6.S890:
 Topics in Multiagent Learning

Lecture 8 - Prof. Daskalakis
Fall 2023

Refresher

- Last few times we stated and proved the theorems of Nash, Sperner, and Brouwer.
- [Nash'1950]: Every finite game has a Nash equilibrium.
- [Brouwer'1911]: Every continuous function $f: D \rightarrow D$ from a convex compact set D to itself has a fixed point $x^{*}=f\left(x^{*}\right)$.
- [Sperner'1928]: Every legal 3-coloring of a 2-d triangulated square has a tri-chromatic triangle.
- We also saw that:

Sperner Lemma \Rightarrow Brouwer Theorem \Rightarrow Nash Theorem

- which implies as a corollary that:

Computing Nash Equilibria \rightarrow Computing Brouwer Fixed Points \rightarrow Finding Sperner Triangles

- But what is the complexity of these problems?
- we remarked that these problems are in the complexity class TFNP of total search problems in NP
- "total" : they always have a solution, unlike e.g. SAT
- So what is their complexity?

A Complexity Theory of Total Search Problems ?

100-feet overview of our methodology:

1. identify the combinatorial argument of existence, responsible for making these problems total;
2. define a complexity class inspired by the argument of existence;
3. make sure that the complexity of the problem was captured as tightly as possible (via completeness results).

OK, so what is the combinatorial argument of existence underlying Sperner, Brouwer and Nash?

A parity lemma in directed graphs:
A directed graph with an unbalanced node (a node with indegree \neq outdegree) must have another.

The PPAD Class [Papadimitriou '94]

a complexity class capturing TFNP problems whose totality
is due to the directed parity argument

Suppose that an exponentially large graph with vertex set $\{0,1\}^{n}$ is defined by two circuits:

END OF THE LINE: Given P and N : If 0^{n} is an unbalanced node, find another unbalanced node. Otherwise output 0^{n}.

PPAD $=$ \{ Search problems in FNP reducible to END OF THE LINE $\}$

END OF THE LINE

Believed Location of PPAD

\rightarrow means polytime reduction

BROUWER

NASH
Partial Success: NASH, BROUWER, and SPERNER are in PPAD
Litmus Test: Are NASH, BROUWER, and SPERNER PPAD-complete?

[Daskalakis-Goldberg-Papadimitriou'06]:

Menu

Refresher: Nash, Sperner, Brouwer, PPAD

Total Search Problems in NP

PPAD

PPAD-hardness of NASH

Menu

Refresher: Nash, Sperner, Brouwer, PPAD
Total Search Problems in NP
PPAD
PPAD-hardness of NASH

PPAD-Completeness of NASH [Daskalakis, Goldberg, Papadimitriuu’06]

PPAD-Completeness of NASH [Daskalakis, Goldberg, Papadimitriou'06]

PPAD-Completeness of NASH [Daskalakis, Goldberg, Papadimitriou'o6]

PPAD-Completeness of NASH [Daskalakis, Goldbers, Papadimintriou'OG]

ARITHMCIRCUITSAT[Daskalakis, Goldberg, Papadimitriou'06]

INPUT: A circuit comprising:

- variable nodes v_{1}, \ldots, v_{n}
- gate nodes $\mathrm{g}_{1}, \ldots, g_{m}$ of types:

- directed edges connecting variables to gates and gates to variables (loops are allowed);
- variable nodes have in-degree 1 ; gates have 0,1 , or 2 inputs depending on type as above; gates \& nodes have arbitrary fan-out

OUTPUT: Values $v_{1}, \ldots, v_{n} \in[0,1]$ satisfying the gate constraints:

Comparator Gate Constraints

$$
y== \begin{cases}1, & \text { if } x_{1}>x_{2} \\ 0, & \text { if } x_{1}<x_{2} \\ *, & \text { if } x_{1}=x_{2}\end{cases}
$$

ARITHMCIRCUITSAT (example)

$$
y== \begin{cases}1, & \text { if } x_{1}>x_{2} \\ 0, & \text { if } x_{1}<x_{2} \\ *, & \text { if } x_{1}=x_{2}\end{cases}
$$

Satisfying assignment?

$$
a=b=c=1 / 2
$$

ARITHMCIRCUITSAT [Daskalakis, Goldberg, Papadimitriou’06]

INPUT: A circuit comprising:

- variable nodes v_{1}, \ldots, v_{n}

- directed edges connecting variables to gates and gates to variables (loops are allowed);
- variable nodes have in-degree 1 ; gates have 0,1 , or 2 inputs depending on type as above; gates \& nodes have arbitrary fanout

OUTPUT: An assignment of values $v_{1}, \ldots, v_{n} \in[0,1]$ satisfying:
© $y==x_{1}$
[DGP'06]: Always exists satisfying assignment!

