6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation

6–1

Norm approximation

minimize ||Ax - b||

 $(A \in \mathbf{R}^{m \times n} \text{ with } m \ge n, \|\cdot\| \text{ is a norm on } \mathbf{R}^m)$

interpretations of solution $x^{\star} = \operatorname{argmin}_{x} \|Ax - b\|$:

- geometric: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x^{\star}

optimal design: x are design variables (input), Ax is result (output)
 x* is design that best approximates desired result b

examples

• least-squares approximation ($\|\cdot\|_2$): solution satisfies normal equations

$$A^T A x = A^T b$$

$$(x^{\star} = (A^T A)^{-1} A^T b$$
 if rank $A = n$)

• Chebyshev approximation ($\|\cdot\|_{\infty}$): can be solved as an LP

 $\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & -t \mathbf{1} \preceq A x - b \preceq t \mathbf{1} \end{array}$

• sum of absolute residuals approximation $(\|\cdot\|_1)$: can be solved as an LP

minimize
$$\mathbf{1}^T y$$

subject to $-y \preceq Ax - b \preceq y$

Approximation and fitting

Penalty function approximation

 $\begin{array}{ll} \mbox{minimize} & \phi(r_1) + \cdots + \phi(r_m) \\ \mbox{subject to} & r = Ax - b \end{array}$

 $(A \in \mathbf{R}^{m imes n}, \phi : \mathbf{R}
ightarrow \mathbf{R}$ is a convex penalty function)

examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width *a*:

$$\phi(u) = \max\{0, |u| - a\}$$

• log-barrier with limit *a*:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$

example (m = 100, n = 30): histogram of residuals for penalties

shape of penalty function has large effect on distribution of residuals

Approximation and fitting

6–5

PSfrag replace the penalty function (with parameter M)

$$\phi_{\rm hub}(u) \overset{\text{Sfrag}}{=} \begin{cases} \underset{M(2|u|-M)}{\overset{\text{replacements}}{=}} & |u| \leq M \\ M(2|u|-M) & |u| > M \end{cases}$$

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for M = 1
- right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i , y_i (circles) using quadratic (dashed) and Huber (solid) penalty

 $\begin{array}{ll} \mbox{minimize} & \|x\| \\ \mbox{subject to} & Ax = b \end{array}$

 $(A \in \mathbf{R}^{m imes n} \text{ with } m \le n, \| \cdot \| \text{ is a norm on } \mathbf{R}^n)$

interpretations of solution $x^{\star} = \operatorname{argmin}_{Ax=b} \|x\|$:

- geometric: x^* is point in affine set $\{x \mid Ax = b\}$ with minimum distance to 0
- estimation: b = Ax are (perfect) measurements of x; x^* is smallest ('most plausible') estimate consistent with measurements
- design: x are design variables (inputs); b are required results (outputs)
 x* is smallest ('most efficient') design that satisfies requirements

Approximation and fitting

examples

least-squares solution of linear equations (|| · ||₂):
 can be solved via optimality conditions

$$2x + A^T \nu = 0, \qquad Ax = b$$

• minimum sum of absolute values $(\|\cdot\|_1)$: can be solved as an LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y \\ \text{subject to} & -y \preceq x \preceq y, \quad Ax = b \end{array}$

tends to produce sparse solution x^{\star}

extension: least-penalty problem

minimize
$$\phi(x_1) + \dots + \phi(x_n)$$

subject to $Ax = b$

 $\phi: \mathbf{R} \to \mathbf{R}$ is convex penalty function

Regularized approximation

minimize (w.r.t. \mathbf{R}^{2}_{+}) (||Ax - b||, ||x||)

 $A \in \mathbf{R}^{m \times n}$, norms on \mathbf{R}^m and \mathbf{R}^n can be different

interpretation: find good approximation $Ax \approx b$ with small x

- estimation: linear measurement model y = Ax + v, with prior knowledge that ||x|| is small
- **optimal design**: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x

Approximation and fitting

Scalarized problem

minimize $||Ax - b|| + \gamma ||x||$

- solution for $\gamma > 0$ traces out optimal trade-off curve
- other common method: minimize $||Ax b||^2 + \delta ||x||^2$ with $\delta > 0$

