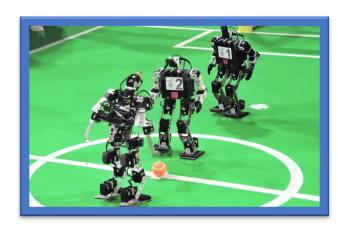
6.S890: Topics in Multiagent Learning

Lecture 9 – Prof. Daskalakis Fall 2023

Reinforcement Learning: breakthroughs & frontiers

Reinforcement Learning: breakthroughs & frontiers



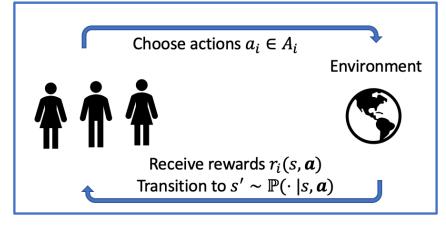
many involve multiple players!

Lectures 9-11: investigate questions regarding equilibrium *existence, computation* and *learning* in multi-player RL and its underlying game-theoretic models

Stochastic Games [Shapley'53] infinite horizon, finite states/actions

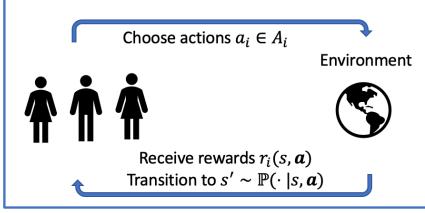
- An *m*-player, infinite-horizon, finite state/action space, stochastic (or Markov) game $G = (S, A, \mathbb{P}, r, \gamma, \mu)$ is specified via the following ingredients:
 - *S* : a finite set of **states**
 - $A = A_1 \times \cdots \times A_m$: a joint action set, where A_i is the finite action set of agent $i \in [m]$
 - $\mathbb{P}(s'|s, a)$, for $s, s' \in S$, $a \in A$: the transition matrix of the environment
 - $r = (r_1, ..., r_m)$: the reward functions of the environment where $r_i(s, a)$ is the reward function of agent *i*
 - $\gamma \in (0,1)$: the discount factor
 - $\mu \in \Delta(S)$: the initial state distribution
- Given an infinite state-action sequence $(s_t, a_t)_t$ players derive discounted utilities: $u_i((s_t, a_t)_t) = \sum_{t \ge 0} \gamma^t \cdot r_i(s_t, a_t)$
- A randomized strategy, or policy, of player *i* is a function $\pi_i: S \times (S \times A)^* \to \Delta(A_i)$, mapping histories to action distributions
- Given policies π_1, \ldots, π_m the discounted expected utility of agent *i* is:

$$u_i(\pi_1, \dots, \pi_m) = \mathbb{E} \underbrace{s_0 \sim \mu}_{\substack{a_{t,i} \sim \pi_i(\cdot | s_t, (s_\tau, a_\tau)_{\tau < t}) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}} \left[\sum_{t \ge 0} \gamma^t \cdot r_i(s_t, a_t) \right]$$



Stochastic Games [Shapley'53] infinite horizon, finite states/actions

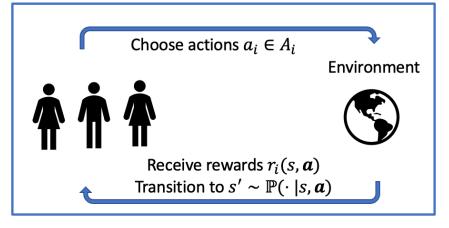
- In general, a policy $\pi_i: S \times (S \times A)^* \to \Delta(A_i)$ can be history dependent
- A policy is *history-independent* or *Markovian* if it only depends on the current state and time
 - i.e. for all $t, s, (s_{\tau}, \boldsymbol{a}_{\tau})_{\tau=1}^{t-1}, (s'_{\tau}, \boldsymbol{a}'_{\tau})_{\tau=1}^{t-1} : \pi_i(s, (s_{\tau}, \boldsymbol{a}_{\tau})_{\tau=1}^{t-1}) = \pi_i(s, (s_{\tau}', \boldsymbol{a}_{\tau}')_{\tau=1}^{t-1})$
 - such policy can be also represented as a function $\pi_i: S \times \mathbb{N} \to \Delta(A_i)$
- A policy is stationary and Markovian if it only depends on the current state
 - such policy can be also represented as a function $\pi_i: S \to \Delta(A_i)$
- Given stationary, Markovian policies $\pi_1, ..., \pi_m$: $u_i(\pi_1, ..., \pi_m) = \mathbb{E} \sum_{\substack{s_0 \sim \mu \\ a_{t,i} \sim \pi_i(\cdot | s_t) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}} \sum_{\substack{s_t \in \mathbb{P}(\cdot | s_t, a_t)}} \sum_{$
- [Takahashi'64, Fink'64]: There exists a Nash equilibrium in stationary, Markovian policies, i.e. a collection of stationary and Markovian policies $\pi_1, ..., \pi_m$ s.t. for all *i*, for all (possibly history-dependent) $\pi'_i: u_i(\pi_i, \pi_{-i}) \ge u_i(\pi'_i, \pi_{-i})$.
- [Shapley'53]: In two-player zero-sum stochastic games: $\max_{\pi_1} \min_{\pi_2} u_1(\pi_1, \pi_2) = \min_{\pi_2} \max_{\pi_1} u_1(\pi_1, \pi_2)$.
- Costis's comment: pretty cool because $u_i(\pi_i; \pi_{-i})$ is non-concave in π_i



