6.S890:
 Topics in Multiagent Learning

Lecture 6 - Prof. Daskalakis
Fall 2023

Nash Equilibrium Existence： two－player zero－sum games

［von Neumann＇28：］

In finite two－player zero－sum games $(R, C=-R)_{m \times n}$ ：

$$
\min _{x \in \Delta^{m}} \max _{y \in \Delta^{n}} x^{T} C y=\max _{y \in \Delta^{n}} \min _{x \in \Delta^{m}} x^{T} C y
$$

Corollary：A Nash equilibrium exists in finite two－ player zero－sum games
［original proof used fixed point arguments］

	管豆		
全亩3	0，0	－1，1	1，－1
4－6．4／3	1，－1	0，0	－1， 1
T＜1／2	－1，1	1，－1	0，0

Min－max Equilibrium Computation

［Danzig＇47］

［Brooks－Reny＇21］
［von Stengel＇22］

Linear Programming

Nash Equilibrium Existence:

 general games[John Nash '50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.
Proof non-constructive (uses Brouwer's fixed point theorem)

No simpler proof has been discovered
[Daskalakis-Goldberg-Papadimitriou'06]: no simpler proof exists
i.e.

Nash
Equilibrium
Computation

Fixed Point
 Computation

The non-constructive step?

what is the nature of nonconstructiveness
in the heart of
Nash's theorem?

Menu

- Refresher: Nash, von Neumann \& Brouwer
- Sperner's Lemma
- Brouwer via Sperner
- Sperner's Proof

Menu

- Refresher: Nash, von Neumann \& Brouwer
- Sperner's Lemma
- Brouwer via Sperner
- Sperner's Proof

Sperner's Lemma (2-d)

Sperner's Lemma (2-d)

[Sperner 1928]: Color the boundary using three colors in a legal way.

Sperner's Lemma (2-d)

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Sperner's Lemma (2-d)

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Menu

- Refresher: Nash, von Neumann \& Brouwer
- Sperner's Lemma
- Brouwer via Sperner
- Sperner's Proof

Menu

- Refresher: Nash, von Neumann \& Brouwer
- Sperner's Lemma
- Brouwer via Sperner
- Sperner's Proof

Sperner \Rightarrow Brouwer (High-Level)

Given continuous $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1. For all ε, existence of approximate fixed point $|f(x)-x|<\varepsilon$, can be shown via Sperner's lemma.
2. Then use compactness.

For 1: Triangulate $[0,1]^{2}$;

Sperner \Rightarrow Brouwer (High-Level)

Given continuous $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1. For all ε, existence of approximate fixed point $|f(x)-x|<\varepsilon$, can be shown via Sperner's lemma.
2. Then use compactness.

For 1: Triangulate $[0,1]^{2}$; then color points according to the direction of $f(x)-x$;

Sperner \Rightarrow Brouwer (High-Level)

Given continuous $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1. For all ε, existence of approximate fixed point $|f(x)-x|<\varepsilon$, can be shown via Sperner's lemma.
2. Then use compactness.

For 1: Triangulate $[0,1]^{2}$; then color points according to the direction of $f(x)-x$;

Sperner \Rightarrow Brouwer (High-Level)

Given continuous $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1. For all ε, existence of approximate fixed point $|f(x)-x|<\varepsilon$, can be shown via Sperner's lemma.
2. Then use compactness.

For 1: Triangulate $[0,1]^{2}$; then color points according to the direction of $f(x)-x$; apply Sperner and argue trichromatic triangle contains approximate fixed points

2D-Brouwer on the Square

Suppose $f:[0,1]^{2} \rightarrow[0,1]^{2}$, continuous
\rightarrow must be uniformly continuous (by the Heine-Cantor theorem)

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta(\epsilon)>0, \text { s.t. } \\
& \qquad d(z, w)<\delta(\epsilon) \Longrightarrow d(f(z), f(w))<\epsilon
\end{aligned}
$$

