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Reinforcement Learning: breakthroughs & frontiers



Reinforcement Learning: breakthroughs & frontiers

Lectures 9-11: investigate questions regarding equilibrium existence, computation 
and learning in multi-player RL and its underlying game-theoretic models

many involve 
multiple players!



Stochastic Games [Shapley’53] 
infinite horizon, finite states/actions
• An 𝑚-player, infinite-horizon, finite state/action space, stochastic (or Markov) 

game 𝐺 = (𝑆, 𝐴, ℙ, 𝑟, 𝛾, 𝜇) is specified via the following ingredients:

• 𝑆 : a finite set of states

• 𝐴 = 𝐴!×⋯×𝐴"  : a joint action set, where 𝐴# 	is the finite action set of agent 𝑖 ∈ [𝑚]

• ℙ 𝑠$ 𝑠, 𝒂), for 𝑠, 𝑠$ ∈ 𝑆, 𝒂 ∈ 𝐴: the transition matrix of the environment 

• 𝑟 = 𝑟!, … , 𝑟" : the reward functions of the environment where 𝑟#(𝑠, 𝒂) is the reward function of agent 𝑖

• 𝛾 ∈ 0,1 : the discount factor

• 𝜇 ∈ Δ(𝑆): the initial state distribution

• Given an infinite state-action sequence (𝑠! , 𝒂!)! players derive discounted utilities: 𝑢" (𝑠! , 𝒂!)! = ∑!#$ 𝛾! ⋅ 𝑟"(𝑠! , 𝒂!)

• A randomized strategy, or policy, of player 𝑖 is a function 𝜋": 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴" , mapping histories to action distributions

• Given policies 𝜋&, … , 𝜋' the discounted expected utility of agent 𝑖 is:

    𝑢"(𝜋&, … , 𝜋') = 𝔼 (!~*
𝒂",$~,$(⋅|(", (%,𝒂% %&"	)

("()~ℙ(3|(",𝒂")

∑!#$ 𝛾! ⋅ 𝑟"(𝑠! , 𝒂!)  



Stochastic Games [Shapley’53] 
infinite horizon, finite states/actions

• In general, a policy 𝜋": 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴"  can be history dependent

• A policy is history-independent or Markovian if it only depends on the current state and time

• i.e. for all 𝑡, 𝑠, (𝑠% , 𝒂%)%&!'(! , (𝑠%$ , 𝒂%$ )%&!'(! : 𝜋# 𝑠, (𝑠% , 𝒂%)%&!'(! = 𝜋# 𝑠, (𝑠%′, 𝒂%′)%&!'(!

• such policy can be also represented as a function 𝜋#: 𝑆	×	ℕ → Δ 𝐴#

• A policy is stationary and Markovian if it only depends on the current state

• such policy can be also represented as a function 𝜋#: 𝑆 → Δ 𝐴#

• Given stationary, Markovian policies 𝜋&, … , 𝜋': 𝑢"(𝜋&, … , 𝜋') = 𝔼 (!~*
𝒂",$~,$(⋅|(")

("()~ℙ(3|(",𝒂")

∑!#$ 𝛾! ⋅ 𝑟"(𝑠! , 𝒂!)  

• [Takahashi’64, Fink’64]: There exists a Nash equilibrium in stationary, Markovian policies, i.e. a collection of stationary and 
Markovian policies 𝜋&, … , 𝜋' s.t. for all 𝑖, for all (possibly history-dependent) 𝜋"4: 𝑢" 𝜋" , 𝜋5"	 ≥ 𝑢" 𝜋"4, 𝜋5"	 .

• [Shapley’53]: In two-player zero-sum stochastic games: max
,)

min
,*

𝑢&(𝜋&, 𝜋7) = min
,*

max
,)

𝑢&(𝜋&, 𝜋7).

• Costis’s comment: pretty cool because 𝑢"(𝜋"; 𝜋5") is non-concave in 𝜋"



Stochastic Games [Shapley’53] 
finite-horizon variant
• An 𝑚-player, finite-horizon, finite state/action space, stochastic (or Markov) 

game 𝐺 = (𝑆, 𝐴, ℙ, 𝑟, 𝐻, 𝜇, 𝛾) is specified via the following ingredients:
• 𝑆 : a finite set of states
• 𝐴 = 𝐴!×⋯×𝐴"  : a joint action set, where 𝐴# 	is the finite action set of agent 𝑖 ∈ [𝑚]
• ℙ 𝑠$ 𝑠, 𝒂), for 𝑠, 𝑠$ ∈ 𝑆, 𝒂 ∈ 𝐴: the transition matrix of the environment 
• 𝑟 = 𝑟!, … , 𝑟" : the reward functions of the environment where 𝑟#(𝑠, 𝒂) is the reward function of agent 𝑖
• 𝑯 ∈ ℕ): the number of interaction steps
• 𝜇 ∈ Δ(𝑆): the initial state distribution
• 𝛾 ∈ (0,1]: the discount factor 𝛾; not that in contrast to the infinite-horizon setting, 𝛾 can be chosen to be 1

• Given a finite state-action sequence (𝑠! , 𝒂!)!8&𝑯  players derive discounted utilities: 𝑢" (𝑠! , 𝒂!)! = ∑!8$𝑯5𝟏 𝛾!𝑟"(𝑠! , 𝒂!)

