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5. Duality

• Lagrange dual problem

• weak and strong duality

• geometric interpretation

• optimality conditions

• perturbation and sensitivity analysis

• examples

• generalized inequalities

5–1

Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(

f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ º 0, then g(λ, ν) ≤ p?

proof: if x̃ is feasible and λ º 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p? ≥ g(λ, ν)
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Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −
1

4
νTAATν − bTν

a concave function of ν

lower bound property: p? ≥ −(1/4)νTAATν − bTν for all ν
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Standard form LP

minimize cTx
subject to Ax = b, x º 0

dual function

• Lagrangian is

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx

= −bTν + (c+ATν − λ)Tx

• L is linear in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{

−bTν ATν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ+ c = 0}, hence concave

lower bound property: p? ≥ −bTν if ATν + c º 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x

(‖x‖ − νTAx+ bTν) =

{

bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 u
Tv is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

• if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

• if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uTy = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗) → −∞ as t→∞

lower bound property: p? ≥ bTν if ‖ATν‖∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i, j to the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x

(xTWx+
∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x− 1Tν

=

{

−1Tν W + diag(ν) º 0
−∞ otherwise

lower bound property: p? ≥ −1Tν if W + diag(ν) º 0

example: ν = −λmin(W )1 gives bound p? ≥ nλmin(W )
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Lagrange dual and conjugate function

minimize f0(x)
subject to Ax ¹ b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(

f0(x) + (ATλ+ CTν)Tx− bTλ− dTν
)

= −f∗0 (−ATλ− CTν)− bTλ− dTν

• recall definition of conjugate f∗(y) = supx∈dom f(yTx− f(x))

• simplifies derivation of dual if conjugate of f0 is kown

example: entropy maximization

f0(x) =
n
∑

i=1

xi log xi, f∗0 (y) =
n
∑

i=1

eyi−1
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The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ º 0

• finds best lower bound on p?, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d?

• λ, ν are dual feasible if λ º 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 5–5)

minimize cTx
subject to Ax = b

x º 0

maximize −bTν
subject to ATν + c º 0
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Weak and strong duality

weak duality: d? ≤ p?

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) º 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d? = p?

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

• also guarantees that the dual optimum is attained (if p? > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax ¹ b

dual function

g(λ) = inf
x

(

(c+ATλ)Tx− bTλ
)

=

{

−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ º 0

• from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃

• in fact, p? = d? except when primal and dual are infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax ¹ b

dual function

g(λ) = inf
x

(

xTPx+ λT (Ax− b)
)

= −
1

4
λTAP−1ATλ− bTλ

dual problem

maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ º 0

• from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃

• in fact, p? = d? always
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A nonconvex problem with strong duality

minimize xTAx+ 2bTx
subject to xTx ≤ 1

nonconvex if A 6º 0

dual function: g(λ) = infx(xT (A+ λI)x+ 2bTx− λ)

• unbounded below if A+ λI 6º 0 or if A+ λI º 0 and b 6∈ R(A+ λI)

• minimized by x = −(A+ λI)†b otherwise: g(λ) = −bT (A+ λI)†b− λ

dual problem and equivalent SDP:

maximize −bT (A+ λI)†b− λ
subject to A+ λI º 0

b ∈ R(A+ λI)

maximize −t− λ

subject to

[

A+ λI b
bT t

]

º 0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

PSfrag replacements
G

f1(x) p?

g(λ)
λu + t = g(λ)

t

u

PSfrag replacements

G

p?

d?

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G

• hyperplane intersects t-axis at t = g(λ)
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epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

PSfrag replacements
A

f1(x)
p?

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p?)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p?)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p?) must be non-vertical
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Complementary slackness

assume strong duality holds, x? is primal optimal, (λ?, ν?) is dual optimal

f0(x
?) = g(λ?, ν?) = inf

x

(

f0(x) +

m
∑

i=1

λ?
i fi(x) +

p
∑

i=1

ν?
i hi(x)

)

≤ f0(x
?) +

m
∑

i=1

λ?
i fi(x

?) +

p
∑

i=1

ν?
i hi(x

?)

≤ f0(x
?)

hence, the two inequalities hold with equality

• x? minimizes L(x, λ?, ν?)

• λ?
i fi(x

?) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ?
i > 0 =⇒ fi(x

?) = 0, fi(x
?) < 0 =⇒ λ?

i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ º 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x º 0, 1Tx = 1

x is optimal iff x º 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ º 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1 max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν?