2D-Brouwer on the Square

Suppose $f:[0,1]^{2} \rightarrow[0,1]^{2}$, continuous
\rightarrow must be uniformly continuous (by the Heine-Cantor theorem)

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta(\epsilon)>0, \text { s.t. } \\
& \qquad d(z, w)<\delta(\epsilon) \Longrightarrow d(f(z), f(w))<\epsilon
\end{aligned}
$$

2D-Brouwer on the Square

Suppose $f:[0,1]^{2} \rightarrow[0,1]^{2}$, continuous
\rightarrow must be uniformly continuous (by the Heine-Cantor theorem)
color the nodes of the triangulation according to the direction of

2D-Brouwer on the Square

Suppose $f:[0,1]^{2} \rightarrow[0,1]^{2}$, continuous
\rightarrow must be uniformly continuous (by the Heine-Cantor theorem)
color the nodes of the triangulation according

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta(\epsilon)>0, \text { s.t. } \\
& \quad d(z, w)<\delta(\epsilon) \Longrightarrow d(f(z), f(w))<\epsilon
\end{aligned}
$$

$$
\begin{aligned}
& \text { to the direction of } \\
& \qquad f(x)-x
\end{aligned}
$$

(tie-break at the boundary angles, so that the resulting coloring respects the boundary conditions required by Sperner's lemma)

choose some ϵ and triangulate so that the diameter of cells is

$$
\delta<\delta(\epsilon)
$$

find a trichromatic triangle, guaranteed by Sperner

2D-Brouwer on the Square

$$
\text { Suppose } f:[0,1]^{2} \rightarrow[0,1]^{2} \text {, continuous }
$$

\rightarrow must be uniformly continuous (by the Heine-Cantor theorem)

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta(\epsilon)>0, \text { s.t. } \\
& \quad d(z, w)<\delta(\epsilon) \Longrightarrow d(f(z), f(w))<\epsilon
\end{aligned}
$$

Claim: If z^{γ} is the yellow corner of a trichromatic triangle, then

$$
\left|f\left(z^{\mathrm{Y}}\right)-z^{\mathrm{Y}}\right|_{\infty}<\epsilon+\delta
$$

Proof of Claim

Claim: If z^{Y} is the yellow corner of a trichromatic triangle, then $\left|f\left(z^{\mathrm{Y}}\right)-z^{\mathrm{Y}}\right|_{\infty}<\epsilon+\delta$.
Proof: Let z^{Y}, z^{R}, z^{B} be the yellow/red/blue corners of a trichromatic triangle.
By the definition of the coloring, observe that the product of

$$
\left(f\left(z^{Y}\right)-z^{Y}\right)_{x} \text { and }\left(f\left(z^{B}\right)-z^{B}\right)_{x} \text { is } \leq 0 .
$$

Hence:

$$
\begin{aligned}
& \left|\left(f\left(z^{Y}\right)-z^{Y}\right)_{x}\right| \\
& \quad \leq\left|\left(f\left(z^{Y}\right)-z^{Y}\right)_{x}-\left(f\left(z^{B}\right)-z^{B}\right)_{x}\right| \\
& \quad \leq\left|\left(f\left(z^{Y}\right)-f\left(z^{B}\right)\right)_{x}\right|+\left|\left(z^{Y}-z^{B}\right)_{x}\right| \\
& \quad \leq d\left(f\left(z^{Y}\right), f\left(z^{B}\right)\right)+d\left(z^{Y}, z^{B}\right) \\
& \quad \leq \epsilon+\delta .
\end{aligned}
$$

Similarly, we can show:

$$
\left|\left(f\left(z^{Y}\right)-z^{Y}\right)_{y}\right| \leq \epsilon+\delta .
$$

2D-Brouwer on the Square

Suppose $f:[0,1]^{2} \rightarrow[0,1]^{2}$, continuous
\rightarrow must be uniformly continuous (by the Heine-Cantor theorem)