• A randomized strategy, or policy, of player 𝑖 is a function 𝜋": 𝑆× 𝑆×𝐴 ;𝑯 → Δ 𝐴" , mapping histories to action distributions

• Given policies 𝜋&, … , 𝜋' the discounted expected utility of agent 𝑖 is:

    𝑢"(𝜋&, … , 𝜋') = 𝔼 (!~*
𝒂",$~,$(⋅|(", (%,𝒂% %&"	)

("()~ℙ(3|(",𝒂")

∑!;< 𝛾! ⋅ 𝑟"(𝑠! , 𝒂!)  
changes compared
to the infinite horizon 
case in light blue



Stochastic Games: Single- vs Multi-Agent Case

Environment
Choose actions 𝑎" ∈ 𝐴"

Receive rewards 𝑟"(𝑠, 𝒂)
Transition to 𝑠4 ∼ ℙ(⋅ |𝑠, 𝒂)

Environment
Choose action 𝑎 ∈ 𝐴

Receive reward 𝑟(𝑠, 𝑎)
Transition to 𝑠4 ∼ ℙ(⋅ |𝑠, 𝑎)

Markov Decision Process (n=1) Stochastic Game (n>1)
𝑠!"#~ℙ(% |𝑠!, 𝑎!)
𝑟(𝑠!, 𝑎!)

𝑠!"#~ℙ(% |𝑠!, 𝑎!,#, … , 𝑎!,%)
𝑟&(𝑠!, 𝑎!,#, … , 𝑎!,%)

Agent’s policy 𝜋: 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴
Agent’s objective:

     𝑢(𝜋) = 𝔼 (*~*
++~,(.|(+, (,,+, ,)
(+-.~ℙ(.|(+,++)

∑!23𝛾! ⋅ 𝑟(𝑠!, 𝑎!)  

Agent 𝑖’s objective:

 𝑢& 𝜋 = 𝔼 (*~*
++~,(.|(+, (,,𝒂, ,)
(+-.~ℙ(.|(+,𝒂+)

∑!23𝛾! ⋅ 𝑟&(𝑠!, 𝒂!)  

Agent 𝑖’s policy 𝜋&: 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴&  



Markov Decision Process (n=1) Stochastic Game (n>1)
𝑠!"#~ℙ(% |𝑠!, 𝑎!)
𝑟(𝑠!, 𝑎!)

𝑠!"#~ℙ(% |𝑠!, 𝑎!,#, … , 𝑎!,%)
𝑟&(𝑠!, 𝑎!,#, … , 𝑎!,%)

Agent’s policy 𝜋: 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴
Agent’s objective:

     𝑢(𝜋) = 𝔼 (*~*
++~,(.|(+, (,,+, ,)
(+-.~ℙ(.|(+,++)

∑!23𝛾! ⋅ 𝑟(𝑠!, 𝑎!)  

Agent 𝑖’s objective:

 𝑢& 𝜋 = 𝔼 (*~*
++~,(.|(+, (,,𝒂, ,)
(+-.~ℙ(.|(+,𝒂+)

∑!23𝛾! ⋅ 𝑟&(𝑠!, 𝒂!)  

Agent 𝑖’s policy 𝜋&: 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴&  

Stochastic Games: Single- vs Multi-Agent Case

Folklore Result: exists optimal policy that is 
stationary and Markovian
• optimal policy can be found using Linear 

Programming
• also using policy iteration/value iteration 

methods

Corresponding Result: ∃ Nash eq in stationary Markovian policies
• computing Nash equilibrium: PPAD-hard
• in zero-sum games: open in general; tractable if discount factor 

bounded away from 1 and goal is approximate min-max
• correlated equilibria: open in general; some hardness results, 

depending on type
• more tractable when game is finite horizon



Markov Decision Process (n=1) Stochastic Game (n>1)
𝑠!"#~ℙ(% |𝑠!, 𝑎!)
𝑟(𝑠!, 𝑎!)

