
Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

• optimization problem in standard form

• convex optimization problems

• quasiconvex optimization

• linear optimization

• quadratic optimization

• geometric programming

• generalized inequality constraints

• semidefinite programming

• vector optimization

4–1

Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : Rn → R is the objective or cost function

• fi : Rn → R, i = 1, . . . , m, are the inequality constraint functions

• hi : Rn → R are the equality constraint functions

optimal value:

p? = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p}

• p? = ∞ if problem is infeasible (no x satisfies the constraints)

• p? = −∞ if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p?; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

examples (with n = 1, m = p = 0)

• f0(x) = 1/x, dom f0 = R++: p? = 0, no optimal point

• f0(x) = − log x, dom f0 = R++: p? = −∞
• f0(x) = x log x, dom f0 = R++: p? = −1/e, x = 1/e is optimal

• f0(x) = x3 − 3x, p? = −∞, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =

m
⋂

i=0

dom fi ∩
p
⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize f0(x) = −∑k
i=1 log(bi − aT

i x)

is an unconstrained problem with implicit constraints aT
i x < bi
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Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• p? = 0 if constraints are feasible; any feasible x is optimal

• p? = ∞ if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)
2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition): f1 is not convex, h1

is not affine

• equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal and y is optimal with f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1 − θ)x with θ = R/(2‖y − x‖2)

• ‖y − x‖2 > R, so 0 < θ < 1/2

• z is a convex combination of two feasible points, hence also feasible

• ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(x) + (1 − θ)f0(y) < f0(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)T (y − x) ≥ 0 for all feasible y

PSfrag replacements

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) + ATν = 0

• minimization over nonnegative orthant

minimize f0(x) subject to x º 0

x is optimal if and only if

x ∈ dom f0, x º 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x + b0)
subject to fi(Aix + bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix + bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aT

i x ≤ bi, i = 1, . . . , m

is equivalent to

minimize (over x, s) f0(x)
subject to aT

i x + si = bi, i = 1, . . . ,m
si ≥ 0, i = 1, . . .m
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• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x) − t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)
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Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

PSfrag replacements

(x, f0(x))
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convex representation of sublevel sets of f0

if f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set of f0 is 0-sublevel set of φt, i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0

can take φt(x) = p(x) − tq(x):

• for t ≥ 0, φt convex in x

• p(x)/q(x) ≤ t if and only if φt(x) ≤ 0
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quasiconvex optimization via convex feasibility problems

φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . , m, Ax = b (1)

• for fixed t, a convex feasibility problem in x

• if feasible, we can conclude that t ≥ p?; if infeasible, t ≤ p?

Bisection method for quasiconvex optimization

given l ≤ p?, u ≥ p?, tolerance ε > 0.

repeat

1. t := (l + u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u − l ≤ ε.

requires exactly dlog2((u − l)/ε)e iterations (where u, l are initial values)
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Linear program (LP)

minimize cTx + d
subject to Gx ¹ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

PSfrag replacements
P x?

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax º b, x º 0

piecewise-linear minimization

minimize maxi=1,...,m(aT
i x + bi)

equivalent to an LP

minimize t
subject to aT

i x + bi ≤ t, i = 1, . . . , m
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Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aT
i x ≤ bi, i = 1, . . . , m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}
PSfrag replacements

xchebxcheb

• aT
i x ≤ bi for all x ∈ B if and only if

sup{aT
i (xc + u) | ‖u‖2 ≤ r} = aT

i xc + r‖ai‖2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aT

i xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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(Generalized) linear-fractional program

minimize f0(x)
subject to Gx ¹ h

Ax = b

linear-fractional program

f0(x) =
cTx + d

eTx + f
, dom f0(x) = {x | eTx + f > 0}

• a quasiconvex optimization problem; can be solved by bisection

• also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy ¹ hz

Ay = bz
eTy + fz = 1
z ≥ 0

Convex optimization problems 4–20



generalized linear-fractional program

f0(x) = max
i=1,...,r

cT
i x + di

eT
i x + fi

, dom f0(x) = {x | eT
i x+fi > 0, i = 1, . . . , r}

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over x, x+) mini=1,...,n x+
i /xi

subject to x+ º 0, Bx+ ¹ Ax

• x, x+ ∈ Rn: activity levels of n sectors, in current and next period

• (Ax)i, (Bx+)i: produced, resp. consumed, amounts of good i

• x+
i /xi: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Quadratic program (QP)

minimize (1/2)xTPx + qTx + r
subject to Gx ¹ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

PSfrag replacements
P

x?