PSfrag replacements

i

1/ν?

xi

αi
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, ν)
subject to λ º 0

perturbed problem and its dual

min. f0(x)
s.t. fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

max. g(λ, ν)− uTλ− vTν
s.t. λ º 0

• x is primal variable; u, v are parameters

• p?(u, v) is optimal value as a function of u, v

• we are interested in information about p?(u, v) that we can obtain from
the solution of the unperturbed problem and its dual
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global sensitivity result

assume strong duality holds for unperturbed problem, and that λ?, ν? are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

p?(u, v) ≥ g(λ?, ν?)− uTλ? − vTν?

= p?(0, 0)− uTλ? − vTν?

sensitivity interpretation

• if λ?
i large: p

? increases greatly if we tighten constraint i (ui < 0)

• if λ?
i small: p

? does not decrease much if we loosen constraint i (ui > 0)

• if ν?
i large and positive: p

? increases greatly if we take vi < 0;
if ν?

i large and negative: p
? increases greatly if we take vi > 0

• if ν?
i small and positive: p

? does not decrease much if we take vi > 0;
if ν?

i small and negative: p
? does not decrease much if we take vi < 0
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local sensitivity: if (in addition) p?(u, v) is differentiable at (0, 0), then

λ?
i = −

∂p?(0, 0)

∂ui
, ν?

i = −
∂p?(0, 0)

∂vi

proof (for λ?
i ): from global sensitivity result,

∂p?(0, 0)

∂ui
= lim

t↘0

p?(tei, 0)− p?(0, 0)

t
≥ −λ?

i

∂p?(0, 0)

∂ui
= lim

t↗0

p?(tei, 0)− p?(0, 0)

t
≤ −λ?

i

hence, equality

p?(u) for a problem with one (inequality)
constraint:

PSfrag replacements

u
p?(u)

p?(0)− λ?u

u = 0
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Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice-versa

• transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax+ b)

• dual function is constant: g = infxL(x) = infx f0(Ax+ b) = p?

• we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax+ b− y = 0

maximize bTν − f∗0 (ν)
subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− νTy + νTAx+ bTν)

=

{

−f∗0 (ν) + bTν ATν = 0
−∞ otherwise
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norm approximation problem: minimize ‖Ax− b‖

minimize ‖y‖
subject to y = Ax− b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖+ νTy − νTAx+ bTν)

=

{

bTν + infy(‖y‖+ νTy) ATν = 0
−∞ otherwise

=

{

bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

(see page 5–4)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ‖ν‖∗ ≤ 1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 ¹ x ¹ 1

maximize −bTν − 1Tλ1 − 1Tλ2

subject to c+ATν + λ1 − λ2 = 0
λ1 º 0, λ2 º 0

reformulation with box constraints made implicit

minimize f0(x) =

{

cTx −1 ¹ x ¹ 1

∞ otherwise
subject to Ax = b

dual function

g(ν) = inf
−1¹x¹1

(cTx+ νT (Ax− b))

= −bTν − ‖ATν + c‖1

dual problem: maximize −bTν − ‖ATν + c‖1
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Problems with generalized inequalities

minimize f0(x)
subject to fi(x) ¹Ki

0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

¹Ki
is generalized inequality on Rki

definitions are parallel to scalar case:

• Lagrange multiplier for fi(x) ¹Ki
0 is vector λi ∈ Rki

• Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m
∑

i=1

λT
i fi(x) +

p
∑

i=1

νihi(x)

• dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)
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lower bound property: if λi ºK∗
i

0, then g(λ1, . . . , λm, ν) ≤ p?

proof: if x̃ is feasible and λ ºK∗
i

0, then

f0(x̃) ≥ f0(x̃) +

m
∑

i=1

λT
i fi(x̃) +

p
∑

i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives p? ≥ g(λ1, . . . , λm, ν)

dual problem

maximize g(λ1, . . . , λm, ν)
subject to λi ºK∗

i
0, i = 1, . . . ,m

• weak duality: p? ≥ d? always

• strong duality: p? = d? for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · ·+ xnFn ¹ G

• Lagrange multiplier is matrix Z ∈ Sk

• Lagrangian L(x, Z) = cTx+ tr (Z(x1F1 + · · ·+ xnFn −G))

• dual function

g(Z) = inf
x
L(x, Z) =

{

− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize − tr(GZ)
subject to Z º 0, tr(FiZ) + ci = 0, i = 1, . . . , n

p? = d? if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)
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