5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$
proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

dual function

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} \nu
$$

- plug in in L to obtain g :

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

a concave function of ν
lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

dual function

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- L is linear in x, hence

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu & A^{T} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Equality constrained norm minimization

```
minimize |x|
subject to }Ax=
```

dual function

$$
g(\nu)=\inf _{x}\left(\|x\|-\nu^{T} A x+b^{T} \nu\right)= \begin{cases}b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$
proof: follows from $\inf _{x}\left(\|x\|-y^{T} x\right)=0$ if $\|y\|_{*} \leq 1,-\infty$ otherwise

- if $\|y\|_{*} \leq 1$, then $\|x\|-y^{T} x \geq 0$ for all x, with equality if $x=0$
- if $\|y\|_{*}>1$, choose $x=t u$ where $\|u\| \leq 1, u^{T} y=\|y\|_{*}>1$:

$$
\|x\|-y^{T} x=t\left(\|u\|-\|y\|_{*}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

lower bound property: $p^{\star} \geq b^{T} \nu$ if $\left\|A^{T} \nu\right\|_{*} \leq 1$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets
dual function

$$
\begin{aligned}
g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-\mathbf{1}^{T} \nu \\
& = \begin{cases}-\mathbf{1}^{T} \nu & W+\boldsymbol{\operatorname { d i a g }}(\nu) \succeq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

lower bound property: $p^{\star} \geq-\mathbf{1}^{T} \nu$ if $W+\operatorname{diag}(\nu) \succeq 0$ example: $\nu=-\lambda_{\min }(W) \mathbf{1}$ gives bound $p^{\star} \geq n \lambda_{\min }(W)$

Lagrange dual and conjugate function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b, \quad C x=d
\end{array}
$$

dual function

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x-b^{T} \lambda-d^{T} \nu\right) \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} \nu\right)-b^{T} \lambda-d^{T} \nu
\end{aligned}
$$

- recall definition of conjugate $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$
- simplifies derivation of dual if conjugate of f_{0} is kown
example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ, ν are dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit
example: standard form LP and its dual (page 5-5)

$$
\begin{array}{llll}
\text { minimize } & c^{T} x & \text { maximize } & -b^{T} \nu \\
\text { subject to } & A x=b & \text { subject to } & A^{T} \nu+c \succeq 0 \\
& x \succeq 0 & &
\end{array}
$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 5-7
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened: e.g., can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\underset{\text { maximize }}{ } \quad-b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ always

A nonconvex problem with strong duality

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+2 b^{T} x \\
\text { subject to } & x^{T} x \leq 1
\end{array}
$$

nonconvex if $A \nsucceq 0$
dual function: $g(\lambda)=\inf _{x}\left(x^{T}(A+\lambda I) x+2 b^{T} x-\lambda\right)$

- unbounded below if $A+\lambda I \nsucceq 0$ or if $A+\lambda I \succeq 0$ and $b \notin \mathcal{R}(A+\lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger} b$ otherwise: $g(\lambda)=-b^{T}(A+\lambda I)^{\dagger} b-\lambda$
dual problem and equivalent SDP:

$$
\begin{array}{llll}
\operatorname{maximize} & -b^{T}(A+\lambda I)^{\dagger} b-\lambda & \text { maximize } & -t-\lambda \\
\text { subject to } & A+\lambda I \succeq 0 & \text { subject to } & {\left[\begin{array}{cc}
A+\lambda I & b \\
& b \in \mathcal{R}(A+\lambda I)
\end{array}\right.}
\end{array}
$$

strong duality although primal problem is not convex (not easy to show)

Geometric interpretation

for simplicity, consider problem with one constraint $f_{1}(x) \leq 0$ interpretation of dual function:

$$
g(\lambda)=\inf _{(u, t) \in \mathcal{G}}(t+\lambda u), \quad \text { where } \quad \mathcal{G}=\left\{\left(f_{1}(x), f_{0}(x)\right) \mid x \in \mathcal{D}\right\}
$$

- $\lambda u+t=g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t=g(\lambda)$
epigraph variation: same interpretation if \mathcal{G} is replaced with

$$
\mathcal{A}=\left\{(u, t) \mid f_{1}(x) \leq u, f_{0}(x) \leq t \text { for some } x \in \mathcal{D}\right\}
$$

strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $\left(0, p^{\star}\right)$
- for convex problem, \mathcal{A} is convex, hence has supp. hyperplane at $\left(0, p^{\star}\right)$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplanes at $\left(0, p^{\star}\right)$ must be non-vertical

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) & =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

hence, the two inequalities hold with equality

- x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$
- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. dual constraints: $\lambda \succeq 0$
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

from page $5-17$: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$
if Slater's condition is satisfied:
x is optimal if and only if there exist λ, ν that satisfy KKT conditions
- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem
example: water-filling (assume $\alpha_{i}>0$)

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

x is optimal iff $x \succeq 0, \mathbf{1}^{T} x=1$, and there exist $\lambda \in \mathbf{R}^{n}, \nu \in \mathbf{R}$ such that

$$
\lambda \succeq 0, \quad \lambda_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu
$$

- if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$
- if $\nu \geq 1 / \alpha_{i}: \lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0$
- determine ν from $\mathbf{1}^{T} x=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$

interpretation

- n patches; level of patch i is at height α_{i}
- flood area with unit amount of water
- resulting level is $1 / \nu^{\star}$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

| $\operatorname{minimize}$ | $f_{0}(x)$ | | maximize |
| :--- | :--- | :--- | :--- |$g(\lambda, \nu)$

perturbed problem and its dual

$$
\begin{array}{llll}
\min . & f_{0}(x) & \max & g(\lambda, \nu)-u^{T} \lambda-v^{T} \nu \\
\text { s.t. } & f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m & \text { s.t. } & \lambda \succeq 0 \\
& h_{i}(x)=v_{i}, \quad i=1, \ldots, p & &
\end{array}
$$

