
AEM 8426 Lecture Notes

1 Lecture One

Main ideas: vector spaces, norms, inner product, analysis review, an existence result

Finite dimensional optimization breaths on three branches of mathematics: analysis, geometry, and (lin-

ear) algebra. We will start with some algebra, add geometry, and then review the key analytic notions that

are used subsequently in the course.

It seems that in engineering, we can not really escape from the notion of a vector space (an algebraic

structure).

1. For a set F to be a �eld, it has to be closed under two binary operations (addition and multiplication),

both operations must be associative, commutative, and have distinct identity elements in F ; additive

inverses exist and multiplicative inverses exist except for the additive identity, and multiplication

operation must be distributive over the addition. We will mainly work with the �eld of real numbers

R , and occasionally with the �eld of complex numbers C .

2. A vector space over F (scalars) is a set of objects, called vectors, which is closed under a binary

operation (addition) that is associative, commutative, and has an identity element; moreover, for all

�; � 2 F and all x; y 2 V, �(x+ y) = �x+�y; (�+ �)x = �x+ �x; �(�x) = (��)x and ex = x, where

e 2 F is the multiplicative identity.

3. Let S � V. The span of S is the set all possible linear combinations of the vectors in S; S is called

a linear independent set (or a set with are linearly independent vectors) if none of its elements can

be expressed as a linear combination of the others (otherwise it is called linearly dependent). A basis

for V is a linearly independent set whose span is V . If V admits a �nite basis, it is called �nite

dimensional.

We now add some geometry ...

4. Let V be a vector space over R. A function

h:; :i : V�V! R

is an inner product if it is symmetric, self-positive (hx; xi = 0 if and only if x = 0), and it is additive

(individually, in each of its arguments) and homogeneous (with respect to the scalar multiplication).

One has

j hx; yi j � hx; xi1=2 hy; yi1=2 ; (1.1)

for all x; y 2 V (Cauchy-Schwarz).

In this course, we will mainly work with �nite dimensional vector spaces over R with an inner

product de�ned on them- Euclidean spaces. An arbitrary Euclidean space will be denoted by E.

5. Let V be a vector space over R. A function

k:k : V! R

is a norm if it is positive (except when its argument is the zero vector), positive homogeneous (with

respect to the scalars),

k�xk = j�j kxk; � 2 R;

and satis�es the triangular inequality

kx+ yk � kxk+ kyk:

A norm is really a topological notion, but we can induce a topology with the aid of geometry ...
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6. The inner product induces a (canonical) norm:

kxk := hx; xi1=2 :

7. The unit ball is the set B = fx 2 E j kxk � 1g.

We �nd a good use for some basic set theoretic operations ...

8. For � � R and C � E

�C := f�x j� 2 �; x 2 Cg:

9. The sum of the two sets C;D � E is de�ned by

C +D := fx+ y jx 2 C; y 2 Dg; C �D := C + (�D):

From analysis, we need to understand openness, closed-ness, compactness, and lacking or having an

interior, etc.:

10. A point x is in the interior of the set D � E (int D) if there is a real Æ > 0 such that x+ ÆB � D.

11. x is the limit of a sequence of points x1; x2; : : : ; xn in E, written as

x
j ! x as j !1; if kxj � xk ! 0 as j !1:

12. The closure of D , cl D, is the set of limits of sequences of points in D. The boundary of D, bd D is

cl Dnint D.

13. D � E is open if D = int D and closed if D = cl D.

14. D � E is bounded if there is a real k such that

D � kB:

15. The set D � E is compact if it is closed and bounded.

16. One of the most important results in classical analysis is the following:

Theorem 1.1 (Bolzano-Weierstrass) Bounded sequences in E have convergent subsequences.

17. Let D � E and f : D ! R. The function f is continuous (on D) if

f(xj)! f(x) when x
j ! x:

18. The set of real numbers is ordered.

19. Given a set � � R, the in�mum of � (inf �) is the greatest lower bound on �; the least upper bound

on � is denoted by sup� (supremum).

20. To make sure that inf and sup always exists (what the inf of R?) we append �1 and +1 to R; we

write R [ f+1g if necessary. One has, by convention, sup ; = �1 and inf ; = +1.

21. Let D � E and f : D ! R. Note that f(D) � R. The global minimizer of f in D is a point �x where

f attains its in�mum, i.e., �x 2 D and

inf
D

f = infff(x) jx 2 Dg = f(�x):

In this case �x is optimal solution of the optimization problem infD f .
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22. Recall that the level sets of a function f : D ! R are, for each � 2 R,

Lf (�) := fx 2 D j f(x) � �g:

Another important result in analysis, well, it is really in optimization, is the following existence result

...

23. Theorem 1.2 (Weierstrass) Suppose that the set D � E is nonempty and closed and that all the

level sets of the continuous function f : D ! R are bounded. Then f has a global minimizer (in D).

Proof: Since D is nonempty, infD f < +1. Consider a decreasing sequence �i ! infD f (i = 1; 2; : : :).

Now construct a sequence of vectors xi 2 E such that xi 2 Lf (�i); note that

f(xi)! inf
D

f:

This sequence is bounded: for all i � 1, xi 2 Lf (�i) � Lf (�
1). Thus it has a convergent subsequence

(Theorem 1.1), i.e., there exists a increasing sequence j1; j2; : : : ; and x
� such that xj1 ; xj2 ; : : : ! x

�.

The set D is closed thus x� 2 D. Moreover,

f(xj1); f(xj2 ); : : :! f(x�):

Thereby infD f = f(x�). 2

Note that the proof does not give us a clue on actually �nding this global minimizer.
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