−∇f0(x
?)
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Examples

least-squares
minimize ‖Ax − b‖2

2

• analytical solution x? = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l ¹ x ¹ u

linear program with random cost

minimize c̄Tx + γxTΣx = E cTx + γ var(cTx)
subject to Gx ¹ h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x + qT
0 x + r0

subject to (1/2)xTPix + qT
i x + ri ≤ 0, i = 1, . . . , m

Ax = b

• Pi ∈ Sn
+; objective and constraints are convex quadratic

• if P1, . . . , Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and

an affine set
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Second-order cone programming

minimize fTx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . ,m
Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix + bi, c
T
i x + di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aT

i x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to prob(aT

i x ≤ bi) ≥ η, i = 1, . . . ,m
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deterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aT

i x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āT

i x + ‖PT
i x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1(āi + Piu)Tx = āT
i x + ‖PT

i x‖2)
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stochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aT
i x is Gaussian r.v. with mean āT

i x, variance xTΣix; hence

prob(aT
i x ≤ bi) = Φ

(

bi − āT
i x

‖Σ1/2
i x‖2

)

where Φ(x) = (1/
√

2π)
∫ x

−∞
e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to prob(aT

i x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āT
i x + Φ−1(η)‖Σ1/2

i x‖2 ≤ bi, i = 1, . . . ,m
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Geometric programming

monomial function

f(x) = cxa1
1 xa2

2 · · ·xan
n , dom f = Rn

++

with c > 0; exponent αi can be any real number

posynomial function: sum of monomials

f(x) =
K
∑

k=1

ckx
a1k
1 x

a2k
2 · · ·xank

n , dom f = Rn
++

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form

change variables to yi = log xi, and take logarithm of cost, constraints

• monomial f(x) = cxa1
1 · · ·xan

n transforms to

log f(ey1, . . . , eyn) = aTy + b (b = log c)

• posynomial f(x) =
∑K

k=1 ckx
a1k
1 x

a2k
2 · · ·xank

n transforms to

log f(ey1, . . . , eyn) = log

(

K
∑

k=1

eaT
k y+bk

)

(bk = log ck)

• geometric program transforms to convex problem

minimize log
(

∑K
k=1 exp(aT

0ky + b0k)
)

subject to log
(

∑K
k=1 exp(aT

iky + bik)
)

≤ 0, i = 1, . . . , m

Gy + d = 0
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Design of cantilever beam
PSfrag replacements

F

segment 4 segment 3 segment 2 segment 1

• N segments with unit lengths, rectangular cross-sections of size wi × hi

• given vertical force F applied at the right end

design problem

minimize total weight
subject to upper & lower bounds on wi, hi

upper bound & lower bounds on aspect ratios hi/wi

upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam

variables: wi, hi for i = 1, . . . , N
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objective and constraint functions

• total weight w1h1 + · · · + wNhN is posynomial

• aspect ratio hi/wi and inverse aspect ratio wi/hi are monomials

• maximum stress in segment i is given by 6iF/(wih
2
i ), a monomial

• the vertical deflection yi and slope vi of central axis at the right end of
segment i are defined recursively as

vi = 12(i − 1/2)
F

Ewih3
i

+ vi+1

yi = 6(i − 1/3)
F

Ewih3
i

+ vi+1 + yi+1

for i = N,N − 1, . . . , 1, with vN+1 = yN+1 = 0 (E is Young’s modulus)

vi and yi are posynomial functions of w, h
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formulation as a GP

minimize w1h1 + · · · + wNhN

subject to w−1
maxwi ≤ 1, wminw

−1
i ≤ 1, i = 1, . . . , N

h−1
maxhi ≤ 1, hminh

−1
i ≤ 1, i = 1, . . . , N

S−1
maxw

−1
i hi ≤ 1, Sminwih

−1
i ≤ 1, i = 1, . . . , N

6iFσ−1
maxw

−1
i h−2

i ≤ 1, i = 1, . . . , N

y−1
maxy1 ≤ 1

note

• we write wmin ≤ wi ≤ wmax and hmin ≤ hi ≤ hmax

wmin/wi ≤ 1, wi/wmax ≤ 1, hmin/hi ≤ 1, hi/hmax ≤ 1

• we write Smin ≤ hi/wi ≤ Smax as

Sminwi/hi ≤ 1, hi/(wiSmax) ≤ 1
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Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue λpf(A)