𝑠!"#~ℙ(% |𝑠!, 𝑎!,#, … , 𝑎!,%)
𝑟&(𝑠!, 𝑎!,#, … , 𝑎!,%)

Agent’s policy 𝜋: 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴
Agent’s objective:

     𝑢(𝜋) = 𝔼 (*~*
++~,(.|(+, (,,+, ,)
(+-.~ℙ(.|(+,++)

∑!23𝛾! ⋅ 𝑟(𝑠!, 𝑎!)  

Agent 𝑖’s objective:

 𝑢&(𝜋) = 𝔼 (*~*
++~,(.|(+, (,,𝒂, ,)
(+-.~ℙ(.|(+,𝒂+)

∑!23𝛾! ⋅ 𝑟&(𝑠!, 𝒂!)  

Agent 𝑖’s policy 𝜋&: 𝑆× 𝑆×𝐴 ∗ → Δ 𝐴&  

Stochastic Games: Planning vs Learning

Planning: find a good policy with knowledge of 
environment i.e. dynamics & rewards
Reinforcement Learning: find a good policy without 
a priori knowledge (or at least not complete 
knowledge) of the environment
• by interacting with environment 
• or with simulator access to the environment
• or with enough offline data 
RL through Q-learning, policy gradient methods,…

Distinction between planning and learning similar
extra complication: do agents observe each 
other’s actions? can agents communicate?

Multi-Agent Reinforcement Learning
         less well explored

Algorithms/Learning/Complexity: next week (guest: Noah Golowich)

Equilibrium Existence Results: this week



Equilibrium Existence:
Finite Horizon Stochastic Games 
Proposition: Exists Nash equilibrium in Markovian policies

Proof: via “backwards induction”

• Construct Nash equilibrium policies inductively, starting at 𝑡 = 𝐻 − 1 (last interaction round) and proceeding backwards

• I.e. for all 𝑖’s together compute 𝜋" ⋅ 𝑠, 𝑡 	from 𝑡 = 𝐻 − 1 down to 0

• Auxiliary variables constructed inductively 𝑉",! 𝑠 : continuation value that player 𝑖 expects to receive if they were to 
start at state s at time 𝑡	under selected Nash equilibrium policies at times t, t+1,…

Base Case: 
𝑉",< 𝑠 ← 0	 for all 𝑠, 𝑖 

Inductive step (𝒕 = 𝑯 − 𝟏,… , 𝟎)
1. Assume given 𝑉",!=&: 𝑆 → ℝ
2. For each 𝑠 ∈ 𝑆, construct a game where i’s 

utility  𝐹"(: 𝐴 → ℝ is as shown at right 
3. Compute a Nash equilibrium of the game 

(𝐹&(, … , 𝐹'(), and let that be 𝜋 ⋅ |𝑠, 𝑡 ∈ Δ(𝐴)
4. Let 𝑉",! 𝑠 ≔ 	𝔼𝒂∼,(⋅|(,!)[𝐹"( 𝒂 ].   

𝐹"((𝑎&, 𝑎7)

𝐹"( 𝒂 ≔	𝑟" 𝑠, 𝒂 +	𝔼(+∼ℙ(⋅|(,𝒂)[𝑉",!=& 𝑠4 ]

𝑎& ∈ 𝐴&

𝑎7 ∈ 𝐴7



Construct Nash equilibrium policies inductively, starting at 𝑡 = 𝐻 − 1 (last interaction round) and proceeding backwards

• I.e. for all 𝑖, compute 𝜋" ⋅ 𝑠, 𝑡 	from 𝑡 = 𝐻 − 1 down to 0

• Auxiliary variables constructed inductively 𝑉",! 𝑠 : continuation value of player 𝑖 under Nash equilibrium

𝑡 = 0 𝑡 = 1 𝑡 = 2 = 𝐻 − 1

States

Equilibrium Existence:
Finite-Horizon Stochastic Games 



Construct Nash equilibrium policies inductively, starting at 𝑡 = 𝐻 − 1 (last interaction round) and proceeding backwards

• I.e. for all 𝑖, compute 𝜋" ⋅ 𝑠, 𝑡 	from 𝑡 = 𝐻 − 1 down to 0

• Auxiliary variables constructed inductively 𝑉",! 𝑠 : continuation value of player 𝑖 under Nash equilibrium

States

Base Case: 
𝑉",< 𝑠 ← 0	 for all 𝑠, 𝑖 

Equilibrium Existence:
Finite-Horizon Stochastic Games 

𝑡 = 0 𝑡 = 1 𝑡 = 2 = 𝐻 − 1



Construct Nash equilibrium policies inductively, starting at 𝑡 = 𝐻 − 1 (last interaction round) and proceeding backwards

• I.e. for all 𝑖, compute 𝜋" ⋅ 𝑠, 𝑡 	from 𝑡 = 𝐻 − 1 down to 0

• Auxiliary variables constructed inductively 𝑉",! 𝑠 : continuation value of player 𝑖 under Nash equilibrium

