
6.S890:
Topics in Multiagent 
Learning

Lecture 6 – Prof. Daskalakis

Fall 2023



Min-max Equilibrium Computation Linear Programming
[Danzig ’47]

[Adler ’13]

No-regret Learning

Nash Equilibrium Existence: 
two-player zero-sum games

[Brooks-Reny’21]
[von Stengel’22]

[von Neumann ’28:] 
In finite two-player zero-sum games 𝑅, 𝐶 = −𝑅 !×#: 
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Corollary: A Nash equilibrium exists in finite two-
player zero-sum games

[original proof used fixed point arguments]



[John Nash ’50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.

Proof non-constructive (uses Brouwer’s fixed point theorem)

No simpler proof has been discovered

[Daskalakis-Goldberg-Papadimitriou’06]: no simpler proof exists

i.e. Nash 
Equilibrium 

Computation

Fixed Point 
Computation

Nash Equilibrium Existence: 
general games



The non-constructive step?
what is the 
nature of non-
constructiveness 
in the heart of 
Nash’s theorem?
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Sperner



Sperner’s Lemma (2-d)



no red

no blue

no yellow

[Sperner 1928]: Color the boundary using three colors in a legal way. 

legal 
boundary 
coloring

Sperner’s Lemma (2-d)



[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.
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Sperner ⇒ Brouwer



Given continuous f : [0,1]2 ® [0,1]2

1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma. 
2. Then use compactness. 

For 1: Triangulate [0,1]2; 

Sperner Þ Brouwer (High-Level) 
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Given continuous f : [0,1]2 ® [0,1]2

1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma. 
2. Then use compactness. 

For 1: Triangulate [0,1]2; 
then color points according 
to the direction of f (x)-x;
apply Sperner and argue 
trichromatic triangle
contains approximate 
fixed points 

Sperner Þ Brouwer (High-Level) 



2D-Brouwer on the Square
Suppose ƒ: [0,1]2 ®[0,1]2, continuous

must be uniformly continuous (by the Heine-Cantor theorem)
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http://en.wikipedia.org/wiki/Heine-Cantor_theorem
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2D-Brouwer on the Square
Suppose ƒ: [0,1]2 ®[0,1]2, continuous

must be uniformly continuous (by the Heine-Cantor theorem)

(tie-break at the 
boundary angles, so that 
the resulting coloring 
respects the boundary 
conditions required by 
Sperner’s lemma)

find a trichromatic 
triangle, guaranteed by 
Sperner

color the nodes of the 
triangulation according 
to the direction of 

choose some       and 
triangulate so that the 
diameter of cells is

http://en.wikipedia.org/wiki/Heine-Cantor_theorem


2D-Brouwer on the Square
Suppose ƒ: [0,1]2 ®[0,1]2, continuous

must be uniformly continuous (by the Heine-Cantor theorem)

Claim: If zY is the yellow corner of a 
trichromatic triangle, then
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Proof of Claim

Claim: If zY is the yellow corner of a trichromatic triangle, then

Proof: Let zY, zR , zB be the yellow/red/blue corners of a trichromatic triangle.
By the definition of the coloring, observe that the product of  

Hence:

Similarly, we can show:



2D-Brouwer on the Square
Suppose ƒ: [0,1]2 ®[0,1]2, continuous

must be uniformly continuous (by the Heine-Cantor theorem)

Claim: If zY is the yellow corner of a 
trichromatic triangle, then
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Choosing

http://en.wikipedia.org/wiki/Heine-Cantor_theorem


2D-Brouwer on the Square

- pick a sequence of epsilons:

- define a sequence of triangulations of diameter:

- pick a trichromatic triangle in each triangulation, and call its yellow corner

Claim:

Finishing the proof  of Brouwer’s Theorem (Compactness):

- by compactness, this sequence has a converging subsequence with limit point 

Proof: Define the function                                 . Clearly,    is continuous since              is 
continuous and so is    . It follows from continuity that

But                                     . Hence,                       . It follows that                     .

Therefore, 
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The non-constructive step?

what is the 
nature of non-
constructiveness 
in the heart of 
Nash’s theorem?

So far:    Sperner’s Theorem  ⇒  Brouwer’s Theorem ⇒  Nash’s Theorem



Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.
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no yellow



Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

For convenience we 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles.

Next we define a 
directed walk starting 
from the artificial tri-
chromatic triangle.

We also introduce an 
artificial tri-
chromatic triangle.



Transition Rule: If  $  red - yellow door cross it with 
red on your left hand.

?

Space of Triangles

1

2

Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



!
Starting from other 
triangles we do the 
same going forward 
or backward.

Claim: The walk 
cannot exit the 
square, nor can it loop 
into itself.

Hence, it must stop 
somewhere inside. 
This can only happen 
at tri-chromatic 
triangle…

For convenience we 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles.

Next we define a 
directed walk starting 
from the artificial tri-
chromatic triangle.

We also introduce an 
artificial tri-
chromatic triangle.

Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Structure of Proof: 
A directed parity argument

Vertices of Graph º Triangles
all vertices have in-degree, out-degree ≤ 1

Proof:  $ at least one trichromatic (artificial one)

degree 1 vertices: trichromatic triangles
degree 2 vertices: no blue, non-trichromatic
degree 0 vertices: all other triangles

⇒	$ another trichromatic

...

Artificial 
Trichromatic

Also: degree 1 vertices are in pairs but one is fake ⇒	$ odd number of trichromatic!



So..what is the non-constructive step in 
Nash’s proof? 

what is the 
nature of non-
constructiveness 
in the heart of 
Nash’s theorem?

We have shown:    Sperner’s Theorem  ⇒  Brouwer’s Theorem ⇒  Nash’s Theorem



The Non-Constructive Step

A directed graph with an unbalanced node (a node with indegree ¹ 
outdegree) must have another.

An easy parity lemma:

But, wait, why is this non-constructive?

Given a directed graph and an unbalanced node, isn’t it trivial 
to find another unbalanced node?

In some cases, the graph can be exponentially large in its succinct description…

Example: next slide!



Computational Problem: SPERNER

y

2n

2n

x
C

(i) n: specifies the size of a grid
   

(ii) Imagine boundary has standard coloring shown above, 
while colors of internal vertices are given by a circuit:

input: the 
coordinates 
of a point
(n bits each)

INPUT:

OUTPUT: A tri-chromatic triangle 
 exists because boundary coloring satisfies Sperner lemma constraints
 but doing walk through grid to find one may take exponential time in 𝑛

(grid never written down!)