Tikhonov regularization

minimize
$$||Ax - b||_2^2 + \delta ||x||_2^2$$

can be solved as a least-squares problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_{2}^{2}$$

solution $x^{\star} = (A^T A + \delta I)^{-1} A^T b$

Optimal input design

linear dynamical system with impulse response *h*:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \quad t = 0, 1, \dots, N$$

input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output y_{des} : $J_{\text{track}} = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2$

2. input magnitude:
$$J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$$

3. input variation: $J_{der} = \sum_{t=0}^{N-1} (u(t+1) - u(t))^2$

track desired output using a small and slowly varying input signal

regularized least-squares formulation

minimize
$$J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$$

for fixed $\delta,\eta,$ a least-squares problem in $u(0),\,\ldots$, u(N)

Approximation and fitting

PSfrag replacements

PSfrag replacements example: 3 solutions on optimal trade-off curve

(top) $\delta = 0$, small η ; (middle) $\delta = 0$, larger η ; (bottom) large δ

Approximation and fitting

Signal reconstruction

minimize (w.r.t. \mathbf{R}^2_+) $(\|\hat{x} - x_{cor}\|_2, \phi(\hat{x}))$

- $x \in \mathbf{R}^n$ is unknown signal
- $x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi: \mathbf{R}^n \to \mathbf{R}$ is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

$$\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \qquad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$$

Approximation and fitting

6–13

quadratic smoothing example

PSfrag replacements

total variation reconstruction example

quadratic smoothing smooths out noise and sharp transitions in signal

Approximation and fitting

6–15

total variation smoothing preserves sharp transitions in signal

Robust approximation

minimize ||Ax - b|| with uncertain A

two approaches: PSfrag replacements

- **stochastic**: assume A is random, minimize $\mathbf{E} ||Ax b||$
- worst-case: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax b\|$

tractable only in special cases (certain norms $\|\cdot\|$, distributions, sets \mathcal{A})

stochastic robust LS with $A = \overline{A} + U$, U random, $\mathbf{E} U = 0$, $\mathbf{E} U^T U = P$

minimize $\mathbf{E} \| (\bar{A} + U)x - b \|_2^2$

• explicit expression for objective:

$$\mathbf{E} \|Ax - b\|_{2}^{2} = \mathbf{E} \|\bar{A}x - b + Ux\|_{2}^{2}$$

$$= \|\bar{A}x - b\|_{2}^{2} + \mathbf{E} x^{T} U^{T} Ux$$

$$= \|\bar{A}x - b\|_{2}^{2} + x^{T} Px$$

• hence, robust LS problem is equivalent to LS problem

minimize
$$\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$$

• for $P = \delta I$, get Tikhonov regularized problem

minimize
$$\|\bar{A}x - b\|_{2}^{2} + \delta \|x\|_{2}^{2}$$

worst-case robust LS with $\mathcal{A} = \{\bar{A} + u_1A_1 + \dots + u_pA_p \mid ||u||_2 \le 1\}$ minimize $\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 = \sup_{||u||_2 \le 1} ||P(x)u + q(x)||_2^2$ where $P(x) = \begin{bmatrix} A_1x & A_2x & \cdots & A_px \end{bmatrix}$, $q(x) = \bar{A}x - b$

- from page 5-14, strong duality holds between the following problems
 - $\begin{array}{ll} \text{maximize} & \|Pu+q\|_2^2 & \text{minimize} & t+\lambda \\ \text{subject to} & \|u\|_2^2 \leq 1 & \\ & \text{subject to} & \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \succeq 0 \end{array}$
- hence, robust LS problem is equivalent to SDP

$$\begin{array}{ll} \text{minimize} & t+\lambda \\ \text{subject to} & \left[\begin{matrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{matrix} \right] \succeq 0 \\ \end{array}$$

Approximation and fitting

PSfrag replacements

example: histogram of residuals

0.25

0.2

0.15

0.1

0.05

0

frequency

 $r(u) = \|(A_0 + u_1A_1 + u_2A_2)x - b\|_2$

 $x_{\rm tik}$

3

 $x_{\rm ls}$

5

4

with u uniformly distributed on unit disk, for three values of x

• x_{tik} minimizes $||A_0x - b||_2^2 + ||x||_2^2$ (Tikhonov solution)

 $\mathbf{2}$

r(u)

• x_{wc} minimizes $\sup_{\|u\|_2 \le 1} \|A_0 x - b\|_2^2 + \|x\|_2^2$

1