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that $\lambda^{\star}, \nu^{\star}$ are dual optimal for unperturbed problem
apply weak duality to perturbed problem:

$$
\begin{aligned}
p^{\star}(u, v) & \geq g\left(\lambda^{\star}, \nu^{\star}\right)-u^{T} \lambda^{\star}-v^{T} \nu^{\star} \\
& =p^{\star}(0,0)-u^{T} \lambda^{\star}-v^{T} \nu^{\star}
\end{aligned}
$$

sensitivity interpretation

- if λ_{i}^{\star} large: p^{\star} increases greatly if we tighten constraint $i\left(u_{i}<0\right)$
- if λ_{i}^{\star} small: p^{\star} does not decrease much if we loosen constraint $i\left(u_{i}>0\right)$
- if ν_{i}^{\star} large and positive: p^{\star} increases greatly if we take $v_{i}<0$;
if ν_{i}^{\star} large and negative: p^{\star} increases greatly if we take $v_{i}>0$
- if ν_{i}^{\star} small and positive: p^{\star} does not decrease much if we take $v_{i}>0$; if ν_{i}^{\star} small and negative: p^{\star} does not decrease much if we take $v_{i}<0$
local sensitivity: if (in addition) $p^{\star}(u, v)$ is differentiable at $(0,0)$, then

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad \nu_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

proof (for λ_{i}^{\star}): from global sensitivity result,

$$
\begin{aligned}
& \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t \searrow 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \geq-\lambda_{i}^{\star} \\
& \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t \nearrow 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \leq-\lambda_{i}^{\star}
\end{aligned}
$$

hence, equality
$p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

$$
\text { minimize } f_{0}(A x+b)
$$

- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless reformulated problem and its dual

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(y) & \text { maximize } & b^{T} \nu-f_{0}^{*}(\nu) \\
\text { subject to } & A x+b-y=0 & \text { subject to } & A^{T} \nu=0
\end{array}
$$

dual function follows from

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(f_{0}(y)-\nu^{T} y+\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}-f_{0}^{*}(\nu)+b^{T} \nu & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

norm approximation problem: minimize $\|A x-b\|$

$$
\begin{array}{ll}
\operatorname{minimize} & \|y\| \\
\text { subject to } & y=A x-b
\end{array}
$$

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(\|y\|+\nu^{T} y-\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}b^{T} \nu+\inf _{y}\left(\|y\|+\nu^{T} y\right) & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}b^{T} \nu & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

(see page 5-4)
dual of norm approximation problem

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} \nu \\
\text { subject to } & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1
\end{array}
$$

Implicit constraints

LP with box constraints: primal and dual problem

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} \nu-\mathbf{1}^{T} \lambda_{1}-\mathbf{1}^{T} \lambda_{2} \\
\text { subject to } & A x=b & \text { subject to } & c+A^{T} \nu+\lambda_{1}-\lambda_{2}=0 \\
& -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_{1} \succeq 0, \quad \lambda_{2} \succeq 0
\end{array}
$$

reformulation with box constraints made implicit

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x)= \begin{cases}c^{T} x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\
\infty & \text { otherwise } \\
\text { subject to } & A x=b\end{cases}
\end{array}
$$

dual function

$$
\begin{aligned}
g(\nu) & =\inf _{-1 \preceq x \preceq 1}\left(c^{T} x+\nu^{T}(A x-b)\right) \\
& =-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}
\end{aligned}
$$

dual problem: maximize $-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}$

Problems with generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

$\preceq_{K_{i}}$ is generalized inequality on $\mathbf{R}^{k_{i}}$
definitions are parallel to scalar case:

- Lagrange multiplier for $f_{i}(x) \preceq_{K_{i}} 0$ is vector $\lambda_{i} \in \mathbf{R}^{k_{i}}$
- Lagrangian $L: \mathbf{R}^{n} \times \mathbf{R}^{k_{1}} \times \cdots \times \mathbf{R}^{k_{m}} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, is defined as

$$
L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- dual function $g: \mathbf{R}^{k_{1}} \times \cdots \times \mathbf{R}^{k_{m}} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, is defined as

$$
g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)=\inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)
$$

lower bound property: if $\lambda_{i} \succeq_{K_{i}^{*}} 0$, then $g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \leq p^{\star}$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_{i}^{*}} 0$, then

$$
\begin{aligned}
f_{0}(\tilde{x}) & \geq f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x}) \\
& \geq \inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
& =g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)
\end{aligned}
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)$
dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
\text { subject to } & \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^{\star}=d^{\star}$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $\left(F_{i}, G \in \mathbf{S}^{k}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\cdots+x_{n} F_{n} \preceq G
\end{array}
$$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^{k}$
- Lagrangian $L(x, Z)=c^{T} x+\operatorname{tr}\left(Z\left(x_{1} F_{1}+\cdots+x_{n} F_{n}-G\right)\right)$
- dual function

$$
g(Z)=\inf _{x} L(x, Z)= \begin{cases}-\operatorname{tr}(G Z) & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

dual SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{tr}(G Z) \\
\text { subject to } & Z \succeq 0, \quad \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n
\end{array}
$$

$$
\left.p^{\star}=d^{\star} \text { if primal SDP is strictly feasible (} \exists x \text { with } x_{1} F_{1}+\cdots+x_{n} F_{n} \prec G\right)
$$

