets any utility...
One mixed strategy equilibrium: each player plays GO w/ prob !

!"!
 STOP w/ prob !""

!"!
 

• results in an accident w/ probability ≈ 0.01%
• no player goes w/ probability 98%

Traffic Lights



A better outcome would be the following, which is fair, has social welfare 1, and doesn’t risk 
death:

STOP GO
STOP 0% 50%
GO 50% 0%

No Nash equilibrium attains the above probabilities 
Worse still: no pair of mixed strategies can attain this distribution over action profiles

Traffic lights do!
by correlating players’ behavior

Obeying traffic lights is not just a matter of obedience... 
following the suggestion of the traffic light is a best response!

Traffic Lights



Def: A correlated equilibrium is a joint distribution 𝐷(𝑠&, … , 𝑠%) over pure strategy profiles such that 
for every player 𝑖 , every pair of pure strategies 𝑠' and 𝑠'( s.t. 𝑠' is sampled with non-zero probability 
by 𝐷 for player 𝑖: 

𝔼#./∼%(⋅|#/) 𝑢* 𝑠* , 𝑠+* ≥ 𝔼#./∼%(⋅|#/) 𝑢* 𝑠*
,, 𝑠+*

In words: “A distribution 𝐷 over pure strategy profiles such that after a profile 𝑠 is drawn from 𝐷, 
playing 𝑠'  is optimal for player 𝑖 conditioned on seeing 𝑠'  but not seeing 𝑠)'  and assuming everyone 
else will play according to	𝑠)'."

For example: Conditioned on seeing STOP, you know your opponent will see GO, so STOP is a best 
response for you assuming opponent will follow the GO recommendation. Conditioned on seeing GO, you 
know your opponent will see STOP, so GO is a best response assuming opponent will follow the STOP 
recommendation.

Correlated Equilibrium [Aumann’74]



1. Observe: Nash Equilibria are also Correlated Equilibria — they just correspond to product measures 
(wherein si contains no information about s−i ).

2. But Correlated Equilibria are a larger/richer set. 
3. We can define still larger sets!

Def: A coarse correlated equilibrium is a distribution 𝐷(𝑠&, … , 𝑠%) over pure strategy profiles such 
that for every player 𝑖 and every pure strategy 𝑠'(:

𝔼1∼3 𝑢' 𝑠 ≥ 𝔼1∼3 𝑢' 𝑠'(, 𝑠)'

4. The difference: the recommendation just has to be optimal on average, not conditioned on having 
seen it.

5. Whether it is sensible depends on whether you have to commit to following the correlating 
“device”	𝐷	up front, or have the option of deviating after seeing its suggestion.

Hierarchies



A 
B 
C

A
   (1,1)
  (-1,-1)
   (0,0)

B
   (-1,-1)
   (1,1)
   (0,0)

C
 (0,0)
(0,0)

 (-1.1,-1.1)

A 
B 
C

A
1/3

B

1/3

C

1/3

Expected payoff of, say the row player, from committing to follow recommendation of 𝐷 assuming that the 
column player does also is > 0

Expected payoff of row from playing fixed strategy A or B assuming that the column player follows the 
recommendation of 𝐷 is: (1/3) ·  1−  (1/3) · 1+  (1/3) ·     0=  0

Expected payoff of row from playing fixed strategy C assuming that the column player follows the recommendation of 
𝐷 is:  less than zero.
 

Hence this is a CCE even though conditioned on being told to play C , it is not a best response. 
This means that the given distribution is a CCE but not a CE.

Hierarchies
Consider game:

and joint distribution 𝐷:



Solution Concept Recap:

DSE ⊂*  PSNE ⊂	MSNE ⊂	CE ⊂	CCE

1. Starting at MSNE, we have guaranteed existence.
2. Claim: Starting at CE, we have computational tractability.
• First, can write CE as a linear program - today
• Second, no-regret learning converges to CCE in general (and with extra work can 

define no-regret learner that converge to CE) – next week

Hierarchies Key

DSE : dominant strategy equilibrium
PSNE : pure Nash equilibrium
MSNE : (mixed) Nash equilibrium
CE  : correlated equilibrium
CCE : coarse correlated equilibrium
⊂  : strict inclusion for some games
    inclusion for all games
⊂*  : inclusion for games w/ no 
     identical-payoff strategies;
     otherwise DSE ⊂	MSNE 



Menu
• Refresher: Nash & von Neumann
• Correlated Equilibrium



Menu
• Refresher: Nash & von Neumann
• Correlated Equilibrium
• computation



Linear Programming Formulation
Def: A correlated equilibrium is a joint distribution 𝐷(𝑠&, … , 𝑠%) over pure strategy profiles such that 
for every player 𝑖 , every pair of pure strategies 𝑠' and 𝑠'( s.t. 𝑠' is sampled with non-zero probability 
by 𝐷 for player 𝑖: 