Stochastic Games [Shapley'53] finite-horizon variant

- An *m*-player, finite-horizon, finite state/action space, stochastic (or Markov) game $G = (S, A, \mathbb{P}, r, H, \mu, \gamma)$ is specified via the following ingredients:
 - *S* : a finite set of **states**
 - $A = A_1 \times \cdots \times A_m$: a joint action set, where A_i is the finite action set of agent $i \in [m]$
 - $\mathbb{P}(s'|s, a)$, for $s, s' \in S$, $a \in A$: the **transition matrix** of the environment
 - $r = (r_1, ..., r_m)$: the reward functions of the environment where $r_i(s, a)$ is the reward function of agent i
 - $H \in \mathbb{N}_+$: the number of interaction steps
 - $\mu \in \Delta(S)$: the initial state distribution
 - $\gamma \in (0,1]$: the discount factor γ ; not that in contrast to the infinite-horizon setting, γ can be chosen to be 1
- Given a finite state-action sequence $(s_t, a_t)_{t=1}^{H}$ players derive discounted utilities: $u_i((s_t, a_t)_t) = \sum_{t=0}^{H-1} \gamma^t r_i(s_t, a_t)$
- A randomized strategy, or policy, of player *i* is a function $\pi_i: S \times (S \times A)^{\leq H} \to \Delta(A_i)$, mapping histories to action distributions
- Given policies π_1, \ldots, π_m the discounted expected utility of agent i is:

$$u_i(\pi_1, \dots, \pi_m) = \mathbb{E} \sup_{\substack{a_{t,i} \sim \pi_i(\cdot | s_t, (s_\tau, a_\tau)_{\tau < t}) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}} [\sum_{t < H} \gamma^t \cdot r_i(s_t, a_t)]$$



Stochastic Games: Single- vs Multi-Agent Case

Markov Decision Process (n=1)

 $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$ $r(s_t, a_t)$

Agent's policy $\pi: S \times (S \times A)^* \to \Delta(A)$

Agent's objective:

$$u(\pi) = \mathbb{E} \underset{\substack{a_t \sim \pi(\cdot | s_t, (s_\tau, a_\tau)_\tau) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}}{s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)} [\sum_{t \ge 0} \gamma^t \cdot r(s_t, a_t)]$$

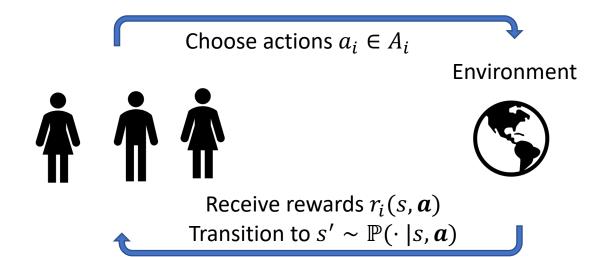
Choose action $a \in A$ Environment Receive reward r(s, a)Transition to $s' \sim \mathbb{P}(\cdot | s, a)$

Stochastic Game (n>1)

 $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_{t,1}, \dots, a_{t,m})$ $r_i(s_t, a_{t,1}, \dots, a_{t,m})$

Agent *i*'s policy $\pi_i: S \times (S \times A)^* \to \Delta(A_i)$ Agent *i*'s objective:

$$u_i(\pi) = \mathbb{E} \underset{\substack{a_t \sim \pi(\cdot | s_t, (s_\tau, a_\tau)_\tau) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}}{s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)} [\sum_{t \ge 0} \gamma^t \cdot r_i(s_t, a_t)]$$