+ $y==\min \left\{1, x_{1}+x_{2}\right\}$
[DGP'06]: but is PPAD-complete to find
- $y==\max \left\{0, x_{1}-x_{2}\right\}$
(>) $y== \begin{cases}1, & \text { if } x_{1}>x_{2} \\ 0, & \text { if } x_{1}<x_{2} \\ *, & \text { if } x_{1}=x_{2}\end{cases}$

PPAD-Completeness of NASH [Daskalakis, Goldberg, Papadimitriuu’06]

ArithmCircuitsAT

Game Gadgets: Small games performing real arithmetic at their Nash equilibrium.

Addition Gadget

Suppose two strategies per player: $\{0,1\}$
then mixed strategy \equiv a number in $[0,1] \quad$ (the probability of playing 1)
e.g. addition game

$$
\begin{aligned}
& u(w: 0)=\operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1] \\
& u(w: 1)=\operatorname{Pr}[z: 1]
\end{aligned}
$$

Claim: In any Nash equilibrium of a game containing the above gadget

$$
\operatorname{Pr}[z: 1]=\min \{\operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1], 1\}
$$

(2) \longrightarrow (w) \longleftrightarrow (2) \rightarrow plaper x, y 's pryoffs depeng

- lager w's prgoff:
- if w plays 0 , her pryitt deen'l Lumal on z^{\prime} 's stanto

ach depals on x 's \& $y^{\prime} s: \quad x: 0$| $y: 0$ | $y: 1$ |
| :---: | :---: |
| 0 | 1 |
| | x |

If w plags 1 , her pryitit desint Lemal on x^{\prime} s a gis statys)
and depents on $z^{\prime s}$ as follous

- Player

$z=0$	$z=1$
0	1

Prow Suppee $\operatorname{Pr}[z=:]<\min \{\operatorname{Pr}[x=1]+\operatorname{Pr}[y=], 1\}<\operatorname{Pr}[x=]] \operatorname{Pr}[y=1]$.
$\Rightarrow \operatorname{Pr}[\omega=0]=1 \Rightarrow \operatorname{Pr}[z=1]=1$
Suppose $\operatorname{Pr}\left\{Z_{-1}\right]>\min \left\{\operatorname{Pr}\left[X_{x=1]}\right] \operatorname{Pr}\{y=1], 1\right\}$
wall $\min \{\operatorname{Pr}[k=\|]+r[y=1], 1\}$, cmanait be 1 as ow. $\operatorname{Pr}[z=[] \gg 1$
thas $\operatorname{Pr}[z=1]>\operatorname{Pr}[x=1]+\operatorname{Pr}[y=1]$

$$
\Rightarrow \operatorname{Pr}[w=1]=1 \Rightarrow \operatorname{Pr}[z=1]=0
$$

Thus only remaining possibility: $P_{r}[z=1]=\min \left\{P_{r}(x=1]+r_{r}(y-1), 1\right\}$

Subtraction Gadget

Suppose two strategies per player: $\{0,1\}$
then mixed strategy \equiv a number in $[0,1] \quad$ (the probability of playing 1)
e.g. subtraction

$$
\begin{aligned}
& u(w: 0)=\operatorname{Pr}[x: 1]-\operatorname{Pr}[y: 1] \\
& u(w: 1)=\operatorname{Pr}[z: 1]
\end{aligned}
$$

Claim: In any Nash equilibrium of a game containing the above gadget

$$
\operatorname{Pr}[z: 1]=\max \{0, \operatorname{Pr}[x: 1]-\operatorname{Pr}[y: 1]\}
$$

Notational convention: Use the name of the player and the probability of that player playing 1 interchangeably.