Inductive step:
1. Assume given 𝑉",!=&: 𝑆 → ℝ (e.g., 𝑡 = 1)
2. For each 𝑠 ∈ 𝑆,	player 𝑖 ∈ [𝑚], define local payoff 

function 𝐹"(: 𝐴 → ℝ:

3. Compute a Nash equilibrium of game (𝐹&(, … , 𝐹'() 
at each state 𝑠, and let that be 𝜋 ⋅ |𝑠, 𝑡 ∈ Δ(𝐴)

States

Base Case: 
𝑉",< 𝑠 ← 0	 for all 𝑠, 𝑖 

𝐹"( 𝒂 ≔	𝑟" 𝑠, 𝒂 +	𝔼(+∼ℙ(⋅|(,𝒂)[𝑉",!=& 𝑠4 ]

Equilibrium Existence:
Finite-Horizon Stochastic Games 

𝑡 = 0 𝑡 = 1 𝑡 = 2 = 𝐻 − 1



Construct Nash equilibrium policies inductively, starting at 𝑡 = 𝐻 − 1 (last interaction round) and proceeding backwards

• I.e. for all 𝑖, compute 𝜋" ⋅ 𝑠, 𝑡 	from 𝑡 = 𝐻 − 1 down to 0

• Auxiliary variables constructed inductively 𝑉",! 𝑠 : continuation value of player 𝑖 under Nash equilibrium

Inductive step:
1. Assume given 𝑉",!=&: 𝑆 → ℝ (e.g., 𝑡 = 1)
2. For each 𝑠 ∈ 𝑆,	player 𝑖 ∈ [𝑚], define local payoff 

function 𝐹"(: 𝐴 → ℝ:

3. Compute a Nash equilibrium of game (𝐹&(, … , 𝐹'() 
at each state 𝑠, and let that be 𝜋 ⋅ |𝑠, 𝑡 ∈ Δ(𝐴)

4. Let 𝑉",? 𝑠 ≔ 	𝔼𝒂∼, ⋅|(,! [𝐹"( 𝒂 ]

States

Base Case: 
𝑉",< 𝑠 ← 0	 for all 𝑠, 𝑖 

𝐹"( 𝒂 ≔	𝑟" 𝑠, 𝒂 +	𝔼(+∼ℙ(⋅|(,𝒂)[𝑉",!=& 𝑠4 ]

Equilibrium Existence:
Finite-Horizon Stochastic Games 

𝑡 = 0 𝑡 = 1 𝑡 = 2 = 𝐻 − 1



Construct Nash equilibrium policies inductively, starting at 𝑡 = 𝐻 − 1 (last interaction round) and proceeding backwards

• I.e. for all 𝑖, compute 𝜋" ⋅ 𝑠, 𝑡 	from 𝑡 = 𝐻 − 1 down to 0

• Auxiliary variables constructed inductively 𝑉",! 𝑠 : continuation value of player 𝑖 under Nash equilibrium

States

Base Case: 
𝑉",< 𝑠 ← 0	 for all 𝑠, 𝑖 

𝐹"( 𝒂 ≔	𝑟" 𝑠, 𝒂 +	𝔼(+∼ℙ(⋅|(,𝒂)[𝑉",!=& 𝑠4 ]

Equilibrium Existence:
Finite-Horizon Stochastic Games 

𝑡 = 0 𝑡 = 1 𝑡 = 2 = 𝐻 − 1

Inductive step:
1. Assume given 𝑉",!=&: 𝑆 → ℝ (e.g., 𝑡 = 1)
2. For each 𝑠 ∈ 𝑆,	player 𝑖 ∈ [𝑚], define local payoff 

function 𝐹"(: 𝐴 → ℝ:

3. Compute a Nash equilibrium of game (𝐹&(, … , 𝐹'() 
at each state 𝑠, and let that be 𝜋 ⋅ |𝑠, 𝑡 ∈ Δ(𝐴)

4. Let 𝑉",? 𝑠 ≔ 	𝔼𝒂∼, ⋅|(,! [𝐹"( 𝒂 ]

Exercise: why are inductively computed policies a Nash equilibrium?



Equilibrium Existence:
Infinite-Horizon Stochastic Games 
[Takahashi’64, Fink’64]: There exists a Nash equilibrium in stationary, Markovian policies, i.e. a collection of stationary and 
Markovian policies 𝜋&, … , 𝜋' s.t. for all 𝑖, for all (possibly history-dependent) 𝜋"4: 𝑢" 𝜋" , 𝜋5"	 ≥ 𝑢" 𝜋"4, 𝜋5"	 .

Proof: on the board