Stochastic Games: Single- vs Multi-Agent Case

Markov Decision Process (n=1)

 $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$ $r(s_t, a_t)$

Agent's policy $\pi: S \times (S \times A)^* \to \Delta(A)$

Agent's objective:

$$u(\pi) = \mathbb{E} \sup_{\substack{a_t \sim \pi(\cdot | s_t, (s_\tau, a_\tau)_\tau) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}} \left[\sum_{t \ge 0} \gamma^t \cdot r(s_t, a_t) \right]$$

Folklore Result: exists optimal policy that is stationary and Markovian

- optimal policy can be found using Linear Programming
- also using policy iteration/value iteration methods

Stochastic Game (n>1)

 $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_{t,1}, \dots, a_{t,m})$ $r_i(s_t, a_{t,1}, \dots, a_{t,m})$

Agent *i*'s policy $\pi_i: S \times (S \times A)^* \to \Delta(A_i)$

Agent *i*'s objective:

$$u_i(\pi) = \mathbb{E} \sup_{\substack{a_t \sim \pi(\cdot | s_t, (s_\tau, a_\tau)_\tau) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}} [\sum_{t \ge 0} \gamma^t \cdot r_i(s_t, a_t)]$$

Corresponding Result: 3 Nash eq in stationary Markovian policies

- computing Nash equilibrium: PPAD-hard
- in zero-sum games: open in general; tractable if discount factor bounded away from 1 and goal is approximate min-max
- correlated equilibria: open in general; some hardness results, depending on type
- more tractable when game is finite horizon

Stochastic Games: Planning vs Learning

Markov Decision Process (n=1)

 $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$ $r(s_t, a_t)$

Agent's policy $\pi: S \times (S \times A)^* \to \Delta(A)$

Agent's objective:

$$u(\pi) = \mathbb{E} \underset{\substack{a_t \sim \pi(\cdot | s_t, (s_\tau, a_\tau)_\tau) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}}{s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)} [\sum_{t \ge 0} \gamma^t \cdot r(s_t, a_t)]$$

Planning: find a good policy with knowledge of environment i.e. dynamics & rewards
Reinforcement Learning: find a good policy without a priori knowledge (or at least not complete knowledge) of the environment

- by interacting with environment
- or with simulator access to the environment
- or with enough offline data

RL through Q-learning, policy gradient methods,...

Stochastic Game (n>1)

 $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_{t,1}, \dots, a_{t,m})$ $r_i(s_t, a_{t,1}, \dots, a_{t,m})$

Agent *i*'s policy $\pi_i: S \times (S \times A)^* \to \Delta(A_i)$

Agent *i*'s objective:

$$u_i(\pi) = \mathbb{E} \sup_{\substack{a_t \sim \pi(\cdot | s_t, (s_\tau, a_\tau)_\tau) \\ s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)}} [\sum_{t \ge 0} \gamma^t \cdot r_i(s_t, a_t)]$$

Distinction between planning and learning similar

extra complication: do agents observe each other's actions? can agents communicate?

Multi-Agent Reinforcement Learning

less well explored

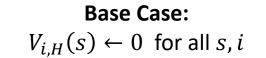
Algorithms/Learning/Complexity: next week (guest: Noah Golowich)

Equilibrium Existence Results: this week

Proposition: Exists Nash equilibrium in Markovian policies

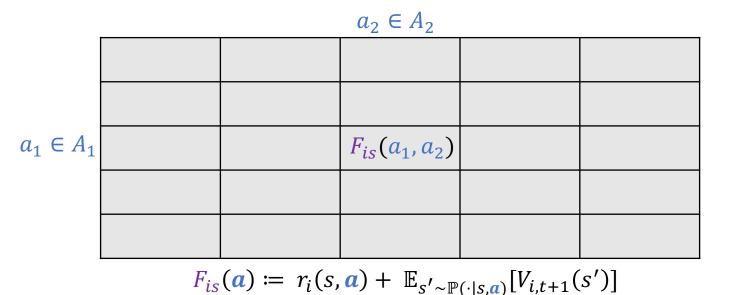
Proof: via "backwards induction"

- Construct Nash equilibrium policies inductively, starting at t = H 1 (last interaction round) and proceeding backwards
 - I.e. for all *i*'s together compute $\pi_i(\cdot | s, t)$ from t = H 1 down to 0
 - Auxiliary variables constructed inductively V_{i,t}(s): continuation value that player i expects to receive if they were to start at state s at time t under selected Nash equilibrium policies at times t, t+1,...