List of Game Gadgets

PPAD-Completeness of NASH [Daskalakis, Goldoerg, Papadimimitriou'OG]

ARITHMCIRCUITSAT

MultiplayerNash

Given arbitrary instance of ArithmCircuitSAT can create multiplayer game by appropriately composing game gadgets corresponding to each of the gates.

At any Nash equilibrium of resulting game, the gate conditions are satisfied.

PPAD-Completeness of NASH [Dassalakis, Goldberg, Papadimitriou'OG]

DGP=Daskalakis-Goldberg-Papadimitriou

ArithmCircuitsat

4-player Nash

PPAD-Completeness of NASH [Daskalakis, Goldberg, Papadimitriuu’06]

ArithmCircuitsAT

[Daskalakis-Goldberg-Papadimitriou'06]:

Nash Equilibrium Complexity

[John Nash '50]: A Nash equilibrium exists in every finite game.

Deep influence in Economics, enabling other existence results.

Proof non-constructive (uses Brouwer's fixed point theorem)

No simpler proof has been discovered
[Daskalakis-Goldberg-Papadimitriou’06]: no simpler proof exists
i.e.

Brouwer's Fixed Point Theorem

Menu

Refresher: Nash, Sperner, Brouwer, PPAD
Total Search Problems in NP
PPAD
PPAD-hardness of NASH
Final Musings

Menu

Refresher: Nash, Sperner, Brouwer, PPAD
Total Search Problems in NP
PPAD
PPAD-hardness of NASH
Final Musings

Other arguments of existence, and resulting complexity classes

"If a graph has a node of odd degree, then it must have another."
PPA
"Every directed acyclic graph must have a sink."

```
PLS
```

"If a function maps n elements to n - 1 elements, then there is a collision."
PPP

Formally?

The Class PPA [Papadimitriou '94]

"If a graph has a node of odd degree, then it must have another."

Suppose that an exponentially large graph with vertex set $\{0,1\}^{n}$ is defined by one circuit:

OddDegreeNode:
Given C : If 0^{n} has odd degree, find another node with odd degree. Otherwise output 0^{n}.

PPA $=$ \{ Search problems in FNP reducible to OddDEGREENodE $\}$

OddDegreenode

SMITH \in PPA

Smith: Given Hamiltonian cycle in 3-regular graph, find another one.
[Smith]: There must be another one.

Fig. 1. Smiths theorem in the case of a cubic graph.

The Class PLS [Johnson-Papapdimitriou-Yannakakis '89]

"Every DAG has a sink."

Suppose that a DAG with vertex set $\{0,1\}^{n}$ is defined by two circuits:

FindSink: Given C, F : Find x s.t. $F(x) \geq F(y)$, for all $y \in C(x)$.

PLS $=$ \{Search problems in FNP reducible to FINDSINK $\}$

FindSink

LocalMaxCut is PLS-complete

LOCALMAXCUT:

Given weighted graph $G=(V, E, w)$, find a partition $V=V_{1} \cup V_{2}$ that is locally optimal (i.e. can't move any single vertex to the other side to increase the cut size).
[Schaffer-Yannakakis'91]: LocalMaxCut is PLS-complete.

The Class PPP [Papadimitriou '94]

"If a function maps n elements to $n-1$ elements, then there is a collision."

Suppose that an exponentially large graph with vertex set $\{0,1\}^{n}$ is defined by one circuit:

Collision \quad Given C : Find x s.t. $C(x)=0^{n}$; or find $x \neq y$ s.t. $C(x)=C(y)$.

PPP $=$ \{ Search problems in FNP reducible to Colusion $\}$
in PPP: Factoring
PPP-complete: constrained Short-Integer-Solution
in PPA: Smith, Factoring
PPA-complete: concensus halving, fixed points in unorientable spaces, combinatorial nullstellensatz, chevalley-warning, Necklace Splitting, Discrete Ham Sandwich

CLS: continuous local search, capturing e.g. fixed points of gradient descent [Daskalakis-
Papadimitriou'11]
CLS \equiv PPAD \cap PLS shown by [Fearnley-Goldber-Hollender-Savani'21]