𝔼1$%∼3(⋅|1%) 𝑢' 𝑠' , 𝑠)' ≥ 𝔼1$%∼3(⋅|1%) 𝑢' 𝑠'
(, 𝑠)'

 max 0 
                  s.t. ∀𝑖, ∀𝑠# , 𝑠#$:   ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠#′, 𝑠&#)
              ∀𝑠:	 𝐷 𝑠 ≥ 0
  ∑%𝐷 𝑠 = 1
  

N.B. first constraint same as 
          ∀𝑖, ∀𝑠# , 𝑠#$:           𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ 𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)
    ⇔ ∀𝑖, ∀𝑠#	𝑠. 𝑡. 𝐷 𝑠# > 0,∀𝑠#$:                      ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)



Linear Programming Formulation
Def: A correlated equilibrium is a joint distribution 𝐷(𝑠&, … , 𝑠%) over pure strategy profiles such that 
for every player 𝑖 , every pair of pure strategies 𝑠' and 𝑠'( s.t. 𝑠' is sampled with non-zero probability 
by 𝐷 for player 𝑖: 

𝔼1$%∼3(⋅|1%) 𝑢' 𝑠' , 𝑠)' ≥ 𝔼1$%∼3(⋅|1%) 𝑢' 𝑠'
(, 𝑠)'

 max any linear function of 𝐷 
                  s.t. ∀𝑖, ∀𝑠# , 𝑠#$:   ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠#′, 𝑠&#)
              ∀𝑠:	 𝐷 𝑠 ≥ 0
  ∑%𝐷 𝑠 = 1
  

N.B. first constraint same as 
          ∀𝑖, ∀𝑠# , 𝑠#$:           𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ 𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)
    ⇔ ∀𝑖, ∀𝑠#	𝑠. 𝑡. 𝐷 𝑠# > 0,∀𝑠#$:                      ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)



Linear Programming Formulation
Def: A correlated equilibrium is a joint distribution 𝐷(𝑠&, … , 𝑠%) over pure strategy profiles such that 
for every player 𝑖 , every pair of pure strategies 𝑠' and 𝑠'( s.t. 𝑠' is sampled with non-zero probability 
by 𝐷 for player 𝑖: 

𝔼1$%∼3(⋅|1%) 𝑢' 𝑠' , 𝑠)' ≥ 𝔼1$%∼3(⋅|1%) 𝑢' 𝑠'
(, 𝑠)'

 max ∑%𝐷 𝑠 ∑# 𝑢#(𝑠)       (social welfare)
                  s.t. ∀𝑖, ∀𝑠# , 𝑠#$:   ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠#′, 𝑠&#)
              ∀𝑠:	 𝐷 𝑠 ≥ 0
  ∑%𝐷 𝑠 = 1
  

N.B. first constraint same as 
          ∀𝑖, ∀𝑠# , 𝑠#$:           𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ 𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)
    ⇔ ∀𝑖, ∀𝑠#	𝑠. 𝑡. 𝐷 𝑠# > 0,∀𝑠#$:                      ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)



Linear Programming Formulation
Def: A correlated equilibrium is a joint distribution 𝐷(𝑠&, … , 𝑠%) over pure strategy profiles such that 
for every player 𝑖 , every pair of pure strategies 𝑠' and 𝑠'( s.t. 𝑠' is sampled with non-zero probability 
by 𝐷 for player 𝑖: 

𝔼1$%∼3(⋅|1%) 𝑢' 𝑠' , 𝑠)' ≥ 𝔼1$%∼3(⋅|1%) 𝑢' 𝑠'
(, 𝑠)'

 max ∑%𝐷 𝑠 𝑢#∗(𝑠)       (welfare of a particular player 𝑖∗)
                  s.t. ∀𝑖, ∀𝑠# , 𝑠#$:   ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠# , 𝑠&# 𝑢#(𝑠#′, 𝑠&#)
              ∀𝑠:	 𝐷 𝑠 ≥ 0
  ∑%𝐷 𝑠 = 1
  

N.B. first constraint same as 
          ∀𝑖, ∀𝑠# , 𝑠#$:           𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ 𝐷 𝑠# ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)
    ⇔ ∀𝑖, ∀𝑠#	𝑠. 𝑡. 𝐷 𝑠# > 0,∀𝑠#$:                      ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠# , 𝑠&#) ≥ ∑%!"𝐷 𝑠&#|𝑠# 𝑢#(𝑠#$, 𝑠&#)



N.B.

• LP has as many variables as there are pure strategy profiles
• 𝑛 players, 𝑠 strategies each: 𝑠%
• so to solve this LP need time poly(𝑠%)
• Technically, this is polynomial in the description of the game, as every utility tensor 

has as many entries as there are variables in the LP

• Can we do better?
• Yes, if we are OK with approximate CE/CCE computation

• using no-regret learning (next week!) can find CCE/CE in time roughly: &'()(+,-)
/!

• Yes, if the game has more structure, 
• e.g. graphical game (every player’s utility depends on 𝑑 other players, where 𝑑 << 𝑛)
• use “Ellipsoid Against Hope” algorithm of [Papadimitriou’05]