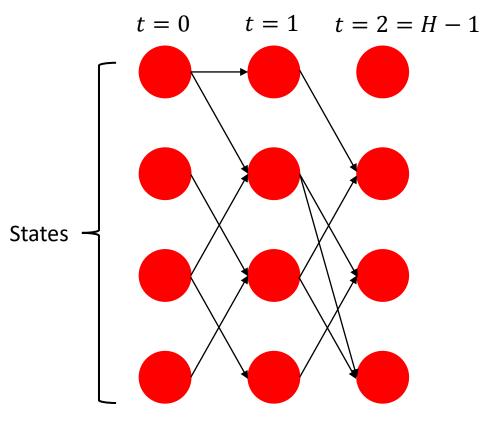
Inductive step (t = H - 1, ..., 0)

- 1. Assume given $V_{i,t+1}: S \to \mathbb{R}$
- 2. For each $s \in S$, construct a game where i's utility $F_{is}: A \to \mathbb{R}$ is as shown at right
- 3. Compute a Nash equilibrium of the game $(F_{1s}, ..., F_{ms})$, and let that be $\pi(\cdot | s, t) \in \Delta(A)$
- 4. Let $V_{i,t}(s) \coloneqq \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s,t)}[F_{is}(\boldsymbol{a})].$



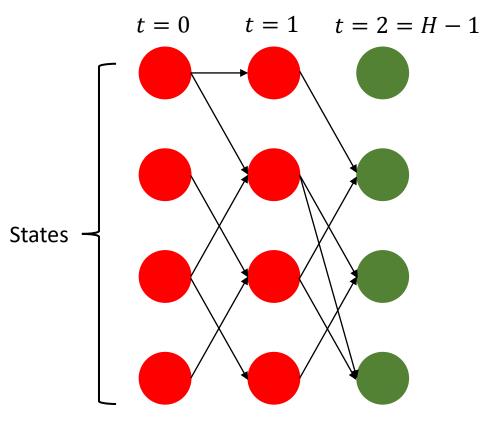
Construct Nash equilibrium policies inductively, starting at t = H - 1 (last interaction round) and proceeding backwards

- I.e. for all *i*, compute $\pi_i(\cdot | s, t)$ from t = H 1 down to 0
- Auxiliary variables constructed inductively $V_{i,t}(s)$: continuation value of player *i* under Nash equilibrium



Construct Nash equilibrium policies inductively, starting at t = H - 1 (last interaction round) and proceeding backwards

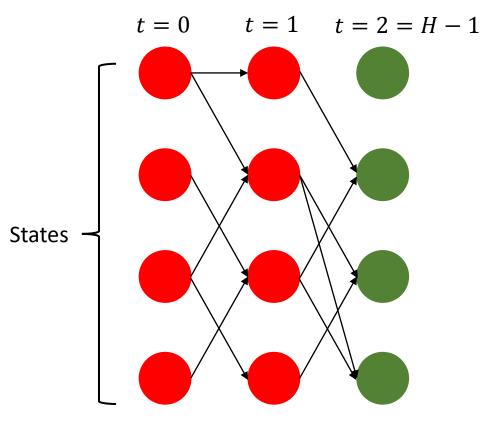
- I.e. for all *i*, compute $\pi_i(\cdot | s, t)$ from t = H 1 down to 0
- Auxiliary variables constructed inductively $V_{i,t}(s)$: continuation value of player *i* under Nash equilibrium



Base Case: $V_{i,H}(s) \leftarrow 0$ for all s, i

Construct Nash equilibrium policies inductively, starting at t = H - 1 (last interaction round) and proceeding backwards

- I.e. for all *i*, compute $\pi_i(\cdot | s, t)$ from t = H 1 down to 0
- Auxiliary variables constructed inductively $V_{i,t}(s)$: continuation value of player *i* under Nash equilibrium



```
Base Case:
V_{i,H}(s) \leftarrow 0 for all s, i
```

Inductive step:

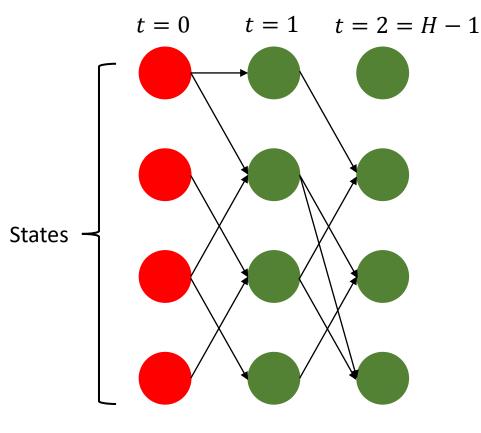
- 1. Assume given $V_{i,t+1}: S \rightarrow \mathbb{R}$ (e.g., t = 1)
- 2. For each $s \in S$, player $i \in [m]$, define local payoff function $F_{is}: A \to \mathbb{R}$:

$$F_{is}(\boldsymbol{a}) \coloneqq r_i(s, \boldsymbol{a}) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, \boldsymbol{a})}[V_{i,t+1}(s')]$$

3. Compute a Nash equilibrium of game $(F_{1s}, ..., F_{ms})$ at each state s, and let that be $\pi(\cdot | s, t) \in \Delta(A)$

Construct Nash equilibrium policies inductively, starting at t = H - 1 (last interaction round) and proceeding backwards

- I.e. for all *i*, compute $\pi_i(\cdot | s, t)$ from t = H 1 down to 0
- Auxiliary variables constructed inductively $V_{i,t}(s)$: continuation value of player *i* under Nash equilibrium



Base Case: $V_{i,H}(s) \leftarrow 0$ for all s, i

Inductive step:

- 1. Assume given $V_{i,t+1}: S \rightarrow \mathbb{R}$ (e.g., t = 1)
- 2. For each $s \in S$, player $i \in [m]$, define local payoff function $F_{is}: A \to \mathbb{R}$:

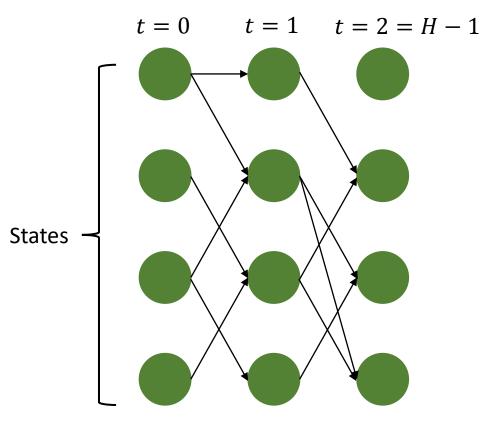
$$F_{is}(\boldsymbol{a}) \coloneqq r_i(s, \boldsymbol{a}) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, \boldsymbol{a})}[V_{i,t+1}(s')]$$

3. Compute a Nash equilibrium of game $(F_{1s}, ..., F_{ms})$ at each state s, and let that be $\pi(\cdot | s, t) \in \Delta(A)$

4. Let
$$V_{i,h}(s) \coloneqq \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s,t)}[F_{is}(\boldsymbol{a})]$$

Construct Nash equilibrium policies inductively, starting at t = H - 1 (last interaction round) and proceeding backwards

- I.e. for all *i*, compute $\pi_i(\cdot | s, t)$ from t = H 1 down to 0
- Auxiliary variables constructed inductively $V_{i,t}(s)$: continuation value of player *i* under Nash equilibrium



Base Case: $V_{i,H}(s) \leftarrow 0$ for all s, i

Inductive step:

- 1. Assume given $V_{i,t+1}: S \rightarrow \mathbb{R}$ (e.g., t = 1)
- 2. For each $s \in S$, player $i \in [m]$, define local payoff function $F_{is}: A \to \mathbb{R}$:

$$F_{is}(\boldsymbol{a}) \coloneqq r_i(s, \boldsymbol{a}) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, \boldsymbol{a})}[V_{i,t+1}(s')]$$

3. Compute a Nash equilibrium of game $(F_{1s}, ..., F_{ms})$ at each state s, and let that be $\pi(\cdot | s, t) \in \Delta(A)$

4. Let
$$V_{i,h}(s) \coloneqq \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot | s, t)}[F_{is}(\boldsymbol{a})]$$

Exercise: why are inductively computed policies a Nash equilibrium?

[Takahashi'64, Fink'64]: There exists a Nash equilibrium in stationary, Markovian policies, i.e. a collection of stationary and Markovian policies $\pi_1, ..., \pi_m$ s.t. for all *i*, for all (possibly history-dependent) $\pi'_i: u_i(\pi_i, \pi_{-i}) \ge u_i(\pi'_i, \pi_{-i})$.

Proof: on the board