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta(\epsilon)>0, \text { s.t. } \\
& \quad d(z, w)<\delta(\epsilon) \Longrightarrow d(f(z), f(w))<\epsilon
\end{aligned}
$$

Claim: If z^{γ} is the yellow corner of a trichromatic triangle, then

$$
\left|f\left(z^{\mathrm{Y}}\right)-z^{\mathrm{Y}}\right|_{\infty}<\epsilon+\delta
$$

$$
\text { Choosing } \quad \delta=\min (\delta(\epsilon), \epsilon)
$$

$$
\left|f\left(z^{Y}\right)-z^{Y}\right|_{\infty}<2 \epsilon
$$

2D-Brouwer on the Square

Finishing the proof of Brouwer's Theorem (Compactness):

- pick a sequence of epsilons: $\epsilon_{i}=2^{-i}, i=1,2, \ldots$
- define a sequence of triangulations of diameter: $\delta_{i}=\min \left(\delta\left(\epsilon_{i}\right), \epsilon_{i}\right), i=1,2, \ldots$
- pick a trichromatic triangle in each triangulation, and call its yellow corner $z_{i}^{Y}, i=1,2, \ldots$
- by compactness, this sequence has a converging subsequence $w_{i}, \quad i=1,2, \ldots$ with limit point w^{*}

Claim: $f\left(w^{*}\right)=w^{*}$.
Proof: Define the function $g(x)=d(f(x), x)$. Clearly, gis continuous since $d(\cdot, \cdot)$ is continuous and so is f. It follows from continuity that

$$
g\left(w_{i}\right) \longrightarrow g\left(w^{*}\right), \text { as } i \rightarrow+\infty
$$

But $0 \leq g\left(w_{i}\right) \leq 2^{-i+1}$. Hence, $g\left(w_{i}\right) \longrightarrow 0$. It follows that $g\left(w^{*}\right)=0$.
Therefore, $d\left(f\left(w^{*}\right), w^{*}\right)=0 \Longrightarrow f\left(w^{*}\right)=w^{*}$.

Menu

- Refresher: Nash, von Neumann \& Brouwer
- Sperner's Lemma
- Brouwer via Sperner
- Sperner's Proof

Menu

- Refresher: Nash, von Neumann \& Brouwer
- Sperner's Lemma
- Brouwer via Sperner
- Sperner's Proof

The non-constructive step?

what is the nature of nonconstructiveness
in the heart of Nash's theorem?

Proof of Sperner's Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Proof of Sperner's Lemma

For convenience we introduce an outer boundary, that does not create new trichromatic triangles.

We also introduce an artificial trichromatic triangle.

Next we define a directed walk starting from the artificial trichromatic triangle.
[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Proof of Sperner's Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Proof of Sperner's Lemma

Claim: The walk cannot exit the square, nor can it loqe into itself.

Hence, it must stop somewhere inside. This can only happen at tri-chromatic triangle...
Starting from other triangles we do the same going forward or backward.

For convenience we introduce an outer boundary, that does not create new trichromatic triangles.

We also introduce an artificial trichromatic triangle.

Next we define a directed walk starting from the artificial trichromatic triangle.
[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Structure of Proof:

A directed parity argument

So..what is the non-constructive step in Nash's proof?

what is the nature of nonconstructiveness
in the heart of Nash's theorem?

The Non-Constructive Step

An easy parity lemma:
A directed graph with an unbalanced node (a node with indegree \neq outdegree) must have another.

But, wait, why is this non-constructive?
Given a directed graph and an unbalanced node, isn't it trivial to find another unbalanced node?

In some cases, the graph can be exponentially large in its succinct description...
Example: next slide!

Computational Problem: SPERNER

INPUT:
(i) n : specifies the size of a grid
(grid never written down!)

(ii) Imagine boundary has standard coloring shown above, while colors of internal vertices are given by a circuit:
input: the coordinates of a point (n bits each)

OUTPUT: A tri-chromatic triangle
exists because boundary coloring satisfies Sperner lemma constraints
but doing walk through grid to find one may take exponential time in n