• exists for (elementwise) positive A ∈ Rn×n

• a real, positive eigenvalue of A, equal to spectral radius maxi |λi(A)|
• determines asymptotic growth (decay) rate of Ak: Ak ∼ λk

pf as k → ∞
• alternative characterization: λpf(A) = inf{λ | Av ¹ λv for some v Â 0}

minimizing spectral radius of matrix of posynomials

• minimize λpf(A(x)), where the elements A(x)ij are posynomials of x

• equivalent geometric program:

minimize λ
subject to

∑n
j=1 A(x)ijvj/(λvi) ≤ 1, i = 1, . . . , n

variables λ, v, x
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) ¹Ki

0, i = 1, . . . ,m
Ax = b

• f0 : Rn → R convex; fi : Rn → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx + g ¹K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · · + xnFn + G ¹ 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · · + xnF̂n + Ĝ ¹ 0, x1F̃1 + · · · + xnF̃n + G̃ ¹ 0

is equivalent to single LMI

x1

[

F̂1 0

0 F̃1

]

+x2

[

F̂2 0

0 F̃2

]

+· · ·+xn

[

F̂n 0

0 F̃n

]

+

[

Ĝ 0

0 G̃

]

¹ 0
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax ¹ b

SDP: minimize cTx
subject to diag(Ax − b) ¹ 0

(note different interpretation of generalized inequality ¹)

SOCP and equivalent SDP

SOCP: minimize fTx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . ,m

SDP: minimize fTx

subject to

[

(cT
i x + di)I Aix + bi

(Aix + bi)
T cT

i x + di

]

º 0, i = 1, . . . ,m

Convex optimization problems 4–37

Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) ¹ tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A ¹ tI
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Matrix norm minimization

minimize ‖A(x)‖2 =
(

λmax(A(x)TA(x))
)1/2

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Sp×q)

equivalent SDP

minimize t

subject to

[

tI A(x)
A(x)T tI

]

º 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA ¹ t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]

º 0

Convex optimization problems 4–39

Vector optimization

general vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) ≤ 0, i = 1, . . . , p

vector objective f0 : Rn → Rq, minimized w.r.t. proper cone K ∈ Rq

convex vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 K-convex, f1, . . . , fm convex
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Optimal and Pareto optimal points

set of achievable objective values

O = {f0(x) | x feasible}

• feasible x is optimal if f0(x) is a minimum value of O
• feasible x is Pareto optimal if f0(x) is a minimal value of O

PSfrag replacements

O

f0(x
?)

x? is optimal
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O

f0(x
po)

xpo is Pareto optimal
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Multicriterion optimization

vector optimization problem with K = Rq
+

f0(x) = (F1(x), . . . , Fq(x))

• q different objectives Fi; roughly speaking we want all Fi’s to be small

• feasible x? is optimal if

y feasible =⇒ f0(x
?) ¹ f0(y)

if there exists an optimal point, the objectives are noncompeting

• feasible xpo is Pareto optimal if

y feasible, f0(y) ¹ f0(x
po) =⇒ f0(x

po) = f0(y)

if there are multiple Pareto optimal values, there is a trade-off between
the objectives
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Regularized least-squares

multicriterion problem with two objectives

F1(x) = ‖Ax − b‖2
2, F2(x) = ‖x‖2

2

• example with A ∈ R100×10

• shaded region is O
• heavy line is formed by Pareto

optimal points
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Risk return trade-off in portfolio optimization

minimize (w.r.t. R2
+) (−p̄Tx, xTΣx)

subject to 1Tx = 1, x º 0

• x ∈ Rn is investment portfolio; xi is fraction invested in asset i

• p ∈ Rn is vector of relative asset price changes; modeled as a random
variable with mean p̄, covariance Σ

• p̄Tx = E r is expected return; xTΣx = var r is return variance

example
PSfrag replacements
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Scalarization

to find Pareto optimal points: choose λ ÂK∗ 0 and solve scalar problem

minimize λTf0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

if x is optimal for scalar problem,
then it is Pareto-optimal for vector
optimization problem

PSfrag replacements O

f0(x1)

λ1

f0(x2)
λ2

f0(x3)

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying λ ÂK∗ 0

Convex optimization problems 4–45

examples

• for multicriterion problem, find Pareto optimal points by minimizing
positive weighted sum

λTf0(x) = λ1F1(x) + · · · + λqFq(x)

• regularized least-squares of page 4–43 (with λ = (1, γ))

minimize ‖Ax − b‖2
2 + γ‖x‖2

2

for fixed γ > 0, a least-squares problem

• risk-return trade-off of page 4–44 (with λ = (1, γ))

minimize −p̄Tx + γxTΣx
subject to 1Tx = 1, x º 0

for fixed γ > 0, a QP

Convex optimization problems 4